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The type D simian retroviruses cause immunosuppression in macaques and have been reported as a
presumptive opportunistic infection in a patient with AIDS. Previous evidence based on viral interference has
strongly suggested that the type D simian viruses share a common but unknown cell surface receptor with three
type C viruses: feline endogenous virus (RD114), baboon endogenous virus, and avian reticuloendotheliosis
virus. Furthermore, the receptor gene for these viruses has been mapped to human chromosome 19q13.1-13.2.
We now report the isolation and characterization of a cell surface receptor for this group of retroviruses by
using a human T-lymphocyte cDNA library in a retroviral vector. Swiss mouse fibroblasts (NIH 3T3), which
are naturally resistant to RD114, were transduced with the retroviral library and then challenged with an
RD114-pseudotyped virus containing a dominant selectable gene for puromycin resistance. Puromycin selec-
tion yielded 12 cellular clones that were highly susceptible to a (3-galactosidase-encoding lacZ(RD114)
pseudotype virus. Using PCR primers specific for vector sequences, we amplified a common 2.9-kb product
from 10 positive clones. Expression of the 2.9-kb ¢cDNA in Chinese hamster ovary cells conferred susceptibility
to RD114, baboon endogenous virus, and the type D simian retroviruses. The 2.9-kb ¢cDNA predicted a protein
of 541 amino acids that had 98% identity with the previously cloned human Na™*-dependent neutral-amino-acid
transporter B°. Accordingly, expression of the RD114 receptor in NIH 3T3 cells resulted in enhanced cellular
uptake of L- [*H]alanine and L- [3H]glutamine. RNA blot (Northern) analysis suggested that the RD114
receptor is widely expressed in human tissues and cell lines, including hematopoietic cells. The human B°
transporter gene has been previously mapped to 19q13.3, which is closely linked to the gene locus of the RD114

receptor.

Retroviral infections are initiated by binding of the viral
envelope glycoprotein to a cell surface receptor protein, fol-
lowed by secondary events that lead to fusion of the viral and
cellular membranes. In addition, the envelope glycoprotein-
receptor interaction within productively infected cells prevents
superinfection by any retrovirus that uses the same receptor, a
phenomenon known as interference (12). These observations
have been used to classify retroviruses into interference groups
that are believed to use a common receptor for infection. For
example, 20 retrovirus strains that infect human cells have
been classified into only eight interference groups (31). Thus,
gibbon ape leukemia virus, feline leukemia virus subgroup B
and 10A1 murine leukemia virus (MLV) use a common recep-
tor for infection, as determined by interference studies (38,
41). The receptor for these viruses has been identified as the
Na™-dependent phosphate symporter Pitl (14, 24, 26, 27, 38,
41). A related protein, Pit2, functions as a receptor for am-
photropic MLV and 10A1 MLV (23, 24, 41, 42). Xenotropic
and polytropic MLVs cross-interfere in some cells (5, 22).
Recently, a human cDNA that encodes the receptor for xeno-
tropic/polytropic MLVs was cloned, and its normal cellular
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function is being investigated (34). Cross-interference has also
been observed between different subgroups of avian leukosis/
sarcoma viruses (12).

The type D retroviruses, including simian retrovirus type 1
(SRV-1), SRV-2, SRV-4, and SRV-5 and Mason-Pfizer mon-
key virus (MPMV) (also known as SRV-3) (6, 8, 13, 20, 21, 31,
33), cross-interfere not only with each other but also with three
type C retroviruses: feline endogenous virus (RD114), baboon
endogenous virus (BaEV), and avian reticuloendotheliosis vi-
rus (REV) (16, 31). REV appears to be more related to mam-
malian viruses than to other avian retroviruses, suggestive of
viral transmission from mammals to birds. The type D viruses
are of particular interest because they are prevalent in nonhu-
man primates, where they cause severe immunodeficiencies (8,
11, 13, 20, 21, 33), and because they infect human cells in
culture and have been reported as a presumptive opportunistic
infection in a human immunodeficiency virus type 1-positive
patient with AIDS (10). Consequently, they are of concern as
a potential emerging infection in humans. In addition, RD114
infects human cells, including hematopoietic cells, at high ef-
ficiency (29) and is resistant to inactivation by human comple-
ment, making RD114-based vectors potential candidates for in
vivo gene therapy (7, 35). The receptor for this broad interfer-
ence group of retroviruses has not been identified.

