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ABSTRACT Characterization of the oral microbiota profile through various studies has
shown an association between the microbiome and oral cancer; however, stage-specific
determinants of dynamic changes in microbial communities of oral cancer remain elu-
sive. Additionally, the influence of the intratumoral microbiota on the intratumoral
immune system remains largely unexplored. Therefore, this study aims to stratify micro-
bial abundance in the early-onset and subsequent stages of oral cancer and analyze
their influence on clinical-pathological and immunological features. The microbiome
composition of tissue biopsy samples was identified using 16S rRNA amplicon sequenc-
ing, while intratumoral and systemic immune profiling was done with flow cytometry
and immunohistochemistry-based analysis. The bacterial composition differed signifi-
cantly among precancer, early cancer, and late cancer stages with the enrichment of
genera Capnocytophaga, Fusobacterium, and Treponema in the cancer group, while
Streptococcus and Rothia were enriched in the precancer group. Late cancer stages
were significantly associated with Capnocytophaga with high predicting accuracy, while
Fusobacterium was associated with early stages of cancer. A dense intermicrobial and
microbiome-immune network was observed in the precancer group. At the cellular
level, intratumoral immune cell infiltration of B cells and T cells (CD41 and CD81) was
observed with enrichment of the effector memory phenotype. Naive and effector sub-
sets of tumor-infiltrating lymphocytes (TILs) and related gene expression were found to
be distinctly associated with bacterial communities; most importantly, highly abundant
bacterial genera of the tumor microenvironment were either negatively correlated or
not associated with the effector lymphocytes, which led to the conclusion that the tu-
mor microenvironment favors an immunosuppressive and nonimmunogenic microbiota.

IMPORTANCE The gut microbiome has been explored extensively for its importance
in the modulation of systemic inflammation and immune response; in contrast, the
intratumoral microbiome is less studied for its influence on immunity in cancer.
Given the established correlation between intratumoral lymphocyte infiltration and
patient survival in cases of solid tumors, it was pertinent to explore the extrinsic fac-
tor influencing immune cell infiltration in the tumor. Modulation of intratumoral
microbiota could have a beneficial effect on the antitumor immune response. This
study stratifies the microbial profile of oral squamous cell carcinoma starting from
precancer to late-stage cancer and provides evidence for their immunomodulatory
role in the tumor microenvironment. Our results suggest combining microbiome

Editor Zhenjiang Zech Xu, Nanchang
University

Copyright © 2023 Pratap Singh et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Rashmi Kumar,
rashmi@imtech.res.in.

The authors declare no conflict of interest.

Received 10 November 2022
Accepted 11 June 2023
Published 6 July 2023

July/August 2023 Volume 11 Issue 4 10.1128/spectrum.04596-22 1

RESEARCH ARTICLE

https://orcid.org/0000-0002-5537-3248
https://orcid.org/0000-0003-3444-1018
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/spectrum.04596-22
https://crossmark.crossref.org/dialog/?doi=10.1128/spectrum.04596-22&domain=pdf&date_stamp=2023-7-6


study with immunological signatures of tumors for their prognostic and diagnostic
application.

KEYWORDS microbiome, tumor microenvironment, inflammation, OSCC, biomarker

Lip and oral cavity cancer is the 17th most prevalent cancer worldwide and the 2nd
most prevalent cancer in India, representing 10.3% of total cancer incidences. It is

the most prevalent cancer in males and the 5th most prevalent cancer among females
(1, 2). Among all types of head and neck cancer, oral squamous cell carcinoma (OSCC)
is the most common form amounting to 80% to 90% of all oral cavity neoplasms (3, 4).
Despite the advances in multimodal treatment options available for oral cancer, includ-
ing surgical resection, adjuvant chemotherapy, and radiotherapy, it has a poor progno-
sis rate with a 5-year overall survival of 60%, owing to late diagnosis mostly after lymph
node metastasis (5, 6). Prominent risk factors for OSCC include smoking, alcohol con-
sumption, and human papillomavirus (HPV) infection (7, 8); additionally, chewing betel
quid and areca nut are significant risk factors in developing countries, including India
(9–11). However, the occurrence of oral cancer in nonsmokers and nondrinkers (12)
indicates the involvement of other possible factors in influencing the risk of cancer de-
velopment. Poor oral hygiene, dentition, and chronic infection-related inflammation
are factors reported to be associated with the pathogenesis of cancer (13–15).
Inflammation in the oral cavity is linked with alteration of the diverse resident micro-
biome and manifests not only in the context of oral cavity-related ailment-like dental
caries and periodontitis but also with diseases of distant organs, such as cardiovascular
diseases, gastrointestinal tract, and vaginal infection (16–18). Recently, the connection
between microbial dysbiosis and cancer has become the focus of multiple studies, and
their association is reported for various cancer types, such as breast, cervical, renal, and
colorectal cancer (19–22). The microbiome can regulate tumorigenesis at both local
and distant sites by facilitating the metabolism of environmental factors to produce
their carcinogenic effect, thereby influencing inflammation and immunity; however,
the mechanism is largely elusive (23).

