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ABSTRACT Aspergillus flavus is a mycotoxigenic fungus that contaminates many impor-
tant agricultural crops with aflatoxin B1, the most toxic and carcinogenic natural compound.
This fungus is also the second leading cause of human invasive aspergillosis, after
Aspergillus fumigatus, a disease that is particularly prevalent in immunocompromised
individuals. Azole drugs are considered the most effective compounds in controlling
Aspergillus infections both in clinical and agricultural settings. Emergence of azole resistance
in Aspergillus spp. is typically associated with point mutations in cyp51 orthologs that encode
lanosterol 14a-demethylase, a component of the ergosterol biosynthesis pathway that is
also the target of azoles. We hypothesized that alternative molecular mechanisms are also
responsible for acquisition of azole resistance in filamentous fungi. We found that an afla-
toxin-producing A. flavus strain adapted to voriconazole exposure at levels above the MIC
through whole or segmental aneuploidy of specific chromosomes. We confirm a complete
duplication of chromosome 8 in two sequentially isolated clones and a segmental duplica-
tion of chromosome 3 in another clone, emphasizing the potential diversity of aneuploidy-
mediated resistance mechanisms. The plasticity of aneuploidy-mediated resistance was
evidenced by the ability of voriconazole-resistant clones to revert to their original level
of azole susceptibility following repeated transfers on drug-free media. This study provides
new insights into mechanisms of azole resistance in a filamentous fungus.

IMPORTANCE Fungal pathogens cause human disease and threaten global food security
by contaminating crops with toxins (mycotoxins). Aspergillus flavus is an opportunistic
mycotoxigenic fungus that causes invasive and noninvasive aspergillosis, diseases with
high rates of mortality in immunocompromised individuals. Additionally, this fungus con-
taminates most major crops with the notorious carcinogen, aflatoxin. Voriconazole is the
drug of choice to treat infections caused by Aspergillus spp. Although azole resistance
mechanisms have been well characterized in clinical isolates of Aspergillus fumigatus, the
molecular basis of azole resistance in A. flavus remains unclear. Whole-genome sequencing
of eight voriconazole-resistant isolates revealed that, among other factors, A. flavus adapts
to high concentrations of voriconazole by duplication of specific chromosomes (i.e., aneu-
ploidy). Our discovery of aneuploidy-mediated resistance in a filamentous fungus represents
a paradigm shift, as this type of resistance was previously thought to occur only in yeasts.
This observation provides the first experimental evidence of aneuploidy-mediated azole
resistance in the filamentous fungus A. flavus.
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Azoles are among the most widely used antifungal drugs for the management of fungal
infections in clinical and agricultural environments. Voriconazole (VRC), a triazole antifun-

gal drug, was approved by the FDA in 2002 as a first-line agent for the treatment of invasive
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Aspergillus infections due to its efficacy and safety (1). Long-term triazole treatment of
patients with aspergillosis can lead to the emergence of drug resistance (2, 3). Additionally,
exposure of environmental Aspergillus spp., including A. flavus, to azole fungicides in agricul-
ture can induce cross-resistance to medical triazoles in clinical settings (4–7). Molecular
mechanisms of azole resistance have been extensively investigated in A. fumigatus and
include alterations in the target protein Cyp51A, upregulation of the target gene cyp51A,
and overexpression of efflux pump genes (reviewed in references 8 to 10). Few studies
have examined A. flavus clinical isolates for point mutations in azole target genes (cyp51A,
cyp51B, and cyp51C) and overexpression of efflux pumps that may explain VRC resistance in
this fungus (11–15).

Pathogenic yeasts, such as Cryptococcus neoformans and Candida spp., can acquire resist-
ance to high concentrations of fluconazole, one of the most widely used antifungal azole
drugs, through the formation of aneuploidy in response to drug pressure (16–23). This type
of acquired resistance is unstable, as aneuploid chromosomes are lost in the absence of
drug pressure (20, 24). Aneuploidy has not been described in filamentous fungi as a mecha-
nism of genomic plasticity that mediates azole resistance.

In the present study, we observed that strains of A. flavus quickly developed clones
resistant to VRC when exposed to levels above the MIC. These clones lost their resistance
upon repeated transfer in drug-free media. Whole-genome sequencing of the resistant
clones revealed a duplication of chromosome 8 (Chr8) and a segmental duplication of chro-
mosome 3 (Chr3) in some clones. We hypothesize that aneuploidy is an underlying mecha-
nism of drug resistance that arises rapidly in mycotoxigenic fungi in response to azole stress.