To address these issues, we attempted to clone the human
cell surface receptor for RD114. This was done with a human
T-lymphocyte cDNA library in the retroviral vector pBabe-X
(18), generously donated by Richard Sutton (Baylor College of
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FIG. 1. Amino acid sequence comparison of human R-receptor and human neutral-amino-acid transporter B°. The R-receptor and B° transporter have 98%
sequence identity. Common amino acids are shaded, transmembrane (TM) sequences are shown as lines over the amino acid sequence, and potential N-linked

glycosylation sites are shown by asterisks.

Medicine, Houston, Tex.). Use of a retroviral vector library has
major advantages for this work, as exemplified by its recent use
in cloning of cDNAs for simian immunodeficiency virus core-
ceptors (9) and a human receptor for xenotropic and poly-
tropic MLVs (34).

Cloning of the RD114 receptor (R-receptor). We have pre-
viously described our cloning procedures in detail (34). Briefly,
10 pg of retroviral plasmid library DNA was transfected into
Phoenix-Eco packaging cells (Garry Nolan, Stanford Univer-
sity, Stanford, Calif.) (2 X 10° cells in a 100-mm culture plate)
by using SuperFect transfection reagent (Qiagen, Valencia,
Calif.). Two days after transfection, 10 ml of virus supernatant
was harvested and filtered. For this investigation, 0.1 ml of this
virus was added with 8 pg of Polybrene per ml to one 100-mm
culture plate containing 5 X 10° NIH 3T3 cells. After 16 h, the
viral supernatant was replaced with fresh medium. The follow-
ing day, the transduced NIH 3T3 cells were superinfected with
an RD114-pseudotyped virus carrying a puromycin resistance
gene (cells producing this pseudotype virus were derived from
FLYRDI1S cells [7] transfected with the pBabe-puro retroviral
expression vector [25]). Selection was initiated 36 h later by

adding 5 g of puromycin per ml to the medium. The selection
medium was changed every 2 days until resistant colonies had
appeared. These colonies were then isolated and tested for
susceptibility to infection by a B-galactosidase-encoding lacZ
(RD114) pseudotype virus.

Among 16 resistant colonies that were analyzed, 12 were
highly susceptible to lacZ(RD114) infections. Genomic DNA
was then isolated from 10 of these clones and was used for
PCR amplification with the Expand PCR kit (Boehringer-
Mannheim, Indianapolis, Ind.) with primers corresponding to
pBabe-X vector sequences, as previously described (34). A
common 2.9-kb PCR product was amplified from each of the
10 clones and subsequently cloned into the pPCDNA3.1V5His-
TOPO mammalian expression vector (Invitrogen, Carlsbad,
Calif.). Expression of the 2.9-kb ¢cDNA in Chinese hamster
ovary (CHO) cells or in mouse NIH 3T3 fibroblasts resulted in
strong susceptibility to lacZ(RD114) infection (see Table 1,
experiment 1), indicating that it encodes an R-receptor.

The R-receptor protein. The nucleotide sequence of the
2.9-kb R-receptor cDNA and subsequent BLAST (2) searches
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FIG. 2. Uptake of L-[*H]arginine, L-[*H]alanine, L-[*H]glutamine, and L-[*H]glycine by NTH 3T3 cells and NTH 3T3 cells that express the human R-receptor. Amino
acid uptake was analyzed as previously described (39). NIH 3T3 cells transduced with the R-receptor gene (3T3R16) had highly elevated levels of L-[?H]alanine and
L-[*H]glutamine uptake compared to parental NIH 3T3 cells. No significant uptake was observed for L-[*H]glycine or for the cationic amino acid L-[*H]arginine.