Several studies have characterized the structure and function of the oral microbial com-
munity in health and disease (16, 24, 25), and microbial dysbiosis is increasingly considered
one of the factors associated with oral cancer. Initial studies utilizing culture-dependent
techniques and low-throughput methods have established the association between the
bacterial profile and OSCC. The differential presence of Porphyromonas spp., Fusobacterium
spp., and Streptococcus anginosus (26, 27) was reported to be associated with OSCC. Later
with pyrosequencing and next-generation sequencing (NGS), a high-throughput sequenc-
ing method that enabled simultaneous profiling of a large number of samples for their
bacterial composition in significant depth in a culture-free and affordable manner, bacterial
association with OSCC was confirmed (28, 29). By using 454 parallel sequencing of the 16S
rRNA gene, Hooper et al. (30) have characterized 10 patient tissue samples with phyla-
specific primers and identified the enrichment of saccharolytic and aciduric species in can-
cerous tissue compared with adjacent normal mucosa. Similarly, Pushalkar et al. (31) have
identified the enrichment of Streptococcus spp. and Gemella spp., among others, at tumor
sites, while Granulicatella adiacens was prevalent in nontumor areas. Schmidt et al. (32)
reported the depletion of Firmicutes (mostly Streptococcus) and Actinobacteria (mostly
Rothia) relative to anatomically matched contralateral normal tissue samples. Al-Hebshi et
al. (33) reported an association of inflammatory bacteria Fusobacterium nucleatum and
Pseudomonas aeruginosa with OSCC. In a large-scale study, Bornigen et al. (34) studied the
effect of multiple factors on the microbial composition and functional profile associated
with OSCC and identified tooth loss as one of the crucial factors for cancer initiation along
with established risk factors. They reported a differential abundance of certain taxa, especially
the enrichment of Dialister and depletion of Scardovia. Several groups have studied the sali-
vary microbiome to identify noninvasive, potential prognostic biomarkers as an alternate
strategy (35, 36). Lee et al. (37) reported a differential abundance of five genera, namely,
Bacillus, Enterococcus, Parvimonas, Peptostreptococcus, and Slackia, between epithelial
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precursor lesions and cancer, while, Guerrero-Preston et al. (28) reported a relative abundance
of Streptococcus, Dialister, and Veillonella and depletion of Neisseria, Aggregatibacter,
Haemophilus (Firmicutes), and Leptotrichia (Fusobacteria) in tumor samples compared with
control samples. All these studies have established that distinct microbial taxa are associ-
ated with OSCC; however, oral cancer stage-specific identification of bacterial taxa having
prognostic potential is still lacking. This gap in knowledge is primarily due to the unavail-
ability of samples from all stages of cancer in a single study. Moreover, large cohort stud-
ies emphasizing functional correlation are warranted for establishing microbial signatures
with OSCC development.

Tumor-infiltrating lymphocytes (TILs), including T cells, B cells, and innate immune
components, such as macrophages and neutrophils, have been studied and correlated
with the prognosis of cancer in the case of solid tumors (38, 39). Regulatory T-cell
(Tregs) subsets have been studied extensively and linked with poor prognosis (40).
Recently, studies have explored the role of gut microbiota in the modulation of tumor
immunity and immunotherapy both at local sites, such as esophageal, gastric, and
colorectal carcinoma (41, 42), and at distant sites, such as pancreatic cancer (43). So far,
less emphasis has been given to the intratumoral microbiota on extraintestinal tumor
development. Few reports are available describing the influence of local microbiota on
inflammatory and metabolic responses in the tumor microenvironment in the case of
breast and ovarian cancer (19, 44); however, none of the studies have explored the
impact of intratumoral microbiota on TILs in the case of oral cancer.

In the current study, we explored the microbial difference among different stages
of OSCC. We have included patients from precancer to late-stage cancer and aimed to
identify stage-specific microbial signatures. Furthermore, we explored the role of local
microbiota-immune system interplay in oral tumorigenesis by comparing the effect of
local microbiota on tumor-infiltrating immune cells and cytokine gene expression. Our
findings address our hypothesis that the intratumoral microbiota influences the re-
gional immune system in oral cancer, and there is a possibility of immune modulation
through microbial manipulation.

RESULTS
Study participant characteristics. This study included a total of 75 patients for

microbiome analysis. Intratumoral bacterial diversity profiles were generated from 15
precancer and 60 oral cancer patients, which were further subdivided into early-stage
(T1 and T2) and late-stage (T3 and T4) cancer groups, and 20 adjacent tumor tissue
(AT) specimens; a total of 95 samples were analyzed. The clinical characteristics of the
study subjects are listed in Table 1. No difference in age, gender, smoking status, and
alcohol consumption was observed between the groups. Characteristics of taxonomic
distribution are presented in detail in Table S1 in the supplemental material.

Microbial diversity changes with disease progression.We analyzed and compared
the oral microbiota profiles of precancer and cancer groups further subdivided into the early
and late stages of cancer to quantify overall differences in microbial composition. Microbial
alpha diversity was determined using richness (Chao 1 index) and diversity (Shannon index)
(45) metrics within the groups. The Chao index was significantly higher at the T3 stage com-
pared with that at the precancer (P , 0.01) and both T1 (P , 0.01) and T4 (P , 0.001)
stages, while it is similar to the T2 stage (Fig. 1A). The Shannon index was comparable
between the groups; however, the T4 stage demonstrated a lesser diversity compared with
the T3 stage (P, 0.05) (Fig. 1B). Alpha diversity indices were comparable between adjacent
tumor tissue (AT) and their tumor counterpart (TT) (see Fig. S1B and C in the supplemental
material). These observations suggest a loss of both richness and diversity of tumor-residing
bacteria at the T4 stage of cancer. Next, we measured the beta diversity (between samples)
to detect the phylogenetic relationship between bacterial communities among different
groups to estimate the overall structural features of tumoral microbiota. A weighted UniFrac
principal coordinate analysis (PCoA) using Bray-Curtis metric distances (46) was calculated
based on the relative abundance of operational taxonomic units (OTUs) (at a 97% similarity),
indicating a separated clustering between OTUs from the precancer and cancer cohort
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(Fig. 1C). The unweighted UniFrac distance measurement for the beta diversity produced
similar results (Fig. 1D), suggesting a notable difference in the tumor microbiome at pre-
cancer and cancer stages. However, both measures did not reveal any significant difference
among adjacent control and tumor samples (see Fig. S1D and E in the supplemental mate-
rial), suggesting phylogenetic contiguity of tumor microbial communities within each group.

