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Highly recruited brown adipose tissue does not
in itself protect against obesity

Gabriella von Essen ', Erik Lindsund ', Elaina M. Maldonado '3, Petr Zouhar "*2, Barbara Cannon ',
Jan Nedergaard "

ABSTRACT

Objective: The possibility to counteract the development of obesity in humans by recruiting brown or brite/beige adipose tissue (and thus UCP1)
has attracted much attention. Here we examine if a diet that can activate diet-induced thermogenesis can exploit pre-enhanced amounts of UCP1
to counteract the development of diet-induced obesity.

Methods: To investigate the anti-obesity significance of highly augmented amounts of UCP1 for control of body energy reserves, we physio-
logically increased total UCP1 amounts by recruitment of brown and brite/beige tissues in mice. We then examined the influence of the
augmented UCP1 levels on metabolic parameters when the mice were exposed to a high-fat/high-sucrose diet under thermoneutral conditions.
Results: The total UCP1 levels achieved were about 50-fold higher in recruited than in non-recruited mice. Contrary to underlying expectations,
in the mice with highly recruited UCP1 and exposed to a high-fat/high-sucrose diet the thermogenic capacity of this UCP1 was completely
inactivate. The mice even transiently (in an adipostat-like manner) demonstrated a higher metabolic efficiency and fat gain than did non-recruited
mice. This was accomplished without altering energy expenditure or food absorption efficiency. The metabolic efficiency here was indistin-
guishable from that of mice totally devoid of UCP1.

Conclusions: Although UCP1 protein may be available, it is not inevitably utilized for diet-induced thermogenesis. Thus, although attempts to
recruit UCP1 in humans may become successful as such, it is only if constant activation of the UCP1 is also achieved that amelioration of obesity

development could be attained.

© 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Presently, much scientific and pharmaceutical effort is channeled into
the identification and development of drugs, nutraceuticals and cellular
pathways that augment the amounts of UCP1 in brown and brite/beige
adipose tissues (“browning agents”) [1—6]. The underlying tenet is that
an augmented amount of uncoupling capacity in the form of increased
amounts of UCP1 will inherently lead to an increase in the total
organismal combustion of food and thus counteract the development of
obesity — and in the best case even reduce obesity in those who have
already been afflicted. Additionally, it is envisaged that an increased
amount of UCP1 and of brown and brite/beige adipose tissues would
manifest with metabolically positive effects, such as being a sink for
glucose and fatty acids, leading to a lowering of plasma glucose levels
and thus also, through this, to decreased metabolic risks [7].
However, in reality, there is a deficit of studies demonstrating the
validity of what seems to be the underlying tenet: that augmented
UCP1 amounts in themselves protect against obesity.

In the present study, we have utilized the most powerful browning
agent presently known — i.e. chronic cold — to vastly augment the

total amount of UCP1 in mice (here referred to as (thermogenically)
“recruited mice”). We then aimed to quantify the ability of this high
amount of UCP1 and the fully recruited brown and brite/beige adipose
tissues to combust the excess calories encountered in a high-fat diet.
Particularly, we utilized a diet that has earlier been demonstrated to
lead to UCP1-dependent diet-induced thermogenesis, i.e. this diet in
itself leads to an increase in the total amount of UCP1 and to an
increased UCP1-dependent meal-induced metabolic rate [8]. This
implies that the diet, directly or indirectly, can activate (sympathetic)
pathways that stimulate the brown and/or brite/beige tissues and the
UCP1 therein. The recruited mice exposed to this diet may thus be said
to have regulatory access to a much higher thermogenic capacity than
that found in non-recruited mice. This should enable the mice to
powerfully oppose energy accumulation in the form of obesity.

We found, however, contrary to these tenets, that the high amounts of
UCP1 were not exploited by the mice to counteract fattening. Rather,
remarkably, the mice with highly recruited brown and brite/beige
adipose tissue were able to increase their metabolic efficiency even
above that of non-recruited mice, to further accelerate acquisition of
extra body fat, despite possessing large amounts of UCP1. Thus, even
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the stimulus of a diet that is proven to be thermogenic does not
automatically engage the thermogenic capacity of the UCP1 that is
present.

2. ABRIDGED MATERIALS AND METHODS
For detailed methods descriptions, see Supplement.

2.1. Animals

All experiments were approved by the North Stockholm Animal Ethics
Committee. Cohorts of wild-type male C57BI/6 mice (8—12 weeks old)
were exposed to a light—dark 12/12 h cycle, were single-cage and had
ad libitum access to a high-fat diet (D12451, Research diets) and
water. Before the studies started, the mice were kept at 22 °C.
Basically, in all experiments, half of the mice were pre-exposed for 33
days to cold in order to induce very high recruitment of their brown and
brite/beige adipose tissues (the “recruited” mice); the other half was
placed at principally thermoneutral temperatures (the “non-recruited”
mice) (29 °C). The experiments were started by transferring the
recruited mice to thermoneutrality while keeping the high-fat diet.
Body fat content and lean body mass of mice were measured by in vivo
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magnetic resonance imaging (MRI), and cohorts of mice were Killed
after the indicated number of days and their tissues further examined.
Oxygen consumption and carbon dioxide production were measured by
indirect calorimetry (INCA Systems) at 30 °C, and glucose, insulin and
pyruvate tolerance tests were performed with routine methods,
injecting the agents in proportion to lean body weight. Feces energy
content was determined by scanning microcalorimetry.

