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PERSPECTIVE

Explanations for latitudinal diversity gradients must invoke 
rate variation
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The latitudinal diversity gradient (LDG) describes the 
pattern of increasing numbers of species from the poles 
to the equator. Although recognized for over 200 years, the 
mechanisms responsible for the largest-scale and longest-
known pattern in macroecology are still actively debated. I 
argue here that any explanation for the LDG must invoke 
differential rates of speciation, extinction, extirpation, or 
dispersal. These processes themselves may be governed 
by numerous abiotic or biotic factors. Hypotheses that 
claim not to invoke differential rates, such as ‘age and 
area’ or ‘time for diversification’, eschew focus from rate 
variation that is assumed by these explanations. There 
is still significant uncertainty in how rates of speciation, 
extinction, extirpation, and dispersal have varied regionally 
over Earth history. However, to better understand the 
development of LDGs, we need to better constrain this 
variation. Only then will the drivers of such rate variation 
– be they abiotic or biotic in nature – become clearer.

age and area hypothesis | tropics as older | tropics as stable |  
climate change | biodiversity gradient

The tropics teem with a diversity of life that dwindles toward 
the poles. This latitudinal gradient in species richness (LDG) 
has been studied intensively for over 200 years (1, 2). Despite 
concerted attention, significant debate still exists regarding 
the causal mechanisms behind a pattern that transcends 
clades, ecosystems, and continents (3).

Over 100 hypotheses have been proposed to explain the 
higher diversity observed at low versus high latitudes (3–11). 
Although explanations abound, here I contend that rate var-
iation is inherent to all LDG hypotheses. That is, regional 
differences in species richness must be explained by one or 
more of the following four processes: speciation, extinction, 
local extirpation, or dispersal. These processes themselves 
may be controlled by a suite of abiotic and biotic factors that 
operate at different spatial and temporal scales (12), includ-
ing spatiotemporal climate change (13–16), biotic interac-
tions (17–20), and available resources and area (21–25).

Hypotheses that invoke differential rates have been tradi-
tionally classified as ‘historical’ hypotheses and are often con-
trasted with ‘ecological’ hypotheses that invoke constraints on 
the number of species that can occur together in any given 
location (8, 26). Differential rates, however, are implicated in 
both suites of hypotheses. For example, ecological hypotheses 
suppose that rates of speciation (incipient or not), extinction, 
extirpation, or dispersal change in association with the num-
ber of species in a region (27, 28). Rate variation is therefore 
inherent to both ecological and historical hypotheses, with the 

‘ecological’ designation a reflection of a proposed mechanism 
that regulates this rate variation.

One hypothesis that purports not to invoke differential 
rates is the ‘time for speciation’ or ‘time for diversification’ 
hypothesis. Under this formulation, most clades originate at 
low latitudes and only later disperse to higher latitudes. The 
greater time that lineages spent equatorially would allow 
more diversity to accumulate there, even if diversification 
rates were similar across latitudes once these low-latitude 
lineages dispersed out of their ancestral home (6, 29–32). Rate 
variation, however, is still inherent to such an argument, even 
if somewhat fatuous: Diversification would have been higher 
at low latitudes simply due to its absence at higher latitudes. 
Whether the majority of clades have low-latitude origins is an 
open question that is both supported (33–35) and refuted 
(36–39) by empirical data. Regardless of where most groups 
originated, discussions around ‘time for diversification’ often 
implicitly assume that high-latitude regions were empty of 
life over much of Earth history. The fossil record, however, 
suggests these regions were never consistently devoid of life, 
even if most species were periodically eradicated due to large-
scale climate perturbations (see below and Fig. 1).

The potential origin of many groups in tropical climates, 
in combination with strongly conserved physiological con-
straints, is often provided as a mechanism for maintaining 
LDGs (6, 30, 44–46). Conserved physiology, referred to as 
phylogenetic niche conservatism (47–49), would prohibit 
many species from dispersing out of low-latitude regions and 
would therefore retain higher diversity equatorially. Although 
physiological tolerances may be conserved within some lin-
eages (50–52) and across some clades (40, 48, 53), fossil data 
suggest dispersal dynamics were variable, and more species 
may have dispersed from low to high latitudes than vice 
versa in many groups (54–58).