Taxonomic comparison of tumor microbial communities revealed distinct bac-
terial composition among different stages of cancer. We next sought to determine
the overall difference in bacterial communities of the tumor microbiome at progressive
stages of the disease to find stage-specific biomarkers of OSCC. General intratumoral micro-
biota composition in all patients revealed the presence of diversified communities (Fig. 2A,
combined all samples at the phylum level). Firmicutes was the most abundant phylum,
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FIG 1 Oral cancer bacterial communities differ with the clinical stage of cancer. Bacterial alpha diversity indices among different stages of oral cancer were
measured by Chao1 index (A) and Shannon diversity index (B). Bacterial beta diversity indices between precancer and cancer groups were measured by
weighted UniFrac distance (C) and unweighted UniFrac distance (D). Statistical analysis was done by one way ANOVA followed by the Kruskal-Wallis test.
*, P , 0.05; **, P , 0.01; ***, P , 0.001.

TABLE 1 Patient characteristics and distribution of samples across analysisa

Parameter Patient data

Data by test

16S rRNA gene sequencing Flow cytometry analysis Gene expression analysis IHC analysis
Sex
Male 71 58 50 37 43
Female 24 17 13 13 19
Total samples 95 75 63 50 62

Age (mean6 SD) 486 12 506 11 516 9 526 10 516 13

Group of samples
Cancer 69 60 40 (PBMCs), 22 (TILs) 40 48
Precancer 15 15 12 10 14
Healthy control 11 11

Localization
Buccal mucosa 38 33 24 20 21
Tongue 13 11 10 9 8
Upper and lower alveolus 18 16 6 11 19

T stage
I 15 15 9 10 11
II 15 15 9 10 15
III 15 15 6 10 11
IV 15 15 7 10 11
NA 09 9

N stage
Node positive 25 25 12 12 31
Node negative 35 35 19 28 17
NA 09

aValues are presented as number of patients unless otherwise indicated.
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FIG 2 Taxonomic composition of microbiota in OSCC. (A) Relative abundances of core bacterial phyla in the present data set. (B)
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followed by Proteobacteria and Bacteroidetes, constituting almost 70% (all three together) of
all sequences. Next, the differential enrichment of specific bacterial communities at various
taxonomic levels was compared, focusing on core taxa. Marked differences in the relative
abundance of the bacterial communities were observed between the precancer and cancer
groups. The three most abundant phyla in precancer samples comprised Firmicutes
(40.90%), Proteobacteria (22.09%), and Actinobacteria (11.07%), whereas in cancer samples,
Proteobacteria (29.39%) and Firmicutes (28.38%) were equally abundant followed by
Bacteroidetes (15.03%) (Fig. 2B). Among 10 core phyla, seven phyla showed significant differ-
ences (P, 0.05) between precancer and cancer groups through high-dimensional compari-
sons using linear discriminant analysis of effect size (LEfSe) analysis (47). The phyla TM7,
GNO2, Verrucomicrobia, Spirochetes, and Bacteroidetes were significantly increased in cancer
groups, while phylae Actinobacteria and Firmicutes were significantly decreased (Fig. 2B,
right). Early- and late-stage cancer had comparable abundances of bacteria; however, a sig-
nificantly higher abundance of the phylum Fusobacteria was associated with early stages of
cancer (see Fig. S2A in the supplemental material). We did not observe much difference in
tumor tissue (TT) and adjacent tumor tissue (AT) samples; only phylum Proteobacteria was
significantly increased in the AT samples (see Fig S2B in supplemental material). Compared
with precancer samples, Spirochetes, Bacteroidetes, and TM7 were enriched in AT samples
(see Fig S2C in supplemental material), showing their similarity with cancer samples.

At the family level, 30 families present with more than 2% abundance in any one
group of samples were analyzed. In precancer samples, 45% of the total abundance was
contributed by eight dominant families, where Streptococcaceae was the most abundant
family. In cancer samples,18 families had more than 2% abundance, and Flavobacteriaceae
and Enterobacteriaceae were the most abundant. Altogether 13 families showed signifi-
cant differences (P , 0.05) in abundance between the precancer and cancer groups.
Streptococcaceae, Micrococcaceae, and an unidentified family of the Clostridiales order
were significantly increased in the precancer group, while the remaining 10 families were
increased in the cancer group (Fig. S2D). Family Enterobacteriaceae was present in equal
abundance in both groups, which can be considered common microbiota in the oral
cavity.

At the genus level, Streptococcus (10.5%) and Capnocytophaga (6.4%) were detected as
the most abundant genera (Fig. 2C). Seventeen genera showed significant differences
(P , 0.05) between precancer and cancer groups through LEfSe analysis. Capnocytophaga;
Leptotrichia; Treponema; Oscillospira; Pseudomonas; Prevotella; Porphyromonas; and an un-
identified genera of families Lachnospiraceae Comamonadaceae, Peptostreptococcaceae,
and Desulfovibrionaceae showed a significant increase in the cancer groups. In contrast,
Rothia, Streptococcus, Arcanobacterium, Parvimonas, and genus of the order Clostridiales
showed a significant increase in the precancer group (P , 0.05) (Fig. 2C). The genus
Pedobacter was enriched at the early stage, while differential abundances of Leptotrichia, a
genus of family Desulfovibrionaceae and order Clostridiales, were associated with late can-
cer stages (Fig. 2D). LefSe analysis of adjacent tumor (AT) samples with tumor (TT) samples
and precancer samples revealed many similarities between AT with tumor, however, AT
samples were very different in microbial complexity in comparison to precancer samples
(see Fig. S3A and B in the supplemental material).