2.2. Protein analysis

The entire depots of interscapular brown adipose tissue and inguinal
white adipose tissue were dissected out and weighed. The tissues
were immediately frozen in liquid nitrogen and stored at —80 °C. For
protein analysis, tissue was homogenized in RIPA buffer. For deter-
mination of UCP1 protein levels, 2 or 10 pg protein (as detailed in
legend to Figure 1) were loaded on an SDS-polyacrylamide gel. The
amount of UCP1 in a “standard” brown-fat sample was set to 1.00 AU.
UCP1 protein was determined by incubation with UCP1 polyclonal
antibodies (prepared in rabbit from the C-terminal decapeptide of
mouse UCP1) as primary antibody and Anti-Rabbit IgG HRP-linked
antibody (Cell Signaling) as secondary antibody. Dilution of both anti-
bodies was 1:12,000.
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Figure 1: Large increase in total UCP1 protein amounts after recruitment. Adult mice (35 male C57BI/6) were given high-fat diet and placed at two ambient temperatures
(“non-recruited” at 29 °C and “recruited” at 4 °C) on day —33. At day 0, the recruited mice were transferred to 29 °C (thermoneutrality). At the indicated time-points, 5 mice from
each group were euthanized and interscapular brown adipose tissue and inguinal white adipose tissue were excised, weighed and analyzed. A: Wet weight of IBAT. B: Total protein
content in IBAT. C: Representative Western blot of UCP1 protein levels in IBAT. Non-recruited shown with red letters and recruited shown with blue letters, d0 = day 0 etc. The
standard (Std) is here set to 1.00 AU (arbitrary units) of UCP1, as indicated. All other lanes were loaded with 2 pig protein per sample. D: UCP1 protein per mg protein. E: Total
amount of UCP1 in IBAT, calculated as values from B multiplied with corresponding values from D. F: Wet weight of ingWAT. G: Total protein content in ingWAT. H: Representative
Western blot of UCP1 protein levels in ingWAT. The standard (Std) loaded in this case was 0.15 AU (arbitrary units) UCP1 (compared to 1.00 AU UCP1 in the Western blots analyzing
IBAT). The other lanes were loaded with 10 g protein per sample, including a sample from a UCP1(—/—) mouse (KO). I: UCP1 protein per mg protein. J: Total amount of UCP1 in
ingWAT, obtained as values from G multiplied with corresponding values from I. K: Comparison of total amount of UCP1 in IBAT and ingWAT. Arrows point to the only measurable
ingWAT data obtained. A, B, D—G, I—K: n = 5. Statistically significant differences indicated when p-values <0.05 as * for recruited versus non-recruited; ** for p < 0.01 and ***
for p < 0.001. IBAT = interscapular brown adipose tissue; ingWAT = inguinal white adipose tissue; UCP1 = uncoupling protein 1. (For interpretation of the references to colour in

this figure legend, the reader is referred to the Web version of this article.)
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3. RESULTS

The purpose of this investigation was to examine whether highly
recruited brown and brite/beige adipose tissues protect against diet-
induced obesity and in general improve metabolic parameters. In or-
der to obtain very high amounts of UCP1, mice were therefore pre-
acclimated to cold (“recruited mice”). Thereafter, they were trans-
ferred to thermoneutral conditions. All mice were exposed to a diet that
in itself promotes diet-induced thermogenesis and a modest increase
in total UCP1 amounts [8]. We investigated the ability of the excep-
tionally high amounts of UCP1 that were induced by cold acclimation to
protect the mice against the expected obesity when they were exposed
to the thermogenesis- and obesity-inducing diet.

3.1. Large increase in total UCP1 protein amount in IBAT caused by
the recruitment

To ascertain that the experimental set-up profoundly recruited brown
adipose tissue, the potential thermogenic capacity of the tissue was
estimated (Figure 1), both during the recruitment phase (d -33 to d 0)
and during the actual experimental phase (d 0 to d 18). The data from
the mice that were induced to possess highly recruited brown adipose
tissue are shown with blue lines/letters in the figures. The wet weight
of brown adipose tissue was doubled during the recruitment process
(Figure 1A), and the total amount of protein in the tissue was more than
doubled (Figure 1B). That the BAT was highly recruited was particularly
apparent on the representative western blot for UCP1, showing a clear
increase in UCP1 content per pg protein (Figure 1C, d0 versus d -33).
Compilations of data from all the mice emphasized the much higher
content of UCP1 per g tissue protein for the thermogenically recruited
mice on day 0 versus that in the non-recruited mice (i.e. the mice that
had been kept at thermoneutrality (Figure 1D)). Also during the
experimental phase when both groups were at thermoneutrality, the
UCP1 level in the recruited mice remained higher than in the non-
recruited, even after 18 days (Figure 1D).

