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Integrase of human immunodeficiency virus type 1 (HIVIN) consists of 288 amino acids, and its minimum
DNA-binding domain (MDBD) (amino acids [aa] 220 to 270) is required for the integration reaction. We
produced and characterized four murine monoclonal antibodies (MAbs) to the MDBD of HIVIN (strain LAI).
Immunoblot and enzyme-linked immunosorbent assays with truncated HIVINs showed that those MAbs
recognized sequential epitopes within the MDBD (aa 228 to 236, 237 to 252, 253 to 261, and 262 to 270). Their
binding to HIVIN inhibited terminal cleavage and strand transfer activities but not disintegration activity in
vitro. This collection of MAbs is useful for studying the structure and function of the MDBD by complementing
mutational analyses and other biochemical studies.

Integration of a DNA copy of the viral RNA genome into a
chromosome of the host cell is an essential step in the retro-
viral life cycle (4, 21, 41). The viral enzyme integrase (IN)
catalyzes the process in three steps (5, 19). First, two nucleo-
tides are removed from the 39 ends of the viral DNA (in a
process known as terminal cleavage [TC]). Second, the re-
cessed 39 ends of the viral DNA are then joined to 59 staggered
sites in the target DNA in a concerted cleavage and ligation
reaction (in a process known as strand transfer [ST]). Finally,
integration is completed by repair of the short gaps flanking
the viral DNA intermediate. The TC and ST reactions can be
reproduced in vitro with purified IN and double-stranded oli-
gonucleotide substrates that mimic the ends of viral DNA (6, 8,
23, 38). Furthermore, IN catalyzes a reversal of the ST reaction
in vitro (disintegration) with a branched-DNA substrate (Y-
mer) that mimics the product of the ST reaction (11).

Biochemical analysis of IN from human immunodeficiency
virus type 1 (HIV-1) has revealed that the C-terminal region
(amino acids [aa] 160 to 288) contains nonspecific DNA-bind-
ing activity (18, 31, 40, 42), which is mapped to aa 220 to 270
(the minimum DNA-binding domain [MDBD]) (30, 31). Anal-
yses by nuclear magnetic resonance also revealed that the
MDBD consists of a five-stranded b-barrel similar to that of
Src homology region 3 domains forming a homodimer (14, 29).
Mutational analysis showed that the MDBD is essential for TC
and ST activities of HIV-1 IN (HIVIN) (7, 13, 15, 16, 26),
whereas it is dispensable for disintegration activity (13, 30, 37,
39, 40). Mutations in this region abolish viral DNA synthesis
(reverse transcription), implying that HIVIN interacts with
reverse transcriptase (RT) (17, 27, 32). Moreover, substitution
of the W235 residue within the MDBD does not affect in vitro
TC and ST activities, whereas the virus mutants carrying those
substitution mutations cannot replicate (9, 10, 27, 28). But the
function of the MDBD is not well characterized by monoclonal

antibodies (MAbs), partly because few MAbs to the MDBD
have been cloned (3, 33). This study presents a collection of
MAbs reactive against the MDBD and demonstrates the ef-
fects of MAb binding on various in vitro activities, such as TC
and ST activities, and on the capability of HIV-1 to interact
with RT.

* Corresponding author. Mailing address: Division of Molecular
Genetics, National Institute of Infectious Diseases, 4-7-1 Gakuen,
Musashimurayama, Tokyo 208-0011, Japan. Phone: 81-425-61-0771,
ext. 370. Fax: 81-425-67-5632. E-mail: yochan@nih.go.jp.