Species-level identification was performed with genera with a relative abundance of
.5% in any group. A total of 10 such genera were taken into consideration, and 67 species
were identified, of which 19 species were assigned as core species having a relative abun-
dance of .1% in any sample. The relative abundance of 15 species was more than 2%;
together, they accounted for 85% of the sequences (see Table S2 in the supplemental
material). Precancer samples were enriched for the species of Streptococcus and Rothia,
while species of Capnocytophaga were enriched in cancer samples (Fig. 3A). In compari-
son to precancer samples, early- and late-stage cancer showed a distinct enrichment of
bacterial communities. Species of Fusobacterium, namely, Fusobacterium canifelinum and F.
nucleatum, were enriched at the early stage, while the late-stage of cancer was found to be
particularly enriched with species of genus Capnocytophaga, namely, Capnocytophaga
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ochracea, Capnocytophaga granulosa, Capnocytophaga sputigena, and Capnocytophaga
leadbatteri (Fig. 3B). However, C. granulosa and C. leadbatteri were enriched in cancer sam-
ples across all stages. F. canifelinum was the only differential species in the early and late
stages of cancer (Fig. S3E). Next, AT specimens were compared with TT and precancer
specimens; enrichment of Rothia mucilaginosa, Rothia dentocariosa, and Neisseria mucosa
were detected in AT samples (Fig. S3C) while they differ with precancer samples due to the
enrichment of cancer-associated bacterium (Fig. S3D).

Microbial co-occurrence analysis and prediction of biomarker potential. We
studied the community relationships among bacteria in the tumoral microenvironment
with the 30 most abundant bacterial genera of precancer and cancer samples by calculat-
ing Pearson’s correlations among them. They were visualized through a heat map (Fig. 4A
and B) and with Cytoscape (v3.9.0) (48) for all correlations with r values between10.5 and
20.5. (see Fig. S4A and B in the supplemental material). Overall, only a few negative corre-
lations were observed in the precancer samples, while all identified bacterial associations
were strongly positive in both cases. Altogether, we spotted 27 nodes and 73 edges in
precancer samples, while only 18 nodes with 15 edges were observed for cancer samples
(Fig. S4 A and B). The most closely associated cluster was formed among Stenotrophomo-
nas, Pseudomonas, Ochrobactrum, and unidentified genera of Enterobacteriaceae and
Xanthomonadaceae families in the precancer group. In this hub, every bacterial genus
is associated with each other with a strong positive correlation (r . 0.9). Stenotro-
phomonas and an unidentified genus of family Xanthomonadaceae were most positively
correlated (r = 0.998, P , 0.0001). Interestingly, Streptococcus was found to be negatively
associated with components of this cluster. Fusobacterium formed another hub and was
associated with multiple genera, namely, Capnocytophaga, Peptostreptococcus, Treponema,
Gemella, Campylobacter, Bacteroides and genera of Comamonadaceae and Lachno-
spiraceae families; all these associations showed a strong positive correlation (r = .0.7 to
0.9). While we observed strong and multiple associations among bacterial genera in pre-
cancer samples, these connections were sparse in cancer samples with few strong positive
associations. Among these associations, the most positively correlated genera were
Stenotrophomonas with the genera of families Xanthomonadaceae (r = 0.99) and
Enterobacteriaceae (r = 0.89) (Fig. 4B) as observed in the precancer group; however, in this
case, Ochrobactrum and Pseudomonaswere not included within the same cluster as observed
in the precancer group (Fig. 4A).

FIG 3 Taxonomic composition of microbiota in OSCC. (A) Differential abundances of core bacterial species among precancer and cancer groups. (B)
Differential abundances of core bacterial species between the precancer group with early (T1 and T2) and late cancer (T3 and T4) groups. Differential
abundance analysis was done by LEfSe and represented through LDA plot.
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Next, to explore the predictive potential of most differential taxa as a diagnostic
marker for cancer, we performed receiver operating characteristic (ROC) curve analysis.
Taxa were selected based on the LEfSe analysis at the genus level (Fig. 2C), and the five
most abundant and differential genera, namely, Streptococcus and Rothia of precancer
samples and Capnocytophaga, Leptotrichia, and Treponema of cancer samples, were
included for analysis. This analysis gave a predictive accuracy to Capnocytophaga
(Fig. 4C) and Streptococcus (Fig. 4D) genera for cancer and precancer stage, respec-
tively. The area under the curve (AUC) value (see Table S3 in the supplemental mate-
rial) reached 0.8103 for Capnocytophaga and 0.7874 for Streptococcus, indicating they
have good diagnostic potential.