The physiologically important parameter is, however, not the relative
UCP1 content but the total amount of UCP1 in the IBAT depot (i.e. level of
UCP1/pg protein multiplied with total protein; Figure 1D data multiplied
with Figure 1B data) [9,10]. Immediately after the end of the recruitment
process, i.e. day 0, the UCP1 amount was 50 times higher in the recruited
brown adipose tissue than in the non-recruited (Figure 1E). Following
transfer to thermoneutrality, the total amount of UCP1 decreased, but on
day 18, it was still 7 times higher than in the non-recruited state; thus, a
significantly elevated potential capacity for thermogenesis remained in
the recruited mice. The physiological half-life of total UCP1 during de-
recruitment (calculation not shown) was approximately 6 days, which
is in agreement with earlier in-vivo observations [11,12].

In contrast, in the mice that were maintained constantly at thermo-
neutrality, little happened (red curves in Figure 1) with respect to
brown adipose tissue wet weight and total protein content
(Figure 1A,B). Since the mice had been at 22 °C (below the thermo-
neutral zone) before the experiment and were transferred to thermo-
neutrality on d —33, the necessity for nonshivering thermogenesis was
removed, and thus the UCP1 amounts decreased in these mice during
the acclimation period (Figure 1C,D,E).

3.2. Despite a large relative increase of UCP1 in inguinal WAT after
cold-induced recruitment, total UCP1 amounts in inguinal WAT are
negligible

Certain white adipose tissue depots possess the ability to become
thermogenic (i.e. to express UCP1 and incorporate it functionally into
mitochondria), referred to as browning or to become brite or beige
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[2,13—17]. It has even been discussed that such brite/beige depots
could be particularly significant for counteracting obesity through
increased thermogenesis [17,18]. Inguinal white adipose tissue
(ingWAT) is the white adipose depot that most potently undergoes
browning. Hence, we examined the amount of UCP1 in the inguinal
depot after cold-induced recruitment.

IngWAT wet weight did not differ at any time point between the mice
that were recruited or non-recruited (Figure 1F); in both groups,
ingWAT increased 6-fold during the 7 weeks of the experiment. The
total protein content in ingWAT increased modestly with time and did
not differ between the groups at any time point (Figure 1G).

In the cold-acclimated mice, the Western blot demonstrated a large
increase in UCP1 levels per ng protein during the recruitment phase
from day —33 to day 0 (Figure 1H). However, after 18 days at ther-
moneutrality, UCP1 protein in the recruited ingWAT was undetectable,
just as it was in all non-recruited ingWAT samples (Figure 1HI). Thus,
at the end of the recruitment phase, on day 0, ingWAT demonstrated a
very high browning level, relative to the level in non-recruited mice
(Figure 1l). However, when the total amount of UCP1 protein in the
ingWAT was calculated (Figure 1J), it became evident that the amount
was some 50 times lower than that in IBAT. Consequently, the total
amount of UCP1 in ingWAT, despite the large increase, remained
virtually negligible compared to the amount in IBAT, even after full
recruitment (Figure 1K; ingWAT levels indicated by arrows).

3.3. No innate obesity protection even in the presence of high
amounts of UCP1

We demonstrated above (sections 3.1 and 3.2) that the total ther-
mogenic capacity (estimated as the total amount of UCP1) was
dramatically increased by the end of the recruitment process. The main
aim of the present investigation was thus to establish to what extent
this very large amount of UCP1 and recruited BAT could counteract the
development of obesity that is expected to occur in mice fed a high-fat-
diet and housed at a thermoneutral temperature. In other words, will
this extra thermogenic capacity in the recruited mice be called into use
to protect against obesity when the mice are exposed to the obesity-
inducing but also thermogenesis-inducing high-fat diet [8].

At the end of the pre-phase (day 0), the non-recruited mice had a
significantly higher body weight and possessed significantly more body
fat than the recruited mice, but there was no difference in lean body
mass (Figure 2A,B).