FIG. 1. Schematic representation of epitopes recognized by the MAbs. The
upper part of the figure shows a linear map of HIVIN. The N terminus (aa 1 to
49) with the HHCC motif, the central catalytic core (aa 50 to 159) with the
DD(35)E motif, and the C terminus (aa 160 to 288) with DNA-binding activity
domains are shown. A hatched box shows the MDBD (aa 220 to 270). The
epitope regions recognized by the individual MAbs are shown below the IN map
with the clone numbers. The lower part of the figure shows a linear map of
HIVIN spanning from aa 160 to 288. Five MAbs recognized epitopes within this
region. The numbers above the map indicate amino acid positions. Individual
MAbs are shown by clone numbers below the IN map, with arrows indicating
epitope regions. The three asterisks in the map indicate predicted b-strands,
which may form an interface of homodimerization in a structure of triple-
stranded antiparallel b-sheets (14, 29).
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Production of MAbs against IN. Female BALB/c mice were
immunized primarily with HIVIN fused to Escherichia coli
maltose-binding protein (MBP) and thereafter with HIVIN,
with the N-terminal 20 aa residues containing a hexahistidine
tag. MBP-HIVIN and hexahistidine-HIVIN were expressed
and purified as described in references 7, 34, and 36, with
equipment from New England Biolabs, (NEB), Beverly, Mass.,
and Novagen, Madison, Wis. Spleen cells of the mice were
fused with P3-X63-Ag8.653 mouse myeloma cells (22, 24).
Screening culture supernatants by enzyme-linked immunosor-
bent assay (ELISA) with hexahistidine-HIVIN identified about
50 hybridomas. Twelve hybridomas were successfully sub-
cloned by limiting dilution and then injected into the perito-
neal cavity of pristane-primed female BALB/c mice to obtain
ascites fluid containing MAbs. Nine hybridomas produced
enough ascites fluid for further analyses. Each MAb was puri-
fied with a HiTrap protein A column (Amersham Pharmacia
Biotech Ltd., Little Chalfont, United Kingdom) followed by
subsequent dialysis against 20 mM HEPES–Na (pH 7.5).
Immunoblot analysis with MBP-HIVIN and six-His-tagged
HIVIN (data not shown) showed that six clones (7-19, 8-6, 2-19, 8-22, 4-20, and 6-19) were specific to HIVIN (Fig. 1),

whereas the others were specific to the hexahistidine tag.
These MAbs displayed two isotypes (Table 1): immunoglob-

ulin G2b (IgG2b) (clones 7-19, 2-19, and 6-19) and IgG1
(clones 8-6, 8-22, and 4-20). Semiquantitative ELISA (3) (Ta-
ble 1) demonstrated that the titers of MBP-HIVIN varied
about 150-fold: the minimal antibody concentration required
for detection of IN with MAb 7-19 was the highest, whereas
that with MAb 6-19 was the lowest.

Epitope mapping. The epitopes for the purified MAbs were
determined by reactivity to HIV/Rous sarcoma virus (RSV)
chimera INs and HIVIN deletion mutants by immunoblot
analysis and ELISA (summarized in Fig. 1; also see Table 2
and Fig. 2 and 3). RSV (strain CS8) IN fused to MBP was
described previously (25). Similarly, mutants of HIVIN with
deletions from aa 271 to 288 (HIVIN ending at aa 270
[HIVIN270]), HIVIN261, HIVIN252, HIVIN236, HIVIN227,
HIVIN210, and HIVIN185 were expressed and purified as
MBP fusion proteins. HIV/RSV chimera INs {HIVIN aa 1 to
236 with RSV aa 235 to 286 [H(1-236)R(235-286)], H(1-
159)R(160-286), and R(1-36)H(40-288)} were also obtained as
MBP fusion proteins.

The results of ELISA (Table 2) and immunoblot analysis
(Fig. 2) showed that MAbs 7-16 and 8-6 recognized an epitope
within the central catalytic domain of HIVIN and the region
from aa 211 to 227, respectively. Furthermore, we inferred that
the epitopes for MAbs 2-19, 8-22, 4-20, and 6-19 are likely to
be contained in a simple linear sequence in tandem within the

FIG. 2. Effect of amino acid change on affinity of MAb 2-19. (A) Immunoblot
analysis of various INs with MAb 2-19. Recombinant INs expressed in E. coli
were separated in an SDS–10% polyacrylamide gel and blotted onto a nitrocel-
lulose membrane. The proteins were probed with MAb 2-19. Lane 1, MBP-
LacZa; lane 2, MBP-IN (LAI); lane 3, MBP-IN (NL4-3); lane 4, MBP-IN
(BH10). The arrow shows the position of MBP-HIVIN. (B) Amino acid se-
quences from aa 228 to 236 of HIVIN strains LAI, NL4-3, and BH10 are shown.
Dashes indicate that the amino acid residues are the same as the corresponding
residues of the IN of the LAI strain. There are no amino acid changes in the
region from aa 237 to 270 among those strains. A panel of MBP-IN proteins were
separated by SDS-PAGE and blotted onto a nitrocellulose membrane. The
blotted proteins were analyzed with MAb 2-19 (C) or MAb 8-22 (D). Lanes 1,
MBP-IN (wild-type LAI); lanes 2, MBP-IN (W235A); lanes 3, MBP-IN
(W235AKGA); lanes 4, MBP-IN (W235E); lanes 5, MBP-IN (W235EKGE). The
positions of size markers are shown to the right of the panels.