The intratumoral microbiome influences local immune responses. Next, to
explore the potential of intratumoral bacterial communities for immunomodulation, we
analyzed tumor-infiltrating lymphocytes (TILs) by flow cytometry and immunohistochem-
istry (IHC). Peripheral blood mononuclear cells from the peripheral blood of all subjects
and TILs from tumor biopsy samples from a subset of patients underwent multicolor
flow cytometry-based immunophenotyping analysis. Our study observed T and B cell
infiltration in the tumor microenvironment (TME) (Fig. 5A). Furthermore, we analyzed the
TILs for their T cell subsets and identified naive and memory cells based on CCR7 and
CD45RA cell surface markers. Both CD41 and CD81 T cell subsets were enriched for
memory phenotype (Fig. 5B and C). The presence of CD31 and CD191 cells in TME was
also confirmed with IHC (Fig. 5D). To further investigate the relationship between intratu-
moral microbial composition with observed immune-phenotype characteristics, we
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performed a correlation analysis between the dominant microbial relative abundance at
the genus level and the infiltrated immune cells (percentage of immune cells in the
TME). The significant association with any immune factor is listed in Table S4 in the sup-
plemental material and plotted on a heatmap (CD191 B cells and naive and effector
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memory (EM) subsets of CD41 and CD81 T cells). We found a significant positive correla-
tion of CD191 B cells with various taxa, such as Porphyromonas, Streptococcus, Oscillospira,
and Aggregatibacter (Fig. 6A). In contrast, total CD41 T cells and CD81 T cells were found
to correlate with distinct bacterial communities. Furthermore, we performed this analysis
with T cell subsets and observed the correlation of tumor microbiota with naive and
effector memory T cells. Interestingly, intratumoral bacteria were found to be positively
associated with naive cells while they were mostly negatively associated with effector
memory T cells having antitumor activity. Genera Porphyromonas, Prevotella, Gemella,
and Streptococcus were found to be associated with TILs (both CD41 and CD81), while gen-
era Rothia, Oscillospira, Aggregatibacter, Exiguobacterium, Fusobacterium, and Campylobacter
were associated only with CD41 T cells (Fig. 6A).

Given that we had limited samples for cellular-level phenotyping of intratumoral T
cell subsets, we delineated the intratumoral T cell subpopulations at the gene level in
our samples. We measured the expression of CD41 T cell-associated transcription factors
for the T helper cell family (TH1-Tbet, TH2-GATA3, and TH17-RORgT) and T regulatory cells
(Tregs) (FoxP3). In addition, using reverse transcriptase quantitative PCR (RT-qPCR), we
also measured the expression level of 3 cytokine genes (interleukin-10 [IL-10], interferon
gamma [IFN-g ], and IL-1-b) in 40 oral cancer tissue samples and 10 precancerous lesion
samples that had paired data for microbiome analysis. We did not observe any signifi-
cant difference in the expression level of T-cell-associated transcription factors among
precancer and cancer groups; however, GATA3 (TH2 associated) showed an increased
expression level, although not significant, in cancer samples. Among cytokine genes, IL-
10 expression was higher in cancer samples than that in precancer samples (see Fig. S5
in the supplemental material).

Pearson’s correlation analysis was performed to identify a correlation between the oral
cancer microbiome and immune-related gene expression. We observed distinct association
patterns with precancer and cancer samples. In cancer samples, Capnocytophaga (r = 0.55,
P = 0.003) and an unidentified genus of family Peptostreptococcaceae (r = 0.75, P = 0.001)
were found positively associated with Tbet expression, while none of the bacteria
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associated significantly with Tbet in precancer samples. Corynebacterium, Prevotella, and
Peptostreptococcus were positively associated with GATA3 expression in cancer, while its
expression in precancer samples was associated with distinct and several bacteria.
Fusobacterium was positively associated with the expression of RorgT and FoxP3 in cancer
samples; however, their expression was associated distinctively in precancer samples
(Fig. 6B). Corynebacterium, Peptostreptococcaceae, Porphyromonas, and Fusobacterium were
significantly positively associated with more than one cytokine gene expression in cancer
samples and hence can be considered the top influencer of the intratumoral immune
response. In precancer samples, IL-1-b , GATA-3, and FoxP3 gene expression covaried with
several bacteria belonging to Gordonia, Rothia, Pedobacter, Brevundimonas, Neisseria,
Aggregatibacter, and Haemophilus genera. Additionally, in precancer samples, immune
factors were associated with a dense microbial network (more than one interconnected
species), while in cancer samples, these associations were sparse (Fig. 6B). These results
provide insight into the intratumoral microbiome and immune interaction in oral cancer.

DISCUSSION

This study aimed to characterize and compare the tumor-resident microbiota at pro-
gressive stages of OSCC using 16S rRNA gene sequencing and to evaluate their role in
intratumoral immunomodulation. We found a marked microbial signature of early-onset
and late stages of cancer; moreover, we show distinct immunomodulatory capacities of
tumor-resident microbiota. Our results assign potential predictive power to the tumor-
resident microbiota and associate their relative abundances with cancer stage. An analy-
sis of tumor-infiltrating immune cells shows both B and T cell infiltration in TME at their
terminally differentiated stage with a memory phenotype. In addition, the association
between tumor microbial abundance with local immune signature suggests that the tu-
mor microenvironment favors nonimmunogenic and immune-suppressive bacteria. Our
results provide evidence that distinct microbial signatures and interbacterial networks
are associated with precancer and late stages of OSCC, and together, they influence
intratumoral immunity. Hence, this study advocates combining microbiome study with
immunological analysis of tumors for their diagnostic and prognostic potential.

Oral pathogenic bacteria connected with early periodontal disease, such as periodon-
titis, has been associated with incidences of malignant disease (49). We also observed
the presence of periodontitis-correlated taxa (50–52), such as Fusobacterium, Neisseria,
Prevotella, Treponema, Parvimonas, and Porphyromonas, among others in our cohort. Out
of these taxa, the tumorigenic role of specific bacteria, such as Capnocytophaga gingivalis,
Streptococcus mitis, Prevotella melaninogenica, Fusarium nucleatum, Candida albicans, and
Porphyromonas gingivalis (53–55), is well determined. However, a consensus regarding a
standard microbial signature for the chronology of the disease is still uncertain. Hence,
we included patients from precancer, early-stage (T1 and T2), and late-stage (T3 and T4)
cancer along with paired adjacent normal tissues from a subset of patients to mark the
shift in microbiota with the change of clinical stage of cancer. The study included tumor
tissue biopsy specimens in contrast to saliva (37), swabs (51), and oral wash (56, 57) sam-
ples to precisely identify the tumor-invading bacteria and to study their interaction with
the intratumoral immune system.

