
Deep Learning-Based TEM Image Analysis for Fully Automated 
Detection of Gold Nanoparticles Internalized within Tumor Cell

Amrit Kaphle1, Sandun Jayarathna1, Hem Moktan1, Maureen Aliru1, Subhiksha Raghuram1, 
Sunil Krishnan2, Sang Hyun Cho1,3,*

1Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 
Houston, TX 77030, USA

2Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center, 
Houston, TX 77030, USA

3Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, 
TX 77030, USA

Abstract

Transmission electron microscopy (TEM) imaging can be used for detection/localization of gold 

nanoparticles (GNPs) within tumor cells. However, quantitative analysis of GNP-containing 

cellular TEM images typically relies on conventional/thresholding-based methods, which are 

manual, time-consuming, and prone to human errors. In this study, therefore, deep learning (DL)-

based methods were developed for fully-automated detection of GNPs from cellular TEM images. 

Several models of “you only look once (YOLO)” v5 were implemented, with a few adjustments 

to enhance the model’s performance by applying the transfer learning approach, adjusting the size 

of the input image, and choosing the best optimization algorithm. 78 original (12040 augmented) 

TEM images of GNP-laden tumor cells were used for model implementation and validation. A 

maximum F1 score (harmonic-mean of the precision and recall) of 0.982 was achieved by the 

best-trained models, while mean average precision was 0.989 and 0.843 at 0.50 and 0.50–0.95 

intersection-over-union threshold, respectively. These results suggested the developed DL-based 

approach was capable of precisely estimating the number/position of internalized GNPs from 

cellular TEM images. A novel DL-based TEM image analysis tool from this study will benefit 

research/development efforts on GNP-based cancer therapeutics, for example, by enabling the 

modeling of GNP-laden tumor cells using nanometer-resolution TEM images.
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1. Introduction

Over the years, various cancer therapeutic approaches utilizing gold nanoparticles (GNPs) 

have been the subjects of active investigation (Thakor et al., 2011; Jain et al., 2012; 

Schuemann et al., 2016). For proper understanding of the mechanisms behind such 

approaches, it is crucial to determine the cellular uptake as well as intracellular locations 

of GNPs. For example, as summarized elsewhere (Schuemann et al., 2016), numerous 

computational and in vitro/in vivo studies have been conducted to show drastic radiation 

dose enhancement in the immediate vicinity (e.g., less than a micrometer) of GNPs and 

consequent radiosensitization of GNP-laden cells or tumors. In general, the degree of GNP-

mediated dose enhancement & radiosensitization is thought to be closely related with the 

number of GNPs that enter a cell (i.e., internalized GNPs). Techniques such as inductively 

coupled plasma mass spectrometry, atomic emission spectroscopy (Chithrani et al., 2006), 

and flow cytometry (Kim et al., 2012) can be employed to determine the amount or 

number of internalized GNPs (i.e., GNP uptake in cells). While these assay techniques can 

provide overall amounts of internalized GNPs, they are limited in offering other quantitative 

information (shape or size, aggregation, and precise intracellular locations of GNPs) that is 

essential for accurate modeling of GNP-mediated dose enhancement & radiosensitization 

from a physical point of view.

Transmission electron microscopy (TEM) is one of the powerful tools to investigate 

nanoparticle uptake and biodistribution, and interaction with cells and tissue components 

(Malatesta, 2021; Hao et al., 2012; Chen et al., 2011). Given its nanometer resolution, 

TEM is well suited to address the aforementioned imaging challenge for modeling of 

GNP-mediated dose enhancement & radiosensitization. In fact, as illustrated in a recent 

study (Jayarathna et al., 2019), a computational Monte Carlo (MC) model using a TEM 

image of a GNP-laden cell can be developed successfully. To develop more sophisticated 

models of GNP-laden cells, it is crucial to analyze as many TEM images of GNP-laden cells 

as possible (e.g., thousands of TEM images), which can be tedious and time-consuming. 

Also, manual nanoparticle counting can also be subjective and may lead to incorrect counts 

due to inter-observer variability (de Boodt et al., 2013). Considering these challenges, 

it is important to have an easy-to-use technology that can be used for fully automated 

nanoparticle identification and statistical analysis. This will help researchers take on massive 

image analysis tasks which otherwise would be considered impractical. In general, the 

ability to gather the information contained in TEM images on a large scale is beyond the 

average skills of a human analyst, thus necessitating the development of fully automated 

systems to process TEM images.

Within the scope of the current investigation, an ideal automated TEM image processing 

method should be able to perform two tasks. First, it should detect nanoparticles, 

which includes identification of nanoparticles, and second, allow for localization of the 

nanoparticles of interest within cellular structures. There is evidence that nanoparticles are 

distributed heterogeneously throughout the cell and that they aggregate to form clusters 

(Hainfeld et al., 2004; Schuemann et al., 2016). Clustering of nanoparticles and the 

non-uniform background of subcellular organelles with differing electron densities due to 

varying protein and lipid compositions, concentrations, and densities create problems in 
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nanoparticle identification. In this circumstance, it is also difficult to use traditional image 

processing methods such as thresholding or matrix filtering (Kapur et al., 1985; Ridler 

& Calvard, 1978). To address these issues, new techniques are required. These are the 

reasons why deep neural networks or artificial intelligence seem to be especially promising. 

Computer-aided systems can use artificial intelligence (AI) via deep learning (DL) and 

machine learning techniques such as convolutional neural networks (CNNs) for autonomous 

object recognition. CNNs learn to recognize patterns in input images and connect them 

with predetermined outcomes, such as object recognition or categorization (Azam et al., 

2022). For TEM images, only a few investigations on the DL-based particle detector have 

been performed so far. These include cell counting and detection of nuclei (Xiao & Yang, 

2017; Zhu et al., 2017), virus-particle detection (Ito et al., 2018), and metal nanoparticle 

detection (Oktay & Gurses, 2019; Saaim et al., 2022; Groschner et al., 2021) in TEM 

images. To the best of our knowledge, there are some studies that assessed GNP uptake 

using conventional manual approaches (Xie et al., 2017; Carnovale et al., 2019; Tremi 

et al., 2021). However, there is no prior study that identified various shapes of GNPs, 

such as cylindrical GNPs, i.e., gold nanorods (GNRs), and spherical GNPs, i.e., gold 

nanospheres (GNSs), in TEM images of GNP-laden cells using DL. Therefore, effective 

automated identification and quantification of GNPs in cellular TEM images remains 

difficult, motivating us to investigate solutions to this difficulty.