TABLE 1. MAbs against HIVIN produced by six independent
hybridoma clonesa

MAb Isotype
Titer of MAb on
MBP-HIV-1 IN

(ng/ml)

7-16 IgG2b 3
8-6 IgG1 2
2-19 IgG2b 20
8-22 IgG1 100
4-20 IgG1 100
6-19 IgG2b 300

a Titers are expressed as the minimum concentration of each MAb in nano-
grams per milliliter that gives an optical density at 492 nm fivefold greater than
the background value (without primary antibody) (3). Each value was rounded to
the nearest whole number.

TABLE 2. ELISA with various deletion and chimeric mutants
of HIVIN

MBP-IN
Activity with anti-HIVIN MAb

7-19 8-6 2-19 8-22 4-20 6-19

HIVIN288a 1 1 1 1 1 1
HIVIN270 NA NA 1 1 1 1
HIVIN261 NA NA 1 1 1 2
HIVIN252 NA NA 1 1 2 NA
HIVIN236 NA 1 1 2 2 NA
HIVIN227 NA 1 2 NA NA NA
HIVIN210 NA 2 2 NA NA NA
HIVIN185 1 2 2 2 2 2
H(1-236)R(235-286) 1 1 1 2 2 2
H(1-159)R(160-286) 1 2 2 2 2 2
R(1-36)H(40-288) 1 1 1 1 1 1
RSV IN 2 2 2 2 2 2
HIVINNL4-3 NA NA 1 1 1 1
HIVINBH10 NA NA 1 1 1 1
W235A NA NA 2 1 NA NA
W235E NA NA 2 1 NA NA
W235AKGA NA NA 2 1 NA NA
W235EKGE NA NA 2 1 NA NA

a HIVIN288 is the wild-type IN whose binding activity was normalized to
100%; activities are reported as follows: 1, positive (10 to 100%); 2, negative
(below 10%); NA, not assayed.
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FIG. 3. Effect of MAb binding on in vitro activities of HIVIN. (A) TC (open square), ST (solid square), and disintegration (open circle) activities were assayed with
the blunt-ended, precleaved, and Y-mer oligonucleotide substrates, respectively. Each MAb tested is indicated in each panel. The effect of MAb binding on HIVIN
activities was measured relative to the result obtained in a reaction with MAb reactive to the hexahistidine tag (100% activity). Results are based on the average of
at least three independent assays (error bar, standard error). (B) Typical gel image obtained in TC assay. IN was incubated on ice prior to addition of radiolabeled
oligonucleotide substrates with MAb 2-19 at MAb/IN molar ratios of 2 (lane 2), 1 (lane 3), 0.5 (lane 4), 0.25 (lane 5), and 0.125 (lane 6). Lane 1, without IN; lane 7,
without MAb 2-19 but with anti-hexahistidine tag antibody as an unrelated antibody. S, substrates; TCP, TC products. (C) Typical gel image obtained in ST assay. The
lane arrangements are the same as in panel B. S, substrates; STP, ST products.
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MDBD (Fig. 1 and Table 2). None of these MAbs recognized
RSV IN (Table 2) or HIV-2 IN (data not shown). The epitopes
for MAbs 2-19 (from aa 228 to 236) and 6-19 (from aa 261 to
270) are likely to protrude outwards, whereas those for MAbs
8-22 (from aa 237 to 252) and 4-20 (from aa 253 to 261) form
a homodimer interface (14, 29).