of databases indicated 98% identity with a previously cloned
cDNA from human placental choriocarcinoma cells that en-
codes the broad-specificity neutral-amino-acid transporter B,
so designated to indicate these transport characteristics (15).
Figure 1 shows a comparison of the predicted amino acid
sequences of the human R-receptor and the previously re-
ported human B® transporter. Also indicated are the 10 hy-
drophobic potential transmembrane regions and the two po-
tential sites for N-linked glycosylation that were predicted for
the B® transporter. The B® transporter is a Na™-dependent
transporter or exchanger with broad specificity for neutral
amino acids, including alanine, glutamine, and possibly glycine
(15). Compatible with this relationship, NIH 3T3 cells trans-
duced with the R-receptor had highly elevated transport activ-
ity for L-[*H]alanine and r-[*H]glutamine in comparison with
untransduced control cells; however, no significant transport
activity was observed for L-[*H]glycine or L-[*H]arginine (Fig.
2). Similar results were obtained with independent clones of
NIH 3T3 cells that expressed the R-receptor. We are quanti-
tatively analyzing the transport activity of the R-receptor by
electrophysiological methods in Xenopus oocytes (19b).

Distribution in tissue of R-receptor expression. The previ-
ously characterized human B® transporter cDNA was isolated
from a placental choriocarcinoma cDNA library and was found
to hybridize to a 2.9-kb mRNA that was most abundant in
epithelial tissues, including lung, kidney, and intestines (15).
Figure 3 shows RNA blot (Northern) analysis in which we have
used the 2.9-kb R-receptor cDNA as a probe. These results
identify a more broadly expressed mRNA of 2.9 kb that is
present in many tissues and is highly expressed in hematopoi-
etic tissues, including fetal liver, bone marrow, peripheral
blood lymphocytes, thymus, lymph node, and spleen. This dis-
tribution of expression is compatible with derivation of our
clone from a T-lymphocyte cDNA library, with induction of
immunodeficiency by type D retroviruses (8, 11, 13, 20, 21, 33),
and with efficient infection of hematopoietic cells by RD114
(29).

The R-receptor mediates infections of BaEV and type D
simian retroviruses. Previous studies have suggested that
RD114 cross-interferes with BaEV and type D simian retrovi-
ruses. Because mouse and rat cells can be infected by BaEV
(32), we analyzed the susceptibilities of CHO cells that express
the human R-receptor to BaEV and type D simian retroviruses
infections. As shown in Table 1 (experiment 2), a heteroge-
neous population of CHO cells that had been transfected with
the R-receptor cDNA (CHORI16 cells) differed from control

untransfected cells in being susceptible to infections by lacZ
(BaEV), lacZ(MPMYV), lacZ(SRV-1), and lacZ(SRV-2) in ad-
dition to lacZ(RD114). The titers obtained in the population
of CHORI16 cells were approximately 20- to 45-fold lower than
the titers of the same viruses in the highly susceptible human
cell line TE671. In contrast, lacZ pseudotypes bearing enve-
lopes derived from gibbon ape leukemia virus, xenotropic
MLV, or pig endogenous retrovirus class A, B, or C (36) did
not plate on either parental CHO or CHOR16 cells (data not
shown). Similarly, expression of the R-receptor in normal rat
kidney (NRK) cells, which are naturally susceptible to BaEV,
conferred susceptibility to infections by RD114, MPMV,
SRV-1, and SRV-2 (Table 1, experiment 2).