Most DL algorithms are used to detect objects using regular segmentation, such as U-net 

(Ronneberger et al., 2015), mask region-based convolutional networks (Mask RCNN) (He 

et al., 2017), and fully convolutional networks (FCN) (Long et al., 2014). These strategies 

require pixel-by-pixel labeling of ground truth objects. This is often difficult if the objects 

are small. Bounding boxes can be used to create localizations of objects. This allows us 

to train an object detection model that can recognize and detect multiple objects, making 

it adaptable. There are two types of DL-based object detection algorithms: single-stage 

regression-based and two-stage region-based models. A two-stage detection model is built 

on region suggestions generated during the first stage. These suggestions can then be used to 

extract features for classification regression, region of interest (ROI) pooling, and bounding 

box (Ren et al., 2017). Examples of two-stage detection algorithms include region-based 

convolution neural networks (R-CNN) (Girshick et al., 2013), spatial pyramid pooling 

network (SPP-Net) (He et al., 2015), fast region-based convolutional neural networks (Fast 

R-CNN) (Girshick, 2015), and faster region-based convolution neural network (Faster R-

CNN) (Ren et al., 2017). Two-stage object detection algorithms such as faster R-CNN have 

been used for many applications, including fruit detection in orchard (Sa et al., 2016), 

cervical spinal cord injury detection on magnetic resonance imaging (Ma et al., 2020), 

coronavirus detection on chest radiographs (Shibly et al., 2020), cancer cell detection on 

phase-contrast microscopy images (Zhang et al., 2016), as well as automatic car accident 

detection (Tian et al., 2019). The two-step detection method is slow and unsuitable for real-

time applications, despite its high localization accuracy and recognition accuracy. Single-

stage detectors, on the other hand, address object detection as a regression task. They take 

the single complete image as input and output the class probabilities and several bounding 

boxes simultaneously (Liu et al., 2016). The model runs much faster than two-stage object 

detectors. Most popular single-stage object detectors include single shot detector (SSD) (Liu 
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et al., 2016), RetinaNet (Lin et al., 2017), you only look once (YOLO) (Redmon et al., 

2015), EfficientDet (Tan et al., 2019) etc. YOLO is fast, accurate, and one of the most 

well-known single-stage object detection algorithms nowadays. It was first introduced in 

2015 through a research paper (Redmon et al., 2015). The algorithm was then improved 

continuously (YOLOv2 (Redmon & Farhadi, 2016), YOLOv3 (Redmon & Farhadi, 2018), 

YOLOv4 (Bochkovskiy et al., 2020), and YOLOv5 (Jocher et al., 2022)) to achieve the best 

object detection capability.

This research presents a DL-based method for fully automated detection of internalized 

GNPs from cellular TEM images. Ultralytics’ YOLOv5 system (Jocher et al., 2022) 

was used for the current investigation. This system can be used as a foundation for a 

low-cost, readily deployable GNP detection system that is also more accurate and much 

quicker than the conventional methods. In real-time, our method can detect intracellularly 

distributed GNPs in various shapes including GNRs and GNSs. As such, it can be used as 

an essential tool that allows for the creation of realistic nanometer-resolution TEM-based 

models of GNP-laden cells. The availability of such models will likely help unravel the exact 

mechanisms behind GNP-based cancer therapeutic approaches, such as GNP-mediated dose 

enhancement & radiosensitization which was the main driver for the current investigation.

2. Methods

2.1 Datasets

We examined two separate sets of TEM images obtained from distinct cell types and GNP 

treatments. The first set (TEM1) included 57 TEM images acquired from human colorectal 

tumor cells that were treated with GNRs (10 nm in diameter and 40 nm in height). The 

second set (TEM2) consisted of 21 TEM images derived from pancreatic tumor cells that 

underwent treatment with GNSs (5 nm in diameter). The current TEM imaging work was 

performed, following the procedures described elsewhere (Wolfe et al., 2015). Briefly, 

thin slices of the cell were prepared using a Leica Ultramicrotome (Leica Microsystems 

Inc., Deerfield, IL) and then stained with uranyl acetate and lead citrate in a Leica EM 

Stainer. Bright field TEM imaging was performed using a JEM 1010 transmission electron 

microscope (JEOL, USA, Inc., Peabody, MA) at an accelerating voltage of 80 kV. Digital 

images were obtained using an AMT imaging system (Advanced Microscopy Techniques 

Corp., Danvers, MA). The acquired TEM images were employed to develop an image 

analysis model for identifying and quantifying GNPs in cell structures. These images also 

showed a variation in magnification. Some images were taken at 50000× magnification, 

while others were taken at 25000×. All GNR-containing images were nanometer-resolution 

at 2256×2448 pixels (single pixel size 1.34 nm × 1.34 nm and 2.69 nm × 2.69 nm for 

50000× and 25000× magnification, respectively.), and all GNS-containing images had a 

resolution of 1024×1184 (single pixel size 5.43 nm × 5.43 nm for 25000× magnification). 

We first selected 33 GNR and 9 GNS images for model training and the rest for independent 

testing. The remaining test set contained 36 raw TEM images that were not part of the 

training dataset. No further image processing or alterations were done to them. Note both 

GNSs and GNRs are referred to hereafter as GNPs. Since TEM images have a higher 

resolution, resizing them is not reasonable as the nanoparticle details are lost when reduced 
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to a smaller size. This problem was resolved by manually cropping images with higher 

resolution to images of 1024×1024 for training. The size problem is only present during 

training because YOLO models can detect objects in larger images once they are trained. 

Using a YOLO model trained on patches of lower resolution images and by simply varying 

the input image size, it can be used to detect an object on any higher resolution original 

images. Table 1 provides a comprehensive summary of the original TEM datasets used in 

this study.