The ‘time for speciation’ hypothesis is sister to the ‘age and 
area’ hypothesis and often discussed concomitantly. The ‘age 
and area’ hypothesis posits the tropics were larger in extent 
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earlier in the Cenozoic (59–61), which fuelled higher equato-
rial diversity (30, 61, 62). Like all LDG hypotheses, the ‘age and 
area’ hypothesis cannot extricate itself from rate variation. 
The larger historical area of the tropics is thought to have 
elevated richness by potentially increasing the probability of 
population isolation and thus speciation, or by decreasing 
rates of extinction by increasing population size and access 
to resources (63–65). Environmental heterogeneity may also 
scale positively with area, further elevating rates of allopatric 
speciation. Regardless of whether—and why—larger tropical 
areas scale with richness, the ‘age and area’ hypothesis 
assumes that tropical-adapted taxa once occupying higher 
latitudes during warmer intervals have now been driven 
extinct, extirpated, or forced to migrate equatorward as 
warmer climates contracted (56, 66, 67). Thus, the historical 
effect of a once-larger tropical expanse involves differential 
rates: either through elevated extirpation/extinction at high 
latitudes, or greater dispersal from high to low latitudes.

Today, the larger areal extent of the tropics does not pro-
vide an explanation for high terrestrial richness at low lati-
tudes, since tropical climate regions on land are no larger 
than extratropical ones (68–71) (Fig. 2). When examining 
historical patterns of richness and rate variation, care must 
be taken to quantify biodiversity dynamics by latitude, and 
to disentangle these dynamics from the potential drivers of 
latitudinal patterns, such as spatial climate variation over 
Earth history. The LDG is a pattern with respect to latitude, 
not with respect to climate regime. Climate and its variation 
throughout Earth history is one hypothesized driver of the 
LDG, but spatial variation in climate does not negate differ-
ences in diversification rates across latitudes, which may 
have occurred as climate changed over time.

The original formulation of the ‘age and area’ hypothesis 
likely dates to Wallace (1), who noted that equatorial regions 
have suffered less from climate change than temperate 
regions (6). Wallace’s argument implicitly assumed higher 

Fig. 1. Mammal, crocodylomorph, and bird occurrences during the Eocene (56 to 33.9 Ma) and Miocene (23.03 to 5.33 Ma), plotted on a Ypresian and Chattian 
paleogeography, respectively (40). Using two example time intervals, these maps show that clades were found at high latitudes millions of years ago. The 
disappearance of some of these groups from high-latitude regions points to broad-scale extinction, extirpation, or movement equatorward. Occurrences were 
rotated to their paleolatitudes and paleolongitudes in GPlates v.2.2.0 using Scotese’s PALEOMAP PaleoAtlas (41). Fossil distributional data were downloaded 
from the Paleobiology Database on 22 February 2023 for the class Aves, class Mammalia, and unranked clade Crocodylmorpha. Animal silhouettes are from 
PhyloPic: Moeritherium from T. Michael Keesey (CC0 1.0), Gastornis giganteus from Scott Hartman (CC BY 3.0), and Duerosuchus piscator from Armin Reindl (CC 
BY 4.0). Maps were constructed in R v.4.2.1 using the sf package (42) and ggplot2 (43).
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rates of extinction/extirpation at high relative to low latitudes 
or greater high to low latitude dispersal (7, 71), and provides 
a corollary to the ‘tropics are stable’ hypothesis that impli-
cates relatively low extinction rates at low latitudes (72).

There is little doubt that high-latitude cooling and glacia-
tion instigated extinction, extirpation, or range shifts at high 
latitudes over Earth history [often defined as exclusive of 
23.26° latitude, though see (68)]. Higher extinction rates at high 
latitudes have been reported for many clades, including ver-
tebrates (40, 67, 73, 74), invertebrates (74, 75), and plants (76). 

Comparisons of species’ age distributions based on molec-
ular phylogenies (73, 77) and fossil data (54, 75) additionally 
suggest a role for high latitude extinction, with greater vari-
ance in taxon age at low latitudes suggesting older taxa were 
preferentially lost at high latitudes (78).

Distributional patterns for groups also reveal a role for 
high latitude extinction or extirpation. For example, today, 
beetles with poorer dispersal abilities exhibit a steeper rich-
ness gradient across Europe compared to more vagile beetles 
better able to colonize regions once covered by ice (79). Fossil 

Fig. 2. Present-day Köppen-Geiger climate classifications for tropical, arid, temperate, cold, and polar regions. Tropical climate regimes are not larger in 
areal extent than extratropical climate regimes. However, individual ‘tropical’ climate classifications span larger areas, on average, than individual ‘temperate’ 
classifications, listed here. The individual climate categories are ranked from largest to smallest in area (km2) and were calculated using an equal area (Eckert 
4) map projection at 10-km resolution from Beck et al. (70). Analyses relied on the R v.4.2.1 computing environment using the sf package (42) and ggplot2 (43).
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data show similar evidence: high-latitude regions were richer 
in the past than they are today for many groups (80–82), 
particularly during warmer intervals such as the Eocene, 
around 55 to 45 million years ago (59, 60) (Fig. 1). During this 
time, the ancestors of bird clades now restricted to low lati-
tudes were found as far north as ~47° paleolatitude, including 
the Anseranatidae, currently restricted to Australia and 
southern New Guinea, and the Coliidae, currently restricted 
to sub-Saharan Africa (40). Greater heat transport from the 
low to high latitudes in the Eocene warmed polar regions, 
allowing crocodylomorphs to roam Antarctica and to venture 
as far north as 73° in the Arctic circle (83). Indeed, many 
groups whose species are now restricted to lower latitudes 
today were found at higher latitudes during the Eocene, when 
temperatures were warmer. Consequently, LDGs may have 
been shallower during these warm intervals and steepened 
to their present-day configuration as climate cooled begin-
ning around 34 to 15 million years ago (55, 66, 67, 84, 85).