The gut microbiome association with antitumoral immunity and therapeutic inter-
ventions for various malignancies is now established (58, 59), emphasizing higher
microbial diversity with better clinical outcomes (23). We report a loss of bacterial
diversity only with the advanced stage (T4) of cancer, which is in line with other studies
on oral cancer (31, 32, 60, 61), establishing a loss of bacterial diversity with cancer.
Furthermore, a decreased Firmicutes-to-Bacteroidetes (F/B) ratio is reported to be asso-
ciated with cancer, such as liver (62), lung (63), and pancreatic cancer (64). The reduced
F/B ratio is related to the production of low concentrations of short-chain fatty acids
(SCFAs) influencing epithelial barrier function (65) and consequently affecting systemic
immunity and local inflammation (66, 67). Accordingly, we observed a decrease in the
F/B ratio with an increase in the relative abundance of proteobacteria supporting
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inflammation in our oral cancer cohort. A cancer stage-specific shift in bacterial com-
position was observed, where phylum Fusobacteria, along with minor phyla Verruco-
microbia and TM7, were significantly increased at the early stage of cancer, while GNO2
increased during the late stages. At the genus level, Streptococcus was the most abun-
dant genera in the precancer cohort, where they alone had around 25% abundance,
followed by Rothia. A significant decrease in the abundance of Streptococcus was
observed with cancer progression, while the abundance of Rothia was lost entirely; this
observation was in line with previous reports (32, 33). In our cohort, Capnocytophaga
was the most abundant genus in cancer samples, followed by Streptococcus and an un-
identified genus of Enterobacteriaceae. As we have samples distinguished from early
and late stages, we could mark the shift in microbial diversity with a change in tumor
stage, while the genus of order Clostridiales, family Desulfovibrionaceae, and Lepto-
trichia were enriched at early stages, Pedobacter was significantly improved at late
stages (Fig. 2D). Most of the recent studies have reported an increased abundance of
genus Fusobacterium in not only oral cancer but other cancers as well (68, 69). We
report selective enrichment of Fusobacterium at early stages of cancer compared with
subsequent stages (Fig. S2A); and from AT, suggesting their prime role in cancer initia-
tion. In continuation, at the species level, a series of Streptococcus and Rothia species
were found to be associated with the precancer group, while species of Capnocytophaga
and Treponema were the representative of cancer groups. Treponema denticola,
Treponema medium, and Fusobacterium nucleatum were found to be associated with
early stages of cancer, while multiple species of Capnocytophaga (C. ochracea, C. leadbat-
teri, and C. granulosa) were the representatives of cancer-associated bacteria across the
stages. As per our analysis, the relative abundance of Capnocytophaga and Streptococcus
can be used for early detection and of OSCC.

Various studies have shown a strong correlation between chronic inflammation and
the onset of cancer driven by oral bacteria due to poor oral hygiene, which could lead
to oral microbiota dysbiosis (13, 70–72). Since these studies have also pointed out a
shift in microbiota with cancer, including the present study, we hypothesized that this
microbiota shift can directly influence the immune mechanism of the tumor microen-
vironment with disease progression. The effect of local microbiota on intratumoral
immune cells has been shown previously in the case of colorectal, gastric, and breast
cancer (73, 74); however, this association in oral cancer has not been reported.
Decreased microbial diversity (Fig. 1), enrichment of specific bacterial taxa (Fig. 2), and
sparse interactions among bacterial taxa (Fig. 4) observed in oral cancer indicate
disrupted microbiome-microbiome and microbiome-immune interaction in cancer, leading
to immune dysregulation and cancer progression. To study the influence of intratumoral
microbiota on the local immune system, we utilized a multipronged strategy to analyze the
immune system components at the cellular and gene level. We investigated humoral and
cell-mediated immunity through B and T cells. In agreement with previously reported stud-
ies, genera Porphyromonas, Prevotella, Gemella, Streptococcus, and Oscillospira were immune
influencers, as they were significantly associated with both B and T cells. We observed a
positive association of Rothia, Streptococcus, Oscillospira, and Aggregatibacter with naive
and central memory (CM) T cells, while their abundance was depleted drastically in the
tumor microenvironment, suggesting that the loss of these genera could boost tumor
growth by downregulating the antitumor adaptive immune response. Effector memory
subsets of T cells were also negatively correlated with Exiguobacterium, Fusobacterium,
and Campylobacter. A highly abundant bacteria of the cancer microenvironment,
Capnocytophaga, was negatively correlated with an effector memory T cell subset
(TEMRA) having antitumor activity (75, 76). Other highly abundant bacteria of the TME,
such as Acinetobacter, Treponema, and Enterobacteriaceae families, remain unassociated
with TILs. These observations suggest that TME selectively enriches nonimmunogenic
bacteria or bacteria that can suppress immune activation. We have profiled the expres-
sion of T cell subset-specific transcription factors to quantify the presence of correspond-
ing T cell subsets indirectly and correlated them with intratumoral microbiota. The Th2-
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mediated immune response has been considered protumorigenic (77) through anti-inflam-
matory cytokine secretion of IL-10 and promotion of pro-tumor B cell action (78). We
observed a positive correlation of bacterial taxa, such as Corynebacterium, Prevotella, and
the genus of Peptostreptococcaceae, with the expression of GATA3 (TH2) and IL-10, thereby
suggesting their role as immunosuppressors in the tumor microenvironment. IFN-g is a
potent antitumor cytokine having an established role in tumor elimination through various
mechanisms (79) and is secreted by multiple cells of the innate and adaptive compartments
(80). A correlation was observed between Capnocytophaga and taxa of the Enterococcaceae
family with IFN-g . However, both taxa show an increased abundance in the tumor microen-
vironment compared with precancer lesions. Tregs are another important subset of T cells
having a pro-tumorigenic activity (81); in our analysis, the expression of their transcription
factor FoxP3 correlated with Fusobacterium, Treponema, and Selenomonas, which are abun-
dant in the tumor microenvironment, indicating their immunosuppressing potential in
TME. Corynebacterium, Peptostreptococcus, Porphyromonas, and Fusobacterium showed a
maximum interaction with immune features.