Effects of amino acid changes on capability of MAbs to bind
mutant HIVINs. To test whether the MAbs recognize changes
in the amino acid sequence of HIVIN we prepared several IN
mutants. The unique BsmFI-BseRI region of the IN open read-
ing frame of pLAI was replaced with synthetic double-stranded
oligonucleotides; the wild-type sequence (59-CACTTTGGAA
AGGAC-39) was changed to 59-CACTTGCCAAAGGAC-39,
59-CACTTGAAAAAGGAC-39, 59-CACTTGCCAAAGGAG
CCAAAGGAC-39, or 59-CACTTGAAAAAGGAGAAAAA
GGAC-39 to generate W235A, W235E, W235AKGA, or W235
EKGE, respectively. All the mutant INs as well as the wild-type
INs of NL4-3 (1) and BH10 (35) were produced as MBP fusion
proteins as was HIV INLAI and subjected to ELISA and im-
munoblot analysis. First, we found that MAb 2-19 as well as the
other MAbs to MDBD (8-22, 4-20, and 6-19) interacted to a
similar extent not only with HIVINLAI but also with
HIVINNL4-3 and HIVINBH10, both in ELISA (Table 2) and in
an immunoblot analysis (Fig. 2A). Apparently, the amino acid
changes within the region from aa 228 to 236 did not affect the
binding capability of MAb 2-19 much (Fig. 2B). Secondly, we

observed that MAb 2-19 was capable of interacting with
W235A and W235E in an immunoblot analysis (Fig. 2C) but
not in an ELISA (Table 2). In contrast, MAb 2-19 did not
interact with W235AKGA or W235KGE in either assay (Fig.
2C and Table 2). The data imply that W235A and W235E show
a subtle, yet distinct structural change and agree with the fact
that they retain in vitro integration activity but lack in vivo
infectivity (9, 27). The data suggest that the structural change
in W235 IN is probably in the epitope for the MAb.

Effects of MAb binding on in vitro activities of IN. To test
whether the anti-MDBD MAbs interfere with the in vitro ac-
tivities of HIVIN, we assayed TC, ST, and disintegration ac-
tivities (12, 15) in the presence of each MAb. Unlike ELISA or
immunization, these assays utilized MBP-free HIVIN pre-
pared by cleavage of MBP-HIVIN with factor Xa (NEB) to
minimize the unexpected effects, if any, of the N-terminal tag.
Briefly, each purified MAb was preincubated with 7.5 pmol of
purified HIVIN at various MAb/IN molar ratios on ice for 60
min in 14.5 ml of solution containing 20 mM sodium 3-N-
morpholino propanesulfonate (MOPS-Na, pH 7.0), 10 mM
MnCl2, 45 mM NaCl, 0.1% IGEPAL-CA630 (Sigma), and 1
mM dithiothreitol (DTT). Reactions were initiated by adding
32P-labeled substrates (0.2 pmol; specific activity, ;106 cpm/
pmol) in 0.5 ml of solution containing 10 mM Tris-HCl (pH
8.0), 1 mM EDTA, and 100 mM NaCl followed by incubation
at 37°C for 20 min. The integration products were separated by
denaturing polyacrylamide gel electrophoresis (PAGE) and
analyzed by autoradiography with an image analyzer (Fuji
Photo Film Co., Ltd., Tokyo, Japan).

The effects of MAb binding on the TC, ST, and disintegra-
tion activities of IN are shown in Fig. 3. Both TC and ST
activities were inhibited by all the four MAbs reactive to the
MDBD, whereas the disintegration activity was much less af-
fected. This is compatible with the results of genetic analyses of
HIVIN (31, 40) and HIV-2 IN (31). Moreover, this agrees with
the reports that MAb (33) and Fab (2) reactive to the region
from aa 262 to 273 of HIVIN significantly inhibited both TC
and ST activities and showed little inhibitory effect on disinte-
gration activity. We concluded that the MDBD is essential to
TC and ST activities but not to disintegration activity.