Emergence of resistance to voriconazole in themycotoxigenic A. flavus. Susceptibility
of A. flavus environmental isolates to VRC was measured by Etest strips, and the MIC was
confirmed by using the CLSI broth microdilution method (25) (see Table S1 in the supple-
mental material). After determining that VRC resistance was consistent across a range of
isolates (0.125 mg/mL for all tested strains), we chose the highly aflatoxigenic strain of
A. flavus (SS1), which was isolated from stored wheat grains, to study the mechanism
of resistance. Our preliminary experimentation demonstrated that the VRC resistance lev-
els of A. flavus SS1 wild-type (WT) subpopulations could be increased by exposing them
to higher concentrations of the drug in a stepwise manner. We spread 1 � 103 conidia on
potato dextrose agar (PDA) plates supplemented with 0.125, 0.25, 0.5, 1, and 2 mg/mL of
VRC. After 4 days of incubation on PDA with 0.125 mg/mL VRC at 28°C, approximately 150
CFU were visible, indicating a frequency of resistance of 14%. After 14 days of incubation,
34 colonies grew on PDA plates supplemented with 0.25 mg/mL, and 2 colonies grew on
media containing 0.5 mg/mL VRC (Fig. 1). No growth was observed on PDA supplemented
with 1 or 2mg/mL of VRC. However, when the clones grown at 0.25 or 0.5mg/mL VRC were
subcultured on PDA containing 1mg/mL VRC, resistant colonies emerged at low frequencies
(0.1% to 0.5%). Exposure of these subclones to higher VRC concentrations resulted in clones
resistant to 2 and 4mg/mL (Fig. 1).

Aneuploidy confers azole resistance in A. flavus strains. We randomly selected
two resistant colonies (R), one large (L) and one small (S), from each concentration of VRC,
including 0.125 mg/mL (SS1R0.125), 0.25 mg/mL (SS1R0.25), 0.5 mg/mL (SS1R0.5), and 1 mg/mL
(SS1R1, which was derived from SS1R0.25 and SS1R0.5), for whole-genome sequencing (see strain
descriptions in Table 1). Genome sequence analysis (see “Materials and Methods” in supple-
mental material) of these eight resistant clones revealed that three large-colony clones were
aneuploid. A clone, resistant to 0.25 mg/mL, and its derived strain, resistant to 1 mg/mL VRC
(SS1R0.25L and SS1R1L, respectively), were disomic for Chr8; additionally, a clone that was resist-
ant to 0.5mg/mL VRC (SS1R0.5L) had a segmental disomy of Chr3 (Fig. 2A). Neither of the clones
that were resistant at the MIC level of VRC (0.125mg/mL) displayed ploidy changes. We further
confirmed chromosomal duplications, by quantitative PCR (qPCR) analysis, of copy number
variation of four genes located on the left and the right arms of Chr8 (mfs1, nrps-mrp, pks8.12,
and nrps8.6) and two more genes located at the partially duplicated segment of Chr3 (creA,
chsE). This analysis used the genomic DNA previously prepared for whole-genome
sequencing. The copy number of the genes on Chr8 was twice as high as that of genes
located on Chr6 (unduplicated control) in the genomes of resistant SS1R0.25L and SS1R1L
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strains, confirming the duplication of Chr8. The average gene copy number on Chr3 of
the SS1R0.5L strain was close to 1.3, confirming partial segmental aneuploidy of Chr3 (Fig. 2B).

Exposure to high concentrations of VRC results in an increase in gene copy number
across multiple chromosomes. We examined gene dosages in resistant clones that
emerged on plates containing high concentrations of VRC (pending whole-genome
sequencing analysis) by using qPCR. We selected four clones for analysis, each of which
was derived from a separate colony growing on media amended with 1 mg/mL VRC. Three

TABLE 1 Strains used in this study

Strain name Description
SS1 A. flavusWT isolate
SS1R0.125L Derived from SS1, large colony resistant to 0.125mg/mL VRC
SS1R0.125S Derived from SS1, small colony resistant to 0.125mg/mL VRC
SS1R0.25L Derived from SS1, large colony resistant to 0.25mg/mL VRC
SS1R0.25S Derived from SS1, small colony resistant to 0.25mg/mL VRC
SS1R0.5L Derived from SS1, large colony resistant to 0.5mg/mL VRC
SS1R0.5S Derived from SS1, small colony resistant to 0.5mg/mL VRC
SS1R1L Derived from SS1R0.25L, resistant to 1mg/mL VRC
SS1R1S Derived from SS1R0.5S, resistant to 1mg/mL VRC
SS1R2-1 Derived from SS1R1L, resistant to 2mg/mL VRC
SS1R2-2 Derived from SS1R1L, resistant to 2mg/mL VRC
SS1R2-3 Derived from SS1R1S, resistant to 2mg/mL VRC
SS1R4 Derived from SS1R1S, resistant to 4mg/mL VRC
SS1RVT2-1 Derived from SS1R2-1, transferred six times in drug-free media
SS1RVT2-2 Derived from SS1R2-2, transferred six times in drug-free media
SS1RVT2-3 Derived from SS1R2-3, transferred six times in drug-free media
SS1RVT4 Derived from SS1R4, transferred six times in drug-free media