Thousands of images are often required to train a CNN model. This is difficult to do 

experimentally or economically. Data augmentation might be an alternative method to 

achieve our goal in this situation. It takes existing training datasets and creates significantly 

modified versions. This technique addresses the limited data problem by increasing the size 

of the training data. It can then be used to develop more robust DL models. Since the 

background will not affect our object detection work as the object detection only looks at 

the target information (localization box, class label), our TEM images are unaffected by 

data augmentation. For this study, two-stage data augmentation techniques were used. In 

the first stage, we created 344 augmented TEM images from 42 original images. These 

images were called Dataset1. This was done by random rotation, zooming, and reflection 

fill. These techniques produced more images with more GNPs per image shown in Figure 1. 

It is important to note that the YOLOv5 model requires supervision during object detection 

training, which is achieved through bounding box annotations. This process involves (a) 

creating a box around each object to identify it and (b) labeling each box with the object’s 

class. To perform this task, we utilized LabelImg (an open-source data annotation tool) 

(Tzutalin, 2015). This tool enabled us to create bounding boxes around objects in TEM 

images and retrieve their coordinates. By using LabelImg, we drew bounding boxes around 

all GNPs, ensuring that each box encompassed the entire structure we aimed to detect. 

The GNP annotations were automatically saved in the corresponding YOLO format, with 

annotations normalized according to the image size and constrained within the range of 0–1.

CLoDSA (Casado-García et al., 2019) was used in the second data augmentation step. It is 

also an open-source library that supports many augmentation techniques and allows users 

to combine them easily. Each image from Dataset1 went through 34 various augmentation 

steps. The final dataset contained a total of 12040 images (11696 and 344) used to build the 

model. This was referred to as Dataset2. The number of images, number of available GNPs, 

and average number of GNP instances per image were all used to divide the original data set. 

The images were split into three datasets of train, validation, and test sets of 80%/16%/4% 

using stratified group shuffling technique resulting in 9632, 1926, and 482 train, valid, and 

test TEM images, respectively, for Dataset2. Similarly, Dataset1 contained 275, 56, and 13 

train, valid, and test TEM images, respectively. The training set was used to learn the sample 

data and estimate the model’s parameters to make it reflect reality and forecast the unknown 

information. The primary purpose of the validation set was to adjust hyperparameters and 

evaluate the trained model’s detection capability. A test set was used to assess the trained 

model’s generalization capability. In our study, two test sets were used for model testing: 

TestDataSet1 was composed of augmented TEM images, and TestDataSet2 was composed 

of raw TEM images. The result section provides a detailed explanation of each dataset.
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2.2 Model

The YOLO system is based on a single neural network that divides the images’ parts into 

their respective probability distributions (Redmon et al., 2015). The system then predicts 

each component’s probability. This works by only looking at one image and making 

predictions after one forward propagation through the neural network. The object detection 

algorithm then returns the identified object with non-max suppression. This ensures that 

each object is only determined once (Redmon et al., 2016). Figure 2 illustrates the basic 

principle of the YOLO algorithm where Figure 2(a) illustrates the grid division, where the 

input TEM image is divided into a fixed-size grid (s × s), and each grid cell predicts a 

certain number of bounding boxes for potential objects. Figure 2(b) shows the bounding 

box prediction, where the neural network predicts bounding box coordinates, dimensions, 

and confidence scores for each grid cell, representing the likelihood of an object being 

present within the bounding box. Figure 2(c) presents the class probability prediction, where 

the neural network simultaneously predicts class probabilities for each grid cell. In Figure 

2(d), the final object detection is depicted. Here, the confidence scores are multiplied by 

the class probabilities to obtain class-specific confidence scores for each bounding box. 

Non-maximum suppression (NMS) is then applied to remove overlapping and redundant 

bounding boxes. The remaining bounding boxes, along with their corresponding class labels 

and confidence scores, represent the final object detections. The project’s GitHub page 

(Jocher et al., 2022) contains a detailed overview of the inner structure.

2.3 Model evaluation metrics

It is essential to create metrics that will allow us to evaluate the performance of DL models 

after training. In the object detection task, the detection can be either true positive (TP) 

or false positive (FP) or false negative (FN), or true negative (TN). TP is the number 

of objects that have been identified successfully. FP is the number of targets that were 

incorrectly identified. The number of targets not detected is represented by FN. A TN is 

also a consequence where the model correctly predicts objects of the negative classes. Using 

these outcomes, we can use the precision (P) and recall (R) to assess the detection capability 

of the model. These can be calculated using equations (1) and (2).

P = TP
TP + FP (1)

R = TP
TP + FN (2)

Many object detection models can experience a decline in recall if they are more precise or 

vice versa. These two numbers can be hard to use for evaluation of the model’s performance. 

Therefore, the F1 score (as shown in equation 3) is a more straightforward measure that 

considers precision and recall as the harmonic average. We aim to improve our model by 

increasing this number. F1 score is calculated when precision and recall are combined, and 

this score is a number that lies between 0, the worst score, and 1, the best score.
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F1 = 2 P × R
P + R (3)

Recall and precision can be mutually exclusive. A model that is accurate and has a high 

recall as the recall grows will perform superior. In contrast, a model’s performance might be 

worsened by losing the precision in exchange for the improved recall. Therefore, to measure 

the trained model’s detection accuracy, the average precision (AP) metric is introduced. 

Equation (4) defines average precision, and it is the average weight of precisions at each 

threshold where the increment in recall from the previous threshold determines the weight. 

In simple language, the area under the precision-recall curve determines the AP value. 

Higher AP values indicate better prediction accuracy. Multi-class target detection can assess 

the detection accuracy by computing the average value of all classes of AP, known as mean 

average precision (mAP), which is described in equation (5).

AP = ∫
0

1

P R dR (4)

mAP = 1
C ∑

c = 1

C
AP c (5)

where C is the number of target categories (our case has only one class of GNP).