As seen in Figure 2C, during the entire experiment, the non-recruited
mice gained 0.2—0.3 g body fat per day. The mice with recruited
brown adipose — when transferred to thermoneutrality — could be
expected to increase their obesity at a similar rate, were it not for the
large amount of UCP1 that they had acquired. The prediction was thus
that this overcapacity of thermogenic potential would be activated to
perform augmented diet-induced thermogenesis. This should result in
mice that were resistant to the increase in body weight, at least more
resistant than the mice with unrecruited brown adipose tissue.
However, contrary to these expectations, when the mice with recruited
brown adipose tissue were transferred to the thermoneutral temper-
ature, the mice immediately began to accumulate an excess of fat.
Particularly, as seen in Figure 2C, the daily increase in body fat in these
mice rose to more than 0.4 g; indeed, during the first 11 days after the
transfer, the mice accumulated about 170% of the amount of fat
accumulated by the non-recruited mice. This occurred despite the
10—50 times higher amount of UCP1 in these mice, as compared to
the non-recruited mice. There was thus no protection against obesity
as a consequence of the large amount of UCP1, even though the mice
were exposed to the thermogenesis-inducing high-fat diet [8].
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Figure 2: No obesity protection despite high UCP1 amounts. The mice from Figure 1 were monitored. Body composition was measured on the days indicated and food intake
was measured from day —17 to day 18. Initial weights at day —33 were 23.2 + 0.3 for non-recruited mice and 23.2 + 0.4 for recruited mice (means + SE). A: Body weight. B:
Body composition; lean body mass and body fat mass. C: Body fat gain per day at different time periods (day 18 for non-recruited not shown for technical reasons). D: Food intake.
E: Metabolic efficiency expressed as % of the energy in the ingested food stored as body fat. n = 15 (day -33 — 0); n = 10 (day 4); n = 5 (day 8—18). Significances as described

in legend to Figure 1.

After the first 11 days, the recruited mice gained fat at the same rate as
the non-recruited mice. An explanation for the transience of this
accelerated lipid accumulation may be deduced from the graph
depicting the total fat amount in the two mouse groups. As seen
(Figure 2B), when transferred to thermoneutrality, the mice with
recruited brown adipose tissue had substantially less body fat than had
the non-recruited. Apparently, the mice immediately strived to attain
the same amount of body fat as the non-recruited mice and thus
increased their rate of fat deposition. However, after 11 days, they had
reached the same level of adiposity as the non-recruited mice. The
mice then ceased the accelerated fat deposition, aligning themselves
with the non-recruited mice.

3.4. Explanations for the increased lipid accumulation

The accelerated fat deposition could be due to increased food intake,
decreased energy expenditure, and/or increased assimilation effi-
ciency in the gut.

As seen in Figure 2D, non-recruited mice had a constant level of food
intake during the entire study. During the pre-phase, the “recruited”
mice had a 50% higher food intake compared to the non-recruited
mice, as expected, due to the need to compensate for the high
heat loss in the cold. When the recruited mice were transferred to
thermoneutrality, they immediately reduced their food intake to a
level similar to but slightly higher than the non-recruited group
(Figure 2D).

In the mice remaining at thermoneutrality throughout the experiment,
metabolic efficiency, calculated as the percentage of the total energy
intake that becomes stored as body fat, was stable and about 20%. In
the recruitment pre-phase, the recruiting mice had only half this ef-
ficiency (10%). However, when the recruited mice were transferred to
thermoneutrality, they immediately increased their efficiency 3-fold to
about 30% (Figure 2E), and the metabolic efficiency of the high-UCP1-
containing mice thus markedly exceeded that of the non-recruited
mice for almost 2 weeks.
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3.5. No difference in energy expenditure after transfer

The significantly increased total metabolic efficiency in the recruited
versus non-recruited mice (Figure 2E) could imply a state of decreased
energy expenditure, which could thus explain the high increase in body
fat gain. To examine whether a lowered energy expenditure was
induced, a group of mice with the same background, conditions and
treatments as those described above were placed in calorimetric
chambers for three days starting at day 0. This was thus the first day
the recruited mice were exposed to thermoneutrality. Despite some
50-fold difference in UCP1 amount between the two groups, there was
no detectable difference in energy expenditure between the groups
(Figure 3A,B). However, also here, the recruited mice ate more
(Figure 3C) and also here gained more weight, mainly body fat, while
the non-recruited mice under these circumstances showed decreased
body fat and lean body mass in the chambers (Figure 3D). (This weight
loss did not happen in mice not exposed to the calorimetric chambers
(Figure 2B), and it was thus probably a stress-response elicited by the
change in environment.) Consequently, the recruited mice also here
had higher metabolic efficiency compared to the non-recruited mice
(Figure 3E). Even though the non-recruited mice lost body fat, the
difference in absolute values between the two groups was basically the
same as in experiment 1 for the first three days, a difference of some
0.2 g of body fat/day (Figure 3D).

The respiratory exchange ratio (RER) indicates which substrate is being
utilized. The theoretical RER of the high-fat diet used here is 0.84 (see
Supplementary Methods). As seen in Figure 3F, the non-recruited mice
combusted relatively more lipids than did the recruited mice after one
day in the chambers, in agreement with them utilizing their fat depots
(Figure 3D).

These studies thus indicated that the increased metabolic efficiency
was not due to a lowered energy expenditure.