Although Cenozoic cooling almost certainly drove high 
latitude extinction and extirpation, steepening the LDG (56, 
67, 76, 79), these processes were likely not the only factors 
to have influenced the emergence of a modern-style LDG. 
Growing evidence suggests that low latitude speciation may 
have contributed to the formation of LDGs today, with per-
haps even larger effects on LDG development than extinction 
dynamics (15, 54, 55, 84). Spatiotemporal climate change may 
instigate range fragmentation more readily at low latitudes, 
prompting higher rates of allopatric speciation and therefore 
piling up species equatorially (13, 14, 86, 87). This mechanism 
may operate in both the marine and terrestrial realm, with 
environmental heterogeneity possible across three dimen-
sions (time, space, and depth) in the sea (55).

There is still much to be learned about variation in rates 
of speciation, extinction, extirpation, and dispersal regionally 
over Earth history. To better understand the development 
of LDGs, we need to better constrain this variation – only 
then will the mechanisms driving rate variation become 
clearer. This is no easy task. Direct inference from the fossil 
record can be challenged by gaps in spatial, temporal, and 
taxonomic coverage. Inferences from molecular phylogenies 
are similarly fraught: extinction is notoriously difficult to esti-
mate (88, 89), and recent work suggests that any given extant 
timetree can be explained equally well by a large number of 
diversification scenarios (90). The latter represents a case of 
nonidentifiability, meaning that it is difficult to infer the true 
values of a given model’s underlying parameters. Even 
approaches that combine fossil and molecular data to esti-
mate evolutionary rates do not necessarily resolve issues of 
nonidentifiability (91).

Despite these difficulties, deeper insights on regional rate 
variation are still possible. New phylogenetic methods (92, 
93) are providing means to examine whether diversification 
rate patterns are robust, despite issues of nonidentifiability. 
Geographic diversification models, such as GeoSSE (94) and 

ClaSSE (95), may help to elucidate spatial rate variation 
through time, especially when used in combination with fos-
sil data. These methods should be employed to study new 
systems of relevance to LDGs, with focus on gathering empir-
ical data for understudied groups, such as invertebrates. 
Paleontological models are also beginning to estimate rates 
of diversification regionally (96–98), with more work needed 
to develop our understanding of how spatial bias may affect 
rate parameters. Simulation models, such as mechanistic 
spatial algorithms, provide a new avenue to elucidate rate 
variation regionally over Earth history (15, 99–101), especially 
when forced with realistic estimates of how climate, conti-
nents, and topography have changed spatially and tempo-
rally over time (102). Even without realistic forcers, spatial 
models may provide null expectations for rate variation in 
silico (15).

Regional rate variation is best estimated using multiple 
approaches. This triangulation method echoes recent sug-
gestions by Liow, Uyeda, and Hunt (103) and Meseguer and 
Condamine (67) to leverage diverse information, including 
phylogenetic estimates, fossils, developmental biology, and 
quantitative genetics, to better elucidate macroevolutionary 
history. For instance, more information on LDG dynamics 
may be provided when using phylogenetic and fossil data 
in a total-evidence framework (104) underpinned by several 
birth–death models that allow for rate variation through 
time and space. These diversification models can then be 
coupled to biogeographic analyses that estimate dispersal 
rates and local extinction rates in low and high latitudinal 
bands (56).

The richness of the tropics has long intrigued biologists. 
The pervasiveness of LDGs across ecosystems and clades 
rightfully deserves attention and begs a mechanistic explana-
tion. Any explanation, however, must invoke differential rates 
of speciation, extinction, extirpation, or dispersal. Hypotheses 
that propose ‘more time’ for diversification over rate variation 
inadvertently eschew focus from the high latitude extinction 
or dispersal dynamics that are inherent to such arguments. 
Future work on LDGs should concentrate on better constrain-
ing variation in evolutionary rates across space and time using 
integrative, cross-disciplinary approaches (103, 105). The 
potential drivers of this rate variation, either biotic or abiotic 
in nature, will then become clearer.

Data, Materials, and Software Availability. All study data are included in 
the main text.
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