We used mAP@0.5, which measures the object detection precision by using the minimum 

intersection over union (IOU) value greater than or equal to 0.5. We also used another more 

advanced form of the mAP metric (mAP@0.5–0.95), which calculates the average of all 

mAP values at IOU levels of 0.5 to 0.95, with a step of 0.05. We aimed to improve the score 

of mAP@0.5–0.95 and other evaluation metrics. Note YOLOv5 has established a default 

fitness function as a weighted combination metric in such a way that mAP@0.5 contributes 

10%, and mAP@0.50–0.95 contributes the rest.

2.4 Experimental settings

The High-Performance Computing (HPC) research facility at MD Anderson Cancer Center 

was used for all the model training, utilizing two Tesla V100-SXM2–16GB GPUs with 

torch 1.11.0+cu102. In addition, all inference tests described in the following sections 

were carried out using Google Colab Pro computing resources with Tesla T4–16GB GPU. 

Optimization was performed using the stochastic gradient descent method (SGD). 120 

training epochs were used in this study, 16 batches were used for the batch size, 0.01 was 

used as the initial and final learning rate, 0.005 was used for weight decay, and 0.937 was 

used for SGD momentum. To accelerate the learning process and conserve computation 

resources, we used the YOLO’s default pretrained weights. We left the default anchor 

boxes for the YOLOv5 model at these points: [10,13, 16,30, 33,23] (P3/8), [30,61, 62,45, 

59,119] (P4/16) and [116,90, 156,198, 373,326] (P5/32), as defined in the official GitHub 

repository (Jocher et al., 2022). We experimented with 4 different version of YOLOv5 
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model named YOLOv5s (small), YOLOv5m (medium), YOLOv5l (large), and YOLO5x 

(extreme). In addition, we used YOLOv5’s standard data augmentation technique. As far 

as hyperparameter settings are concerned, they were consistent with the default YOLOv5 

settings unless otherwise specified.

3. Results

3.1 Effect of data size

The distribution of GNPs within TEM images is shown in Figure 3. There were 4639 GNP 

instances in Dataset1. The average number of GNP instances per image was 13.49. On the 

other hand, there were 159131 GNP cases in Dataset2, and the average number of GNP 

instances per image was 13.22. Also, it was important to assess the distributions of the 

widths and heights of the GNP instances in each image. For the 1024×1024 TEM image, 

normalized average width and height of GNP instances were 0.028±0.025 and 0.028±0.023 

pixels, respectively. Their width varied from 0.0023 to 0.3357 pixels and their height from 

0.0026 to 0.270 pixels (inset of Figure 3). This demonstrates the irregular morphology 

of GNPs instances in TEM images concerning size and shape. Similar distributions were 

observed for Dataset1.

Figure 4 (a–b) illustrates the performance of the same model trained for the same number 

of epochs and the same initial state of the optimizer. It also shows how different datasets 

affect the model’s performance. Table 2 showed, Dataset1 had the highest recall score of 

0.8498, precision of 0.8756, F1 score of 0.8314, mAP@0.5 of 0.8734, and mAP@0.5–0.95 

of 0.4534. Dataset2, on the other hand, achieved maximum recall, precision, F1, mAP@0.5, 

and the mAP@0.5–0.95 score of 0.9702, 0.9840, 0.9801, 0.9863, and 0.8124, respectively. 

Compared to Dataset2, the model accuracy of Dataset1 was low because training images 

in Dataset1 were not sufficient to accurately reflect the characteristics of dataset. We saw 

that increasing the number of images for training by 35-fold led to an increase in all the 

evaluation matrices. Dataset1 also showed an overfitting problem because the loss plot 

indicated a point of inflection (indicated by an arrow in Figure 4 (c–d)). Validation loss 

must decrease along with training loss to develop DL models. As shown in Figure 4 (c–d), 

the validation loss increased after 20–30 epochs, while the training loss decreased. Model 

overfitting occurs when the model has greater control over a small dataset and can satisfy 

all data points. The network is trying to remember every data point but failing to recognize 

the general trend of the training dataset. In contrast, Dataset2 had more images, which 

might decrease the bias in the data. This could help avoid overfitting. In Figure 4 (c–d), 

both bounding box (bbox) and objectness (obj) loss decrease as the number of epochs 

increases, which indicates that the YOLOv5l model tends to be more effective. These results 

demonstrate the importance of data augmentation and show how larger datasets can be used 

to achieve higher accuracy for CNN models.

3.2 Comparison of YOLOv5 models

The depth and width of multiple parameters in the model structure can be adjusted according 

to our needs by utilizing the YOLOv5 model’s setup flexibility. By varying the number 

of bottlenecks in cross stage partial (CSPs) and the number of convolution cores in each 
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convolution layer, 4 different YOLO models can be obtained, namely YOLOv5s (small), 

YOLOv5m (medium), YOLOv5l (large), and YOLO5x (extreme) as shown in Table 3. With 

the expansion of depth and width, so do layers and trainable parameters, and the model 

becomes more complex.

Within this section, training metrics are compared, including precision, recall, F1, mAP, 

loss values, and other criteria that directly impact performance. An overview of the results 

obtained by various YOLOv5 models is shown in Table 3. The loss function defined in 

YOLOv3 was also used to calculate the loss value of YOLOv5 (Redmon et al., 2016; 

Ahmed, 2021). A total loss function was calculated for the YOLOv5 model from regression 

loss based on bbox loss and obj loss, which was calculated from complete intersection over 

union loss and binary cross-entropy loss, as well as classification loss (cls loss) (Jocher 

et al., 2022). We had a single class GNPs, so cls loss was zero in our case. There was a 

difference in the weighting of the objectness losses across the three prediction layers (P3, 

P4, P5). Accordingly, the balance weights for small, medium, and large-sized objects were 

4, 1, and 0.4. We observed that training losses were slightly higher than validation losses 

in all cases, possibly due to augmentation during training but absent during validation. 

As long as the training loss was closest to the validation loss and no inflection point 

occurred, the model was not overfitting - the lower the loss, the better the model’s accuracy. 