3.6. No change in efficiency of food energy uptake

Alternatively, the high efficiency could be caused by an improved ability
to absorb food energy. We therefore examined the length and the
weight of the intestines that could have been chronically increased
during the recruitment phase, given that the recruited mice had to
assimilate about one and a half times the amount of food during the
recruitment process. However, there were no significant differences in
these parameters (Figure 4A,B,C).

A similar possibility would be that the recruited mice, given their higher
needs for energy, had in other ways acquired means to better digest
the food. In independent cohorts, we therefore followed the food intake
during the days (d4-d7) with very high metabolic efficiency, as well as
the energy content of the feces during this time, and thus the di-
gestibility of the food. In this cohort, the total food intake was slightly
but not significantly higher during these days (Figure 4D). The feces
weight was clearly higher in the recruited mice (Figure 4E) so on this
basis the recruited mice demonstrated a lower, not a higher, food
uptake efficiency (Figure 4F). As the energy content of the feces could
have be changed and could thus mask an increase in efficiency, we
determined the energy content in the feces, but this was not changed
(Figure 4H). Thus, the recruited mice did not obtain the higher effi-
ciency through an enhanced efficiency of food energy uptake; in reality
the digestibility of the food in the recruited mice was slightly lower than
in the non-recruited mice (Figure 4K).

3.7. The recruited mice deposit the extra energy with the
theoretically maximal efficiency

As no change in metabolic rate or digestibility could be established, the
question would be as to whether the rather modest increase in food
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intake during the initial days at thermoneutrality (Figure 2D) could be
solely responsible for the body weight and body fat gain. During the
first 11 days at thermoneutrality, the recruited group ate significantly
more than the non-recruited group (Figure 2D). In total, the extra food
intake during this time corresponded to 94 kJ (out of 665 kJ totally
eaten by these mice after day 0), whereas the extra fat deposition
corresponded to 86 kJ. Due to the cost of handling the food (“oblig-
atory thermogenesis”), all energy digested cannot be converted into
stored fat. As detailed in Supplementary Methods, using standard
values for obligatory thermogenesis based on the composition of the
diet used here, an expected obligatory thermogenesis of 8.7% can be
calculated. Subtracting these 8.7% from the extra energy intake
(94 kJ) yields an expected highest possible energy storage of 86 kJ,
i.e. exactly the amount stored. Thus, the extra fat deposition could
occur fully based on the extra food intake and does not require a
concomitant reduction in metabolism or any other means.

3.8. Maintained thermogenic ability after transfer to
thermoneutrality

The absence of any effect of the high amount of UCP1 on the metabolic
parameters measured could reflect an inability of the UCP1 to be
thermogenic. The mice had been transferred to thermoneutrality, and
there would be no temperature-related demand on the system for
generation of thermogenesis. Thus, an involution state of the tissue
would arise, leading to the successive decrease in UCP1 content
depicted in Figure 1. It might be suggested that during this involution
process, the tissue may become unable to respond thermogenically to
stimulation. We therefore examined the effect of Bs-adrenergic stim-
ulation on thermogenesis in the recruited and the non-recruited mice.
As seen in Figure 3G, there was a large thermogenic response to CL-
316,243 in the recruited mice when they were tested immediately after
the end of the recruitment period; in the non-recruited mice, practically
no response was seen. Importantly, when the mice were examined 4
days after cessation of the recruitment period (Figure 3H), the recruited
mice still demonstrated a very marked thermogenic response. Thus, at
the time when the mice demonstrated their highest fat deposition rate
and the highest metabolic efficiency, the brown and brite/beige adi-
pose tissues still possessed a large available thermogenic capacity.
This capacity was, however, clearly not called upon metabolically
under these conditions.

3.9. No qualitative or quantitative difference in metabolic efficiency
due to the total absence of UCP1

The previous results implicated that the presence of exceedingly high
UCP1 amounts did not lead in itself to decreased metabolic efficiency.
To examine if any significance could be ascribed to UCP1, an additional
series of experiments was designed, involving UCP1(—/—) mice, as
well as wild-type mice. All mice were treated in the same way as in the
previous studies, but food intake and body composition were measured
every day (or as indicated). In the UCP1-ablated mice, the recruitment
period can evidently not result in any augmentation in UCP1 levels, and
the UCP1(—/—) mice that are exposed to the cold lack the ability to
develop nonshivering thermogenesis and therefore shiver constantly
and have markedly decreased longevity [19]. Additionally, the absence
of UCP1 leads secondarily with time to alterations in mitochondrial
structure and function, alterations that thus principally eliminate any
effects of brown adipose tissue on oxidative metabolism [20,21].
Food intake in both wildtype and UCP1-ablated mice followed the same
pattern as in the experiments above: it was stable in non-recruited
mice and high in recruited mice at 4 °C but decreased immediately
after the mice were transferred to thermoneutrality (Figure 5AB); this
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was followed, as before, by some days of slightly higher food intake
than in the non-recruited mice. At the start of the experiment, the
UCP1(—/—) mice at thermoneutrality had already gained somewhat
more body fat than the wild-type (Figure 5CD). This is consistent with
earlier studies that generally show that UCP1-ablated mice are more
obesity-prone compared to wild-type mice when maintained at ther-
moneutrality and given high-fat diets [22—24], although this may not
always be the case, as we have recently compilated [25].