Our results strongly suggest that the cloned cDNA encodes
a receptor for RD114, BaEV, and type D simian retroviruses.
This receptor, which is broadly expressed in human tissues
(Fig. 3), is highly related to the previously cloned neutral-
amino-acid transporter B® (15), and we have shown that it
functions in accordance with this predicted activity (Fig. 2).
The B° transporter gene has been previously mapped to hu-
man chromosome 19q13.3 (15), which is consistent with the
approximate localization of the RD114 receptor gene to chro-
mosome 19q13.1-13.2 (32). Further studies will be needed to
determine whether the sequence differences between the R-
receptor and the previously cloned B° transporter (Fig. 1)
represent slight differences in the human B transporter genes
or mutations in the cDNA clone. However, our sequence was
present in independent cDNA clones. The R-receptor appears
to belong to a family of transporters that includes glutamate
transporters; the amino acid transporter for alanine, serine,
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FIG. 3. Northern blot analysis of poly(A)" RNA from various human tissues.
Multiple-tissue Northern blots containing approximately 2 pg of poly(A)* RNA
(Clontech, Palo Alto, Calif.) were probed with the 2.9-kb 3?P-labeled R-receptor
cDNA. S, spleen; LN, lymph node; T, thymus; PBL, peripheral blood lympho-
cytes; BM, bone marrow; FL, fetal liver; H, heart; B, brain; P, placenta; Lg, lung;
L, liver; SM, skeletal muscle; K, kidney; P, pancreas.
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TABLE 1. Infection of cells expressing the R-receptor by RD114, BaEV, and type D simian retroviruses
Target Titer of lacZ pseudotype (CFU/ml)*
Expt llg”
cells RD114 BaEV MPMV SRV-1 SRV-2
1 TE671 2.1 x 10° — — — —
NIH 3T3 7 — — — —
3T3R16 4.7 x 10° — — — —
CHO 0 — — — —
CHORI16 1.5 % 10° — — — —
2 TE671 1.3 x 10° 1.2 x10° 1.9 x 10° 4.5 x 10* 5.9 X 10°
CHO <1 1 <0.3 <2 <2
CHORI16 5.4 % 10* 4.7 X 10° 9.8 x 10! 9.7 X 107 2.8 X 10°
NRK <2 1.4 x 10* <2 <2 <2
NRKR16 5.4 % 10° 3.9 x 10* 4.6 X 10! 4.4 x 10° 3.9 X 10°

“lacZ(RD114) was produced by TELCeB6/RDF-7 helper-free packaging cells (7). lacZ(BaEV) was rescued by infection of mink Mv-1-Lu cells harboring a lacZ
vector (35) with a replication-competent BaEV stock. Although MPMV could not package and rescue an MLV vector in the absence of MLV core proteins (28, 37),
lacZ(MPMV) was produced by complementation of MLV core particles with MPMV Env; an MPMYV env expression plasmid was constructed by replacing the RD114
env coding sequence in plasmid RDLF (7) with the MPMV env coding sequence derived from pTMOWT (4) (kindly provided by Eric Hunter) and transfected into
TELCeB6 cells which express a lacZ vector and MLV Gag-Pol proteins (19a). lacZ(MPMV) was harvested from a pooled population of phleomycin-resistant
transfectants. lacZ(SRV-1) and lacZ(SRV-2) were produced from TELCeB6 cells infected with SRV-1 and SRV-2, respectively, while infection of TE671/MFGnlslacZ
cells lacking MLV Gag and Pol proteins by either SRV-1 or SRV-2 produced no pseudotype virus (data not shown). Titers are averages of two (experiment 2: RD114,
BaEV, SRV-1, and SRV-2), three (experiment 1; RD114), or four (experiment 2; MPMV) infection studies. Titers of MPMV, BaEV, SRV-1, and SRV-2 were not
determined in experiment 1, as indicated by dashes.

> TE671 cells are human rhabdomyosarcoma cells. CHOR16 and NRKR16 cells are pooled populations of G418-resistant CHO and rat NRK cells, respectively,

transfected with the R-receptor gene. 3T3R16 cells are NIH 3T3 cells trasduced with the R-receptor gene.

and cysteine, termed ASCT; the insulin-activatable neutral/
anionic amino acid transporter, and the B® transporter (3, 15,
19, 30). We recently isolated a cDNA that encodes the mouse
homologue of the human R-receptor. Mice are susceptible to
BaEV entry (32), implying that there may be a sequence dif-
ference in the mouse protein that permits cellular penetration
of BaEV but not of RD114. It is intriguing that all of the
cloned receptors for type C and D mammalian retroviruses
have multiple transmembrane domains and have been identi-
fied as transporters that are widely expressed in different tis-
sues (1, 14, 17, 23, 26, 27, 34, 40, 42).

Nucleotide sequence accession number. The nucleotide se-
quence of the 2.9-kb R-receptor cDNA has been assigned
GenBank accession no. AF105423.
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