Therefore, none of the YOLOv5 models was overfitting during the training until epoch 

120. We started to see overfitting as validation loss increased and training loss decreased as 

training further increased. We did not train for more than 120 epochs to avoid overfitting 

our model. According to Figure 5, the plots of the loss values for all the models share the 

same characteristics, but the loss value for model x is smaller than those of models l, m, 

and s. Suppose the evaluation metrics of the four models are compared in Table 3. In that 

case, it is evident that as the scale of the model increases, recall, F1, and mAP values also 

rise, resulting in relatively high accuracy. However, for the precision score, model l has the 

highest precision value of 0.9840, followed by models x, m, and s. Model l and x have 

extremely comparable mAP@0.5 and mAP @0.5–0.95 values. Also, YOLOv5’ scale growth 

is evident in Table 3. There is a tendency to increase the training and inference time. When 

the same number of images are used, the YOLOv5s model spends the shortest training time 

and makes the fastest predictions. But its accuracy is lowest as compared to other models. To 

complete 120 epochs training, model x took 11h 19m 12s, but model l required 6h 16m 27s, 

which was nearly half the time compared to model x. Therefore, our experiments focused on 

model l for the following few other trials because its training duration was minimal, and the 

results were nearly identical to model x.

3.3 Transfer learning

Since the original YOLOv5 model was trained on the MS COCO dataset (328K images) 

(Lin et al., 2014), it can detect objects belonging to 80 different classes. These images 

contain rich feature representations from a low to a high level. Unfortunately, those 80 

classes do not include nanoparticles; hence, without explicit training, the pre-trained model 

will not be able to identify the nanoparticles from the TEM image dataset. Also, we have 

a very small number of TEM images, so it is not reasonable to train the YOLOv5 model 

from scratch with such a small dataset. However, this is an ideal scenario to apply transfer 
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learning. Since the task is the same, i.e., object detection, we can always start with the pre-

trained weights on the COCO dataset and then train the model on our images, starting from 

those initial weights. In this case, the more general aspects of the model are transferred, 

such as the capability to identify objects by their edges in images. Training is then done 

on the more specific model layer, which identifies types of objects and shapes. While the 

model’s parameters will need to be fine-tuned and optimized, its core functionality will have 

already been determined by transfer learning. Many researchers (Schwarz et al., 2015; Qian 

et al., 2016; Oquab et al., 2014) have shown that the object detection model can benefit from 

the transfer learning approach. Therefore, we speculate that our model might also benefit 

from pre-trained weights. So, we decided to train the model using two strategies: one with 

pretrained weight and the other from scratch, to see the difference in performance.

Figure 6 shows that the model performed very well when using pre-trained weight for 

training. The training performance shown in Figure 6 indicates that the model trained 

with pretrained weight converges fast, because using pre-trained weight keeps the model 

intuitively from learning basic features. Training and validation bbox and obj loss was low 

by almost 10–20% for a model trained using pre-trained weight compared to a model trained 

from scratch. There was an enhancement of 1.13% in precision, 1.08% in the recall, 0.735% 

in mAP@0.5, and a massive 7.05% in the mAP@0.5–0.95 score. Also, to complete 120 

epochs of training, the model from scratch took 6h 41m 51s, and the model with pretrained 

weight took 6h 16m 27s. Nevertheless, for the model trained from scratch, we obtained the 

best mAP@0.5–0.95 score of 0.7589 at 120 epochs, whereas to achieve this mAP value, the 

model with pretrained weight took only 58 epochs just in 3h 1m 36s of training time which 

was almost half of the training time and epoch took for training from scratch. These results 

clearly show that training from scratch requires many more epochs, takes more time to train 

and results are also inferior.

3.4 Image size comparison

We experimented with various input image sizes to see how resizing affects the model’s 

performance. The input images were scaled up or down according to the resolution, with the 

lowest image resolution being 340×340 and the highest image resolution being 1280×1280. 

For this experiment, we used a batch size of 32 for an input image size of 320, 512, and 

640, a batch size of 24 for 800, and 16 for 1024 and 1280, respectively. As the image was 

scaled to different pixel sizes, the object in the images also changed. The best part of the 

YOLOv5 model is that the annotation information in the dataset is checked before the start 

of training and calculates the optimal recall rate for the dataset annotation information for 

the default anchor box. It uses the default anchor box when the optimal recall rate is greater 

than or equal to 0.98. If the optimal recall rate is less than 0.5% of 0.98, new anchors are 

automatically computed, evolved, and attached to the model. It uses a genetic evolution 

optimizer (Goldberg, 1988) on the anchors following a k-means scan. For an image size 

of 320, default anchors were likely a poor fit for our dataset. So, it recalculated the new 

anchor boxes of [3,3, 5,5, 7,7], [10,9, 13,13, 15,23] and [25,17, 29,29, 54,45]. Similarly, 

for image size of 512, default anchor boxes changed to [4,4, 6,6, 9,9], [12,12, 18,18, 20,28] 

and [33,24, 42,43, 100,92]. For all other image size, default anchor boxes of [10,13, 16,30, 

33,23], [30,61, 62,45, 59,119] and [116,90, 156,198, 373,326] were good fit.
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Due to the presence of small nanoparticles in the input image, the image’s dimensions 

significantly influenced the model’s mAP, F1, precision, and recall score (Figure 7(a)). Our 

model’s mAP@0.5–0.95 increased from 0.6634 to 0.8231 as image resolution increased 

from 340 to 1280, a 24.09% improvement. Similarly, there was an enhancement of 9.19% 

in mAP@0.5, 16.93% in Recall, and 2.13% in precision, respectively. These findings were 

validated by the results shown in Figure 7(b), which indicate that the bbox loss decreased for 

the higher resolution images. It is believed that objectness loss is compromised by a highly 

imbalanced sample set between positive and negative. When an image is scaled up, the 

object count inside images remains the same, increasing the imbalance. Therefore, the loss 

gain is automatically scaled to the image size of 640 in the YOLOv5 model to compensate 

for this effect. Consequently, as image size increases, obj loss decreases up to 640 and then 

increases. In general, expanding the sizes of the images tends to increase the time required 

to finish each epoch, as expected. This varied from 1m 7s for the smallest image size of 

320×320 to 4m 55s for the largest image size of 1280×1280. It can be concluded that 

when the image resolution is high, the model performance is better; however, the training 

is computationally expensive because GPU memory utilization rises as image size increases 

due to an increase in the number of trainable parameters and neurons in convolution and 

fully connected layers. We concluded that when dealing with tiny nanoparticles of small 

pixel size, it is crucial to train the model on the native high resolution to improve the 

abundance of characteristics. Then the trained model can correctly detect and identify the 

nanoparticles from the cell by doing so.