FIG 1 Diagram of adaptive resistance in Aspergillus flavus strain SS1 to VRC. Spores (1 � 103) of the A. flavus
SS1 strain were inoculated on drug-free PDA plates or plates supplemented with VRC. The resulting colonies
showed a high level of variation in VRC resistance at the concentrations of 0.125 to 0.5 mg/mL (percentages
indicate the proportion of resistant colonies from each treatment). Serial transfer on media containing
increasing concentrations of VRC resulted in the emergence of subclones that were resistant to high
concentrations of the drug. Coloration of fungal colonies corresponds to chromosomal states. Chromosomes
found in the wild type are colored green. A partial duplication of Chr3 is indicated in blue, and a full
duplication of Chr8 is indicated in red. Figure created using BioRender.com.
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of these clones were resistant at 2 mg/mL (denoted SS1R2-1, SS1R2-2, and SS1R2-3), and one
was resistant at 4mg/mL of VRC (denoted SS1R4). We identified variable increases in the copy
number of the genes located on different chromosomes (Chr1, Chr2, Chr3, Chr4, Chr5, Chr7,
and Chr8) compared to an internal control gene on Chr6 (Fig. S1). Interestingly, serial transfer
on drug-free media caused the resistant clones to revert to the parental type. After six serial
passages of SS1R2-1, SS1R2-2, SS1R2-3, and SS1R4 on drug-free PDA media, we isolated four
clones that reverted (RVT) to their original susceptibility (MIC of 0.125mg/mL). Gene duplica-
tion events were no longer evident in the reverted strains, although one clone (SS1RVT4)
retained slightly elevated copy numbers (Fig. S1). We speculate that the duplications still evi-
dent in this isolate would resolve with additional passages on drug-free media. These data
suggest that transient duplication events of multiple chromosomes occur within individual
colonies; nevertheless, we are hesitant to interpret these results, as the status of chromosome
copy number must be determined by whole-genome sequencing (as was done for aneuploid
clones described above).

Aneuploidy-mediated azole resistance in yeasts, including Candida albicans and C. neofor-
mans, is typically associated with the duplication of chromosomal regions that harbor genes
associated with azole resistance (16, 20). The A. flavus ortholog of A. fumigatus transcription
factor AtrR, which plays an important role in azole resistance in A. fumigatus (26), resides in a
partially duplicated region of Chr3 and is possibly associated with increased VRC resistance
in A. flavus. Nevertheless, full duplication of Chr8 in resistant clones does not coincide with
any known resistance genes. Furthermore, resistant clones did not have single nucleotide
polymorphisms, insertions, or deletions in azole target genes, cyp51A, cyp51B, and cyp51C, or
in other genes involved in azole resistance of A. flavus (such as yap1 and efflux pump genes).

FIG 2 (A) Chromosome duplication events in three (SS1R0.25L, SS1R0.5L, and SS1R1L) of eight VRC-resistant isolates.
(A, Left) Heatmap displaying log2-transformed coverage depth from whole-genome sequencing of eight VRC-resistant
isolates. Results are normalized to the untreated SS1 wild-type strain. (A, Right) The red and green arrows emphasize
the complete duplication of Chr8 in two isolates and partial duplication of Chr3 in one isolate, respectively. (B) Copy
numbers of genes on Chr3 and Chr8, determined by qPCR. The copy numbers of two genes on Chr3 (creA, chsE) and
four genes on Chr8 (mfs1, nrps-mrp, pks8.12, and nrps8.6) were determined by SYBR green-based qPCR compared to a
control gene located on Chr6 (bgt1), using gene-specific primer pairs (see Table S2 in the supplemental material).
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In conclusion, our observation suggests that aneuploidy evolves readily in A. flavus upon ex-
posure to VRC. Our results provide a foundation for future studies to explore the prevalence
and impact of aneuploidy-mediated azole resistance in filamentous fungi.

Data availability. The genome sequence data are available in the NCBI SRA repository
under BioProject accession number PRJNA893458.
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