In the wild-type mice, the transfer to thermoneutrality elicited exactly
the same response as previously: the mice greatly increased the rate of
body fat gain, exceeding that of the non-recruited mice, until the total
amount of fat became approximately the same as that of the mice that

had been kept at thermoneutrality; the rate then decreased to parallel
that of the thermoneutral mice (Figure 5C,E). The “recruited” UCP1(—/
—) mice had very low body fat amounts (Figure 5D); this is principally
in accordance with [26,27] (and our unpubl. obs.), that showed that
UCP1-ablated mice at subthermoneutral temperatures are obesity-
resistant. Concerning body fat gain after transfer to thermoneutrality,
the UCP1(—/—) mice showed qualitatively and quantitatively the same
pattern as the UCP1(4-/4-) mice: an increase in the rate of gain, so that
the rate exceeded that of the mice that had remained at thermoneu-
trality; thereafter a return to similar levels as in the non-recruited mice
(Figure 5E,F), although within the time of the study, these mice did not
reach the same body lipid amounts as the wildtype mice (Figure 5D).
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Metabolic efficiency followed the same pattern in the UCP1(—/—) mice
as in the wild-type mice (Figure 5G,H).

Taken together, the recruited UCP1(—/—) mice did not have a quali-
tatively different response from recruited wild-type mice at thermo-
neutrality, indicating again that despite the presence of even
excessively high amounts of UCP1 in wild-type mice, the protein is not
at all active; indeed, it is as metabolically inactive as if it were not
present at all.

3.10. Effects of brown adipose tissue recruitment on metabolic
parameters

In an independent experimental series, we examined whether the
recruitment process conveyed resistance to other metabolic effects of
high-fat diet. The recruited mice in this series displayed again the
remarkable re-adjustment to the fat mass and body weight of the non-
recruited mice (Figure 6A,B,C).

With regard to the possibility that brown adipose tissue functions as a
glucose sink and thus lower blood glucose levels [28], we found that
after a 4.5 h fast, blood glucose levels were significantly lower in
recruited mice than in non-recruited mice (Figure 6D). This difference
had disappeared after 18 days. These observations would be in
agreement with the recruited brown adipose tissue being involved in
enhanced glucose disposal. This effect may not be due to UCP1 as
such, since enhanced glucose uptake occurs even in stimulated UCP1-
ablated mice [29,30]. Blood glucose levels after an overnight fast did
not, however, show any biologically significant difference between
recruited and non-recruited mice (Figure 6E).

In a glucose tolerance test (Figure 7A) (where we injected the same
amount of glucose per g lean mass in all mice), the recruited mice on
day 1 actually showed less glucose tolerance than the non-recruited
mice. However, after 18 days at thermoneutrality, there was no
longer any difference in the glucose tolerance test between the
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recruited and the non-recruited mice (Figure 7C,D,E). The initial lower
glucose tolerance would tend to indicate that the innate insulin effects
are lower in the recruited mice; this would mean that the low ther-
mogenesis cannot be explained as being due to an inhibitory effect of
insulin on thermogenesis — although insulin has this ability as such
[31].

In the perhaps more relevant insulin tolerance test, although absolute
glucose levels were lower, a non-significantly higher response to in-
sulin was seen on day 1 in thermoneutrality (Figure 7F,G) but this
tendency was not observed after 18 days (Figure 7H,1,J).

In a pyruvate tolerance test, a very marked higher “tolerance” was
observed in the recruited mice (Figure 7K,L), implying that these mice
were low in gluconeogenesis; this difference disappeared with time
(Figure 7M,N,0).

Thus, the dramatically higher UCP1 levels in the recruited mice were
only associated with minor alterations in metabolic parameters nor-
mally associated with a high-fat diet. Even the differences that are
seen are only correlative, and the participation of UCP1 in the effects
cannot be demonstrated from these results.

4. DISCUSSION

In the present investigation, we have examined whether the acquisition
of large amounts of UCP1 (in brown adipose tissue, as well as in brite/
beige adipose tissue) in itself provides an augmented defense against
diet-induced obesity and conveys an amelioration of other metabolic
parameters. We found that despite extremely high levels of UCP1, at
least 50 times more than in non-recruited control mice, these highly
recruited mice transiently and unexpectedly gained more weight and
body fat than controls when examined under “physiologically hu-
manized” [32] conditions. The results are of significance for the un-
derstanding of body weight control as such, and of browning, and for
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Figure 6: Effect of BAT recruitment on blood glucose levels. ABC: Independent groups of mice (the same as in Figure 4) were treated as those described in Figure 1 and their
body weight, fat mass and lean mass followed; n = 18/18. D: On days 1 and 18 after transfer of the recruited mice to 29 °C, a group of mice were fasted for 4.5 h and their blood
glucose levels determined as described in Methods; n = 12/12. E: On the same days, another group of mice were fasted overnight and their blood glucose levels determined;
n = 6/6. Error bars were smaller than the size of the symbols. Statistics as in Figure 1. # etc. indicates significant differences between day 1 and day 18 (colour-coded). (For
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the development of new drugs and pathways to counteract the
development of obesity.