3.5 Progressive image resizing

Progressive image resizing is a method of resizing all images in order while training DL 

algorithms on smaller to larger image sizes. Many researchers (Colangelo et al., 2021; Bhatt 

et al., 2021; Farooq & Hafeez, 2020) have shown that progressive resizing methods improve 

the performance of the DL model. Each larger-scale model includes the preceding smaller-

scale model layers and weights into its architecture, fine-tuning the final model and boosting 

the accuracy score (Howard & Gugger, 2020). Progressive resizing has another advantage: it 

is a type of data augmentation. As a result, we should expect improved generalization from 

models trained with progressive image resizing. Therefore, we applied this strategy to train 

the YOLOv5l model with a smaller image size of 512×512 for 100 epochs and then used the 

weights from the first model to train another second model with an image size of 800×800 

for 100 epochs. Further, we used the weights from the second model to train the third model 

on images of size of 1024×1024 for another 100 epochs.

Figure 8(a) shows the enhancement in all evaluation matrices by progressive image resizing 

methods. Improvement was 0.82% for precision, 0.61% for recall, 0.68% for F1 score, 

0.38% for mAP@0.5, and 5.01% for mAP@0.5–0.95. Overall, the models’ mAP@0.5–0.95 

was significantly improved, proving that progressive image resizing helped us get better 

results. On the other hand, even with the good result on the accuracy, the progressive 

resizing technique took more training time than the normal training; it was almost two times 

longer (10h 59m 52s) than the normal training time (5h 13m 35s) for 100 epochs. Although 

training by this approach required high computational effort and energy requirements, it was 

worth training because the model’s mAP could be improved by 5%.
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3.6 Detection and performance results on test dataset

To provide an unbiased evaluation of the final model fit on the training dataset, we compared 

detection results obtained on two separate test data sets: TestDataSet1 and TestDataSet2. 482 

TEM images were presented in TestDataSet1, and 7811 ground truth labels were generated 

using various augmentation techniques. TestDataSet2, however, contained 36 raw TEM 

images along with 456 ground truth labels. Figure 8 (b–c) illustrates the performance of the 

trained YOLOv5l model on two test datasets.

We analyzed the performance and evaluated the predictions based on the ground truth 

data. Some examples of our best model prediction on the more complex TestDataSet2 are 

shown in Figure 9 and Figure 10. The best model we developed generated 7787 prediction 

structures for TestDataSet1. Out of these predictions, 7639 predictions were TPs, 148 

predictions were FPs, and 24 were FNs. Using these values, we estimated a precision of 

0.981, a recall of 0.978, and an F1 score of 0.978 at a confidence interval of 0.624. In 

contrast, our best model for TestDataSet2 produced 446 predictions, with 417 TPs, 29 FPs, 

and 10 FNs, yielding a precision of 0.935, a recall of 0.914, and an F1 score of 0.925 

at a confidence level of 0.417. Accordingly, mAP@0.5 for TestDataSet1 and TestDataSet2 

was 0.99 and 0.95, respectively. The TEM images without GNPs in TestDataSet1 and 

TestDataSet2 were 74 and 6, respectively. Our model accurately predicted that there was 

no GNPs in those images. This proves that our model could distinguish the background 

cellular structures very well. Even though there was a slight decline in the performance of 

the detection algorithm on the TestDataSet2 that only contained raw TEM images, given that 

the TestDataSet2 contained much more complex images, the performance was still very high 

(≈95%). There were a few false positive and false negative results in our models as shown 

by yellow and light blue arrows in Figure 9 and Figure 10. The results demonstrated that the 

YOLOv5 model could efficiently acquire adequate information from the training image sets 

to identify GNPs from a cellular image correctly.

Because we trained our model with the 1024×1024-pixel image size, for the best detection 

performance, the inference must also be performed with the exact resolution; however, 

YOLOv5 can be inferred from any resolution image. Consequently, more precise detection 

is a challenge for large-scale input images when the object is very tiny, like GNPs in our 

case. The image can be randomly cropped or resized, but this approach is obviously not 

viable for inference since information may be lost while resizing to a lower resolution. 

Slicing-Assisted Hyper Inference (SAHI) (Akyon et al., 2022) is of use in this case. In 

SAHI, slices predictions take the input image, break it down into slightly overlapping 

patches, perform predictions on each patch, and then combine the annotated patches to 

visualize them on the original image. We applied this approach to our TEM images of 

GNRs whose native resolution was 2256×2048. Since our model was trained at 1024×1024 

images, we used slice height and width of 1024, the detection confidence level of 0.42, 

and the overlap ratio of 0.2. Figure 11 clearly shows that the SAHI prediction technique 

enabled the detection of solitary GNPs that were missed by normal inference. As a result, it 

removed some false detection making our detection algorithm more precise. However, SAHI 

prediction took slightly more inference time (0.34s per image) than standard inference time 
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(0.20s per image). This result shows the advantage of SAHI prediction if the detection image 

resolution is higher than the training image size.

4. Discussion

This study aimed to develop a reliable and fully automated method for detecting 

nanoparticles (specifically GNPs within the current scope) in cellular TEM images. Manual 

detection of nanoparticles can be very time consuming and may even be considered 

impractical in many cases. The DL model developed from this study automatically 

recognizes nanoparticles and does not require an annotation by a human. To our knowledge, 

no prior study has demonstrated these capabilities. After training based only on a few TEM 

images, we analyzed heterogeneous cellular TEM images with higher accuracy. Importantly, 

data from the YOLOv5 model allowed us to precisely estimate the number and position of 

nanoparticles within cell structures.