Besides the distinction in the abundance of microbiota with cancer stages, we also
observed a difference in the association of the oral microbiome with immune features at
precancer and cancer stages. While Fusobacterium, Treponema, Leptotrichia, Corynebac-
terium, Porphyromonas, and Streptococcus were the major influencer of TILs and immune
genes in cancer cases, Gordonia, Pedobacter, Neisseria, Haemophilus, Ochrobactrum, Para-
coccus, Pseudomonas, and Stenotrophomonas were found correlated with immune genes
in precancer samples. We observed that not only the bacterial presence but also their
interbacterial connections had an influential role in immunomodulation. For example,
Stenotrophomonas, Xanthomonadaceae, and Ochrobactrum had equal abundance in
both precancer and cancer cases; still, their immunomodulatory role was visible only in
the case of the precancer group, where they were forming a network. This intermicrobial
network was absent in the case of the cancer group suggesting its prime role in cancer
initiation.

The present study gives us a comprehensive account of the microbial shift from the
precancer stage to late-stage cancer; however, it has some limitations. Although we
have employed precautions in the processing of the samples right from aseptic tumor
sample collection protocols to DNA extraction, followed by PCR quality control, we could
not rule out the contribution of contamination in our data from the tumor surface and
laboratory reagent/kits used in this study. To obtain accurate microbiome data from low
microbial biomass samples, such as tumor biopsy specimens, we recommend all future
studies to include standard sets of negative controls for the environment and sampling
associated contaminants as per the RIDE checklist (82) followed by analysis software for
data normalization (83). Another limitation of this study is the unavailability of healthy
subjects. As it was ethically not possible to include healthy subjects, we started our anal-
ysis with precancer samples; hence, the bacterial signature identified is specific to cancer
stages compared with that of precancer samples. As we were interested in identifying
the tumor-infiltrated bacteria and their effects on the intratumoral immune compartment,
we could not consider incorporating surface swabs from healthy controls. The next limita-
tion of our study is the restricted sample size; moreover, we have even fewer samples for
simultaneous intratumoral lymphocyte isolation due to the scarcity of mucosal samples to
be sufficient for all three analyses (microbiome analysis through 16S rRNA gene sequenc-
ing, cellular immunophenotyping, and gene expression). Finally, we had an unavailability
of longitudinal samples. In our cross-sectional sample sets, we tried to match the subjects
based on their age, sex, risk factor status, and ethnicity. Still, the oral microenvironment
might differ among subjects depending upon their disease management, social status,
and genetic makeup. A longitudinal sample set can overcome all these limitations and
faithfully capture the transition of tumoral bacterial dynamics from one stage to another.

Still, with all these limitations, to our knowledge, this instance is the first one where
a correlation between TILs and the oral bacterial population was studied. In conclusion,
the results of the current study reveal that the oral microbiota dynamics change with
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the progression of oral cancer, which affects intratumoral immune activation. Our find-
ings present convincing data where the intratumoral microenvironment selects bacte-
ria having a suppressive effect on the immune system. Our results provide evidence for
the use of upregulated Capnocytophaga and downregulated Streptococcus bacteria as
late-stage cancer biomarkers.

MATERIALS ANDMETHODS
Ethics statement. The study was approved by the Institutional Human Ethics Committee of Council

for Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research (IITR), Lucknow, India
(reference no. CSIR-IITR/IHEC/Nov/2016/1); King George’s Medical University (KGMU), Lucknow (refer-
ence code 80th ECMIIA/P14); and CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India (no.
IEC Jan 2020#3). Written informed consent was obtained from all participating individuals.

Patient cohort and sample collection. Samples were collected from the Department of Oral and
Maxillofacial Surgery and Surgical Oncology of King George’s Medical University (KGMU), Lucknow, India,
between February 2017 and July 2019 from patients with the clinical diagnosis of precancerous lesions and
oral squamous cell carcinoma (OSCC) by KGMU pathology. A total of 95 subjects were recruited for this study,
which included 11 healthy control subjects, 15 precancerous subjects, and 69 subjects at different stages of
disease pathogenesis (T1 to T4). Peripheral blood was collected from all the subjects. Tissue samples were col-
lected by surgical resection from both the cancerous lesions and adjoining normal areas (adjacent control)
from 69 patients. Precancerous lesion samples were collected from patients with leukoplakia, fibrosis, and
erythroplakia. None of the subjects were on any antibiotic treatment. The subject-specific information, includ-
ing gender, age, tumor anatomic location, and tumor, node, metastasis (TNM), is presented in Table 1. Before
the surgical removal of the tumor, patients were asked to rinse their mouth with saline water followed by
betadine. Sterile surgical instruments were used for tumor resection. Resected tumors were surface sterilized
by betadine before sampling. Tumor tissue (TT) specimens were obtained from the inner part of the tumor,
while adjacent normal tissue (AT) was collected from the negative margin of the tumor. All tissue samples
were collected in RPMI 1640 media and transported to the laboratory within 2 h of sample collection. All lab-
oratory procedures were performed aseptically in biosafety cabinets. One part of the tissue sample was
stored at280°C for sequencing, while another part was processed for immunological studies, subject to suffi-
cient amount of tissue availability. The specimens were processed for sequencing after confirmation of the
pathological status by the pathologist.