4.1. The effect of pre-recruitment on energy balance

The outcome of the present experiments can be described as follows.
The control mice were exposed throughout the experiment to condi-
tions (high-fat/high sugar diet and thermoneutrality) that lead to in-
duction of diet-induced thermogenesis, characterized by a small but
metabolically significant increase in UCP1 amounts and increased
energy expenditure during feeding (as compared to chow-fed mice), as
earlier shown [8,22], processes that are probably mediated by the
sympathetic nervous system [33]. Still, despite this thermogenesis, the
mice steadily increase their lipid stores, indicating that the level of diet-
induced thermogenesis induced here cannot fully compensate for their
high energy intake.

The “recruited” mice should be in a different situation. They have been
exposed to the highly recruiting conditions of cold exposure and have
acquired large amounts of UCP1 and metabolically expanded brown
adipose tissue. When they are then transferred to thermoneutrality,
they are still exposed to the high-fat/high sugar diet that should
activate diet-induced thermogenesis via stimulated sympathetic
innervation. However, in contrast to the controls, they already have
access to the vast capacity for energy expenditure found in their
recruited brown adipose tissue and they should be able to activate this
through the sympathetic nervous system and thus counteract obesity
development to a greater extent. This is, however, a possibility that is
not utilized. Instead, they start to overeat, and, despite their access to
their highly recruited brown adipose tissue, they channel all the
available energy of the extra food into their lipid stores. Thus, to
replenish these stores and bring the reserves to exactly the level found

in the control mice overruns the possibility to use the brown adipose
tissue for enhanced diet-induced thermogenesis, leading to the mice
actually becoming obese at a higher rate than the controls, to finally
arrive at exactly the same state of obesity as the controls.

Thus, the mere presence of high amounts of UCP1 and highly recruited
brown and brite/beige adipose tissues does not ensure protection
against obesity, and the obese state observed in high-fat/high-sugar-
fed mice should not be understood as the passive outcome of over-
eating but as a condition actively strived for by the metabolic control
systems of the mice under these exact conditions.

4.2. The thermogenic capacity of large amounts of UCP1 is not
obligatorily utilized to protect against obesity

Although much effort is presently directed towards augmentation of
UCP1 amounts in both brown and brite/beige adipose tissues (see
Section 1), there are no direct studies demonstrating the effects of
increased UCP1 amounts as such. For instance, although many
“browning agents” have been shown to increase UCP1 in e.g. inguinal
WAT and to lead to lower fat mass, it has not been investigated
whether the fat-lowering effect is dependent upon the increase in
UCP1 amount — or whether the increase in ingWAT UCP1 is a
consequence of the reduction of fat mass through increased sympa-
thetic stimulation, rather than being the cause of it.

Principally, true “browning agents” (as distinguished from the “false-
positive” browning agents that act indirectly by augmenting heat loss
[2]) may be of two types: those that mimic or augment some step in the
adrenergic/cAMP cascade that thus leads to both enhanced cell dif-
ferentiation (increased UCP1 levels) and to acute activation of UCP1 —
or those that only increase differentiation and not thermogenesis,
working through other pathways (e.g. PPARy activators [34—37]).
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These latter effectors may be subdivided into those that directly act on
UCP1 gene expression and thus increase UCP1 amounts without any
general augmentation of the thermogenic capacity of the tissues — and
those that also induce mitochondriogenesis, vascularization etc.
Here, we examined the effect of a recruited tissue with an augmented
amount of UCP1 under conditions when the acute stimulation from cold
had been removed. Thus, the entire thermogenic system, not only the
amount of UCP1, would be enhanced and would be available for ther-
mogenesis induced by any other means than cold. Here, the recruited
tissue should be stimulated by the high-fat diet used, earlier demon-
strated to induce UCP1-dependent diet-induced thermogenesis [8]. We
found that although the mice possessed very large amounts of UCP1, this
UCP1 was not utilized by the mice and it did not in itself lead to enhanced
thermogenesis. Indeed, the mice could control their metabolism to the
extent that they at least transiently became even more metabolically
efficient than the mice with low amounts of UCP1 and therefore gained
more body fat. Thus, augmenting the total UCP1 content, even when this
is done physiologically so that the total thermogenic machinery is
recruited, does not in itself affect energy metabolism.