Four different architectures of YOLOv5 models were tested, YOLOv5s, YOLOv5m, 

YOLOv5l, and YOLOv5x. As we moved from a small model to an extreme one, there 

was a tendency for the inference and training time to increase. The YOLOv5s model took 

the shortest time to train and made the fastest predictions, even though it used the same 

number of images. However, its accuracy was lower than other models. We found that 

both the YOLOv5l object detectors and YOLOv5x object detectors were suitable for this 

task. They both had an equivalent mAP value. The model also performed well when it 

was trained with pre-trained weight. The pre-trained weight helped the model to learn 

basic features faster, which is evident in the model’s training performance. Our study also 

showed that models performed better when images were high quality for training. However, 

training was computationally costly because GPU memory usage rose with increasing 

image sizes due to an increase in trainable parameters. We found that increasing the 

image resolution for TEM images was the key to enhancing the sensitivity of nanoparticle 

detection. Nanoparticles in cells could then be better detected and distinguished using the 

trained model. Two of the most popular deep network optimization algorithms, Adam (result 

not shown here) and SGD, were also tested. We concluded that, SGD might be an excellent 

choice for object detection models, as there was a performance gap with Adam when used 

default hyperparameters. Our results also revealed that progressive image resizing methods 

improved all evaluation matrices of models. Although this approach was time-consuming 

and expensive, it was also able to enhance the model’s mAP by 5%. Besides, our model 

was able to handle nanoparticle detection from TEM image sets with multi-magnification, as 

shown in Figure 9.

The YOLOv5 trained model was able to produce predictions from raw TEM images 

that outperformed human detection. Manually counting and locating each TEM image of 

approximately 10 GNPs took around 2–3 minutes for an expert technician. However, on 

average, our YOLOv5 model processed 1 TEM image containing any number of GNPs and 

generated predictions in just 0.2s using a single GPU. This was almost a 900-fold increase 

in speed, reducing effort and time. Besides, it did not necessitate a lot of computational 

resources, as 10–12 hours of training time were sufficient for the results obtained. The 

YOLOv5 algorithm is very scalable for large datasets. This can be seen by the short training 
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time required for our dataset. We expect that the current approach can be extended beyond 

the detection of GNPs within cells using TEM image for biomedical applications. For 

example, it can also be used to analyze typical TEM images of nanoparticles in materials 

science.

To demonstrate the robustness and reliability of our approach, we used a more complex 

dataset that included GNPs in general and controlled environments. Next, we selected 

samples with noisy backgrounds and added more noise manually which looked like GNPs, 

and then performed detection using our trained model. Some detection results can be seen 

in Figure 12. There were few false-negative detections of solitary tiny GNPs; however, 

we observed no false positive detection. Likewise, we selected sample images containing 

solitary GNPs from the test dataset to verify that the proposed algorithm was able to 

accurately detect these particles. This test showed that our YOLOv5 model correctly 

detected smaller GNPs in the input images. Although there were few missed detections 

of solitary GNPs, it was able to identify clustered GNPs more accurately, which could be 

crucial for modeling of GNP-mediated dose enhancement & radiosensitization (Jayarathna 

et al., 2019).

The relatively small training dataset was one of the challenges of this study. Although we 

used augmented images to train the model, it could have been more accurate if we had 

access to a larger number of datasets. Our model struggled to detect tiny solitary GNPs in a 

few cases. Since our ultimate goal within the current scope is to study GNP-mediated dose 

enhancement & radiosensitization, however, the possibility of missing a few GNPs out of 

hundreds could be insignificant. Even so, the DL model developed from this investigation 

can be trained with an expanded image dataset to achieve even better detection performance 

and a shorter computational time.

While not demonstrated in this investigation, the currently developed DL-based TEM image 

analysis tool can, in principle, be extended for the detection of other internalized metal 

nanoparticles (MNPs) (e.g., made of iron, hafnium, gadolinium, etc.) that have also been 

considered for cancer treatments and diagnosis. The current approach is also expected to 

be independent of specific TEM imaging devices. Furthermore, it may serve as the basis 

for the development of other related tools that can help facilitate computational modeling 

of GNP- or MNP-laden tumor cells. For example, following the detection of GNPs and 

MNPs, it is possible to automatically determine other important modeling parameters such 

as the distances between internalized GNPs and MNPs and specific subcellular organelles 

(e.g., nuclei and mitochondria). Given the impracticality of a manual determination of such 

parameters, the benefits from this possibility are easily foreseeable.

5. Conclusion

We employed a DL-based YOLOv5 model for detecting GNPs in cellular TEM images. The 

robustness and reliability of our method were demonstrated by analyzing a more complex 

dataset involving GNPs in general and controlled environments. In a validation set, our best 

model achieved maximum recall, precision, F1, mAP@0.5, and mAP@0.5–0.95 scores of 

0.987, 0.976, 0.982, 0.989, and 0.843, respectively. The trained model performed very well 
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on a complex raw test dataset with a precision of 93.5%, a recall of 91.4%, an F1 score 

of 92.5%, and mAP@0.5 of 95.0% at a confidence level of 0.417. Utilizing the currently 

developed method, the time required for hundreds of TEM image analyses can be reduced 

from hours to less than a minute. Furthermore, our proposed method has high repeatability 

since it is operator independent. Overall, we have shown that the YOLOv5 model allows 

for precise determination of GNP distributions throughout cellular structures. This enables 

us to fully automate GNP detection from cellular TEM images, successfully addressing 

the key challenge for the development of nanometer resolution TEM image-based models 

of GNP-laden cells. Owing to its generality, the current DL-based approach can also be 

extended for the detection of other MNPs, besides GNPs, considered for cancer diagnostic 

and therapeutic applications.
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Fig. 1. 
Example of (a) original transmission electron microscopy (TEM) image of human colorectal 

tumor cells treated with gold nanorods (GNRs) and (b)-(f) augmented TEM images with 

increased GNR instances. The augmentation techniques applied include rotation, flipping, 

and scaling to generate diverse training datasets.
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Fig. 2. 
Object detection principle of you only look once (YOLO) algorithm illustrated in four 

steps: (a) Grid division - Input image (featuring human colorectal tumor cells treated with 

gold nanorods) divided into a fixed-size grid, with each cell predicting bounding boxes 

for potential objects. (b) Bounding box prediction - Neural network predicts coordinates, 

dimensions, and confidence scores for each grid cell, indicating object presence likelihood. 