Effects of MAb binding on interaction between IN and RT.
Hoping to demonstrate the usefulness of the MAbs in studying
IN function, we performed a pull-down experiment with MAb
2-19 and found that it inhibited RT-IN interaction. Briefly,
MBP-HIVIN (5 mg; wild type or mutant) immobilized on amy-
lose resin (5 ml; NEB) in buffer B (20 mM HEPES-Na [pH
7.2], 0.1 M NaCl, 5 mM DTT, 5 mM MgCl2, 1 mM EDTA,
1% bovine serum albumin) was incubated with endonuclease
(Benzonase; 50 U/ml; Sigma) at 37°C for 10 min followed by an
extensive wash with buffer B. The immobilized MBP-HIVIN
was incubated with MAb 2-19 or MAb 8-16 on ice for an hour
and thereafter with 50 ng of RT (F. Hoffman-La Roche Ltd.,
Basel, Switzerland) on ice for an additional hour. The resin was
washed extensively with a solution containing 50 mM HEPES-Na
(pH 7.2), 50 mM NaCl, 5 mM DTT, 1 mM EDTA, 1% bovine
serum albumin and 0.25% IGEPAL-CA630. The bound pro-
teins were separated by sodium dodecyl sulfate (SDS)-PAGE
and analyzed by Western blot analysis with an anti-RT (p66/
p51) antibody (mouse MAb; Advanced Biotechnologies).
MAb 2-19 as well as 8-22 inhibited RT-IN interaction (Fig. 4A,
lanes 1, 6, and 7). Furthermore, HIVINs with an amino acid
substitution or insertion at W235 lost the ability to find RT
(Fig. 4A, lanes 2 to 5). The results suggest that the region
containing the epitope of MAb 2-19 is responsible for RT-IN
interaction and that W235 mutants lack some structure re-
quired for that interaction.

FIG. 4. Interaction of IN with RT. MBP-HIVINs of W235 mutants as well as
wild-type LAI were immobilized on amylose resin in the presence or absence of
MAb 2-19 or 8-22 and were incubated with RT. The bound proteins were
separated by SDS-PAGE and blotted onto a nitrocellulose membrane. The
blotted proteins were probed with an anti-RT (A) or an anti-MBP (B) antibody.
Incubated with 0.5 mg of RT were HIVINs of the wild-type LAI (lanes 1, 6, and
7), W235A (lanes 2), W235E (lanes 3), W235 AKGA (lanes 4), and W235EKGE
(lanes 5). For assaying the effect of MAb binding, MBP-HIVIN was incubated
for an hour on ice with MAb 2-19 (lanes 6) or MAb 8-22 (lanes 7) prior to
incubation with RT. Lanes 8, RT alone as a positive control. (A) Bars show the
positions of p66 and p51 subunits of RT.

4478 NOTES J. VIROL.



Our current working hypothesis is that MAb 2-19 recognizes
a conformational motif in the MDBD which is conserved
across different primary amino acid sequences, because MAb
2-19 interacted with INs of HIV-1LAI, HIV-1NL4-3, and HIV-
1BH10 to a comparable extent (Fig. 2A) although their amino
acid sequences (aa 228 to 236) are different (Fig. 2B). This
seems to be consistent with a report that mouse MAbs reactive
to epitopes within the carboxyl region of HIVIN cross-reacted
with HIV-2 IN (33) and with an observation on an anti-RT
intracellular antibody (20). We speculate that W235A and
W235E mutants contain such a subtle and local structural
change in the above-mentioned conformational motif that
MAb 2-19 detected those W235 mutants in the immunoblot
analysis (Fig. 2C). This is compatible with the fact that W235A
and W235E retain in vitro integration activity (9, 10, 27, 28).
But we also infer that the local conformational change around
W235 is so definite that IN with a W235E or W235A substi-
tution could not be detected by MAb 2-19 in ELISA (Table 2)
nor could these mutants interact with RT (Fig. 4). This infer-
ence agrees with the report that pooled sera from HIV-1-
positive patients cannot recognize mutants carrying a substitu-
tion at residue W235 of the HIVIN (10). This probable
definite, yet subtle structural change may account for the in-
competence of W235A and W235E mutants in replication (9,
10, 27, 28).

In summary, we have described a collection of MAbs with
sequential epitopes on the MDBD of HIVIN demonstrating
that the MDBD is essential for TC and ST activities but dis-
pensable for disintegration and have shown that the MDBD
seems to contain a structural motif common to various strains
of HIV-1. These MAbs should prove useful for further studies
of the structure and function of HIVIN and the molecular
design of inhibitors to HIVIN.
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