4.3. UCP1 is not leaky

The results presented here also have bearing on the tenet that UCP1 is
not leaky. Both when studies are performed in isolated brown-fat
mitochondria [38] or in isolated brown-fat cells [39], the conclusion
is that when UCP1 is not in an active state, there is no observable
uncoupling effect of the presence of UCP1; nor is there any effect of the
presence or absence of UCP1 on basal metabolic rate in animals (mice)
[40]. However, in the present experiment, the conditions are different:
the diet used here has been demonstrated to induce UCP1-dependent
diet-induced thermogenesis [8], and therefore the diet should generate
signals that should be able to activate the large amounts of UCP1
present. That this does not occur implies that the central control of the
sympathetic stimulation of brown and brite/beige adipose tissues is
more intricate than is presently understood.

4.4. A “variable” adipostat

A general notion is that most adult animals, including humans, tend to
keep a relatively constant body weight: the balance between food
energy intake and that combusted is generally better than 99%. This is
generally discussed as indicating the existence of a mechanism,
referred to as an adipostat or a lipostat. Functionally, this is ascribed to
the brain being informed of the status of the body’s energy reserves
and thus taking adequate countermeasures if body weight/body energy
reserves deviate from desired levels [41—45]. Leptin is generally
thought to be the (main) conveyer of this information from the pe-
riphery to the brain [46], but there are indications that other systems
may be involved [47—50]. The general question as to whether such a
system for body weight control really exists, with a set point or with
settling points, and how it could develop, has been discussed, based
on e.g. the outcome of mathematical models [51,52].
Serendipitously, our observations here at least at first glance support
the existence of such an adipostat. The “recruited” mice gained just
sufficient amounts of fat to reach the same fat content as those mice of
the same age that had been living at thermoneutrality for the duration
of the experiment (Figures 2A,B, 5C and 6B). The increase in body
weight (obesity) seen e.g. in the non-recruited mice was thus not the
passive result of a marginal excess of food intake; rather, it would
seem that it was a “goal” set by the given conditions. However, the
mice would not seem to have one fixed and specified fat set point;
rather, given a series of conditions, including environmental temper-
ature, the nature of the food, the age, the gender, the mice will strive to

I

MOLECULAR
METABOLISM

reach a very specified weight/fat content. This thus indicates that such
body weight changes are not the result of haphazard alterations in
energy balance but appear programmed in the organism.

4.5. The acute regulation of thermogenesis

It seems that the brain strives to obtain a given accumulation of energy
reserves in the body and this goal overrules other types of signals. High
amounts of fat in the body have been suggested to activate thermo-
genesis to counteract further obesity, and leptin has been assumed to
mediate this signal [53] (although leptin is actually not thermogenic
[54,55]). However, the brain clearly does not oppose obesity as such,
and based on the data presented here, it prevents the occurrence of
diet-induced thermogenesis until a predetermined degree of obesity
has been reached. A high food intake as such may also be associated
with (obligatory) diet-induced thermogenesis, but in the mice studied
here, the period with the highest food intake at thermoneutrality
coincided with the period of time when metabolic efficiency was at its
highest (Figure 2D,E).

4.6. The interaction between diet-induced thermogenesis and
cold-induced thermogenesis

The experiments described here were all conducted at thermoneu-
trality (=30 °C). In our opinion, this is the only condition under which
facultative diet-induced thermogenesis can be observed. As earlier
discussed by us and others [2,56], at environmental temperatures
below thermoneutrality, any increase in energy expenditure caused by
any agent will be used as part of the thermoregulatory thermogenesis
that is necessary for compensating the heat loss, to maintain the body
temperature. This is experimentally observed as apparent elimination
of the thermogenic effect of artificial uncouplers, as well as of the
thermogenic effect of physical activity [56—58]. Thus, if the present
experiment had been conducted at standard housing temperatures
(=20 °C), it would not even theoretically have been possible to
observe an augmented diet-induced thermogenesis in the recruited
mice. Correspondingly, that such thermogenesis was not observable
under the present conditions demonstrates that the mice can acutely
regulate the fraction of the thermogenic capacity present that is
actually used for diet-induced versus cold-induced thermogenesis.
As we humans spend most of our time under thermoneutral conditions
[59,60], any facultative diet-induced thermogenesis that exists should
be manifest in humans.

4.7. Are the attempts to identify pathways for augmenting UCP1
amounts in order to counteract obesity doomed to be in vain?

In many studies aimed at increasing thermogenesis with the goal of
counteracting the development of obesity, the stated successful
endpoint reached has often been increased UCP1 amounts or
increased UCP1 gene expression levels. The present study demon-
strates that even if such an endpoint is achieved, the augmented
amounts of UCP1 can be without anti-obesity function. The challenge
pharmaceutically and nutraceutically is thus not only to enhance the
total amount of UCP1 in human subjects but also to ascertain that the
UCP1 is adequately activated. If this is accomplished, the induced
thermogenesis could decrease metabolic efficiency and thus curtail the
development of obesity.
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