(c) Class probability mapping - Neural network concurrently predicts class probabilities for 

each grid cell, estimating object class likelihood within bounding boxes. (d) Final object 

detection - Confidence scores are multiplied by class probabilities, and non-maximum 

suppression (NMS) is applied to remove overlapping and redundant bounding boxes, 

yielding final gold nanoparticle (GNP) detections.
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Fig. 3. 
Distribution of gold nanoparticle (GNP) instances in transmission electron microscopy 

(TEM) images of (a) Dataset1 and (b) Dataset2. Inset shows distribution of normalized 

widths and heights of GNPs instances. A red line indicates the kernel density distribution of 

GNP instances, illustrating the concentration and spread of GNPs in the images.
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Fig. 4. 
Performance evaluation of the YOLOv5l model trained on two datasets, showcasing (a) 

precision-recall curve for assessing the trade-off between precision and recall, (b) F1 score 

plotted against confidence level to determine the optimal confidence threshold, (c) bbox loss 

plot illustrating the minimization of bounding box prediction errors, and (d) objectness loss 

plot demonstrating the reduction of object classification errors. Arrows indicate inflection 

points, highlighting key changes in the plotted metrics.
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Fig. 5. 
Comparative loss plots for various YOLOv5 model architectures: (a) YOLOv5s (small), 

(b) YOLOv5m (medium), (c) YOLOv5l (large), and (d) YOLOv5x (extreme). These 

plots illustrate the training loss progression for each model, providing insights into their 

convergence and relative performance.
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Fig. 6. 
Comparison of YOLOv5l model performance when trained using pre-trained weights 

versus training from scratch, showcasing the impact of transfer learning on the detection 

performance. The metrics displayed include: (a) bounding box (bbox) loss, which represents 

the accuracy of the predicted bounding box coordinates and dimensions, (b) objectness 

(obj) loss, indicating the model’s ability to correctly identify the presence of objects within 

bounding boxes, (c) precision, a measure of the proportion of true positive detections among 

all positive predictions, (d) recall, a measure of the proportion of true positive detections 

among all actual positives in the dataset, (e) mean average precision (mAP) at intersection 

over union (IoU) threshold of 0.5, representing the model’s overall detection performance, 

and (f) mAP at IoU thresholds ranging from 0.5 to 0.95, providing a more comprehensive 

evaluation of the model’s performance across various IoU thresholds.
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Fig. 7. 
Performance evaluation of the YOLOv5l model with varying transmission electron 

microscopy (TEM) image sizes to assess the impact of image resolution on detection 

accuracy: (a) evaluation metrics, including precision, recall, F1 score, and mean average 

precision (mAP) at different intersection over union (IoU) thresholds, providing a 

comprehensive understanding of the model’s performance for each image size, and (b) loss 

plot, illustrating the convergence and training stability for different image resolutions. The 

numbers listed from 320 to 1280 denote the pixel dimensions of the images; for instance, 

IMG-320 corresponds to TEM images with a 320×320-pixel resolution.
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Fig. 8. 
(a) Effect of progressive image resizing on YOLOv5l model performance, illustrating 

the percentage improvements in all evaluation metrices; (b) precision-recall curve for our 

best-performing YOLOv5l model, illustrating the trade-off between precision and recall in 

detecting gold nanoparticles in two different test datasets, providing insights into the overall 

detection performance and suitability of the model for practical applications; and (c) F1 

score as a function of confidence level for the two test datasets, demonstrating the optimal 

confidence threshold for maximizing the balance between precision and recall.
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Fig. 9. 
Detection results of our best YOLOv5l model on TestDataSet2 featuring human colorectal 

tumor cells treated with cylindrical gold nanoparticles (GNPs), i.e., gold nanorods (10 

nm diameter and 40 nm length). (a)-(c) raw transmission electron microscopy (TEM) 

images at 50000 magnification and (d)-(f) raw TEM images at 25000 magnifications. 

The yellow arrow indicates false-positive results, while the light blue arrow highlights false-

negative results. Insets display zoomed-in images of GNPs, revealing the confidence scores 

associated with each detection. The red bounding boxes represent the detection results, and 

the green bounding boxes denote ground-truth labels, providing a clear visual comparison of 

model predictions and actual GNP locations within the TEM images.
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Fig. 10. 
Detection results of our best YOLOv5l model on TestDataSet2 featuring human pancreatic 

tumor cells treated with spherical gold nanoparticles (GNPs), i.e., gold nanospheres of 5 

nm diameter. All raw TEM images are at 25000 magnifications. The yellow arrow indicates 

false-positive results, while the light blue arrow highlights false-negative results. Insets 

display zoomed-in images of GNPs, revealing the confidence scores associated with each 

detection. The red bounding boxes represent the detection results, and the green bounding 

boxes denote ground-truth labels, providing a clear visual comparison of model predictions 

and actual GNP locations within the TEM images.
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Fig. 11. 
Detection results using standard inference (a-c) and Slicing-Assisted Hyper Inference 

(SAHI) prediction (d-f) on raw transmission electron microscopy (TEM) images featuring 

human colorectal tumor cells treated with cylindrical gold nanoparticles (GNPs) (i.e., gold 

nanorods). The yellow arrow highlights false-positive results, while the light blue arrow 

points out false-negative results. The red bounding boxes represent the detection results, and 

the green bounding boxes denote the ground-truth labels, showcasing the effectiveness of 

each method in identifying GNPs within the TEM images.
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Fig. 12. 
Detection of gold nanoparticles (GNPs) on noisy cellular backgrounds featuring augmented 

images with added noise to test the model’s robustness. (a, c, e) show colorectal tumor 

cells, while (b, d, f) represent pancreatic tumor cells. The light blue arrow highlights false-

negative results. Notably, there are no GNPs present in (d) and (f), and our model accurately 

distinguishes background cellular structures from GNPs, demonstrating its ability to perform 

effectively under challenging, noisy conditions.
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