DNA extraction. Total DNA was extracted from 10 to 50 mg of precancerous, cancerous, and adja-
cent tissue using the DNeasy power soil kit (Qiagen, USA) according to the manufacturer’s protocol. The
quality and quantity of DNA were assessed using a NanoDrop 2000 instrument (Thermo Fisher Scientific,
USA).

Amplicon library preparation and 16S rRNA gene sequencing. Total DNA from 95 samples (15 pre-
cancer, 60 cancer, and 20 adjacent control samples) were further processed for amplicon-based sequencing
of the V3-V4 hypervariable region of the 16S rRNA gene. A universal barcoded primer set, namely, 341F
(CCTACGGGNBGCASCAG) and 758R (GACTACNVGGGTATCTAATCC) (84), was used for the amplification of the
V3-V4 hypervariable region of the gene. For each sample, 50 ng DNA was amplified with PCR amplification
conditions of 95°C for 30 s and then 35 cycles of (i) 95°C for 10 s, (ii) 56°C for 15 s, and (iii) 68°C for 30 s, fol-
lowed by a final extension at 68°C for 5 min. Amplified products were checked on a 2% agarose gel, and gel
purification was done using the GeneJET gel extraction kit (Thermo Fisher Scientific) to remove nonspecific
amplifications. The purified product was quantified using a Qubit 3.0 fluorometer (Life Technology, USA). A
NEBNext ultra DNA library preparation kit (New England BioLabs, USA) was used for library preparation from
5 ng of the amplified product. Later, the quantification and quality estimation of the library were done with a
2200 TapeStation instrument (Agilent Technologies, Santa Clara, CA). The prepared library was sequenced
with an Illumina HiSeq 2500 instrument (San Diego, CA). Sample preparation and sequencing were per-
formed at Agrigenome Labs Private Limited, Kerala, India.

Bioinformatics and statistical analysis of microbiome sequences. Demultiplexed FASTQ files for
the paired-end sequences of the 16S rRNA gene of each sample were merged using the Fastq-join module
of Quantitative Insights Into Microbial Ecology (QIIME) 1.9.1 (85) after trimming 10 bases from the 39 ends of
both read1 (R1) and read2 (R2) based on their FASTQC reports (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc). The merged sequences were subjected to the removal of sequencing primers, and an initial
quality control was done based on the following criteria: (i) average read length,$400 and#1,000 bp; (ii) av-
erage quality score, $25; (iii) a maximum number of ambiguous base (N), ,6; and (iv) a maximum number
of forward and reverse primer mismatches of 3. Chimeric sequences were removed from the quality-filtered
merged reads, and nonchimeric DNA sequences were clustered into operational taxonomic units (OTUs) with
97% sequence similarity among all the sequences in each OTU using USEARCH (86). The OTUs with only one
read were removed before analysis. Taxonomic assignment of the nonchimeric representative sequences
from each OTU was done by the UCLUST module of QIIME 1.9.1 based on the Greengenes (v13_8) 16S data-
base (87), and an OTU table (file consisting of reads for each sample along with taxonomic assignments for
each OTU) was generated. Community richness, evenness, and diversity (Chao and Shannon indices) (88)
were performed using QIIME 1.9.1 and plotted with GraphPad Prism (v8.4.2).

Beta diversity was estimated as Jaccard and Bray-Curtis indices (89) for community membership and
community structure, respectively, using QIIME scripts (90). Principal-coordinate analysis (PCoA) was per-
formed for weighted and unweighted Unifrac plots. The core microbiome was defined as those taxa
with a relative abundance of .1% in any group. A QIIME-based analysis of 16S rRNA gene data provides
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unambiguous classification to the genera level. Species-level classification was performed in this study,
with only those genera that have a relative abundance of $5% in any group, as reported previously
(91). The representative OTUs of the selected genera were aligned by the Bayesian lowest common
ancestor (BLCA) tool to the 16S microbial database of NCBI (92). Validation was done by aligning the rep-
resentative sequences to the NCBI 16S microbial database by BLASTn (93); a $80% confidence score in
BLCA and $95% sequence identity in BLAST were set as the criteria for species-level identification (91).
A comparative analysis of microbial taxa among different groups was performed by linear discriminant
analysis (LDA) method using linear discriminant analysis of effect size (LEfSe) (47).

Cell isolation from peripheral blood and tumor tissue. Peripheral blood was obtained from patients
before surgery and age-matched healthy control subjects in EDTA vials (BD Pharmingen). Peripheral blood
mononuclear cells (PBMCs) were purified using Ficoll-Paque PLUS medium (GE Healthcare Life Sciences) with
density gradient centrifugation.

Freshly resected tissue from the primary tumor was transported to the laboratory in RPMI 1640 me-
dium and processed within 2 h. The fresh tumor tissue was cut into small pieces and then manually
minced using a scalpel, and single-cell suspension was obtained by mechanical dissociation of tumor tis-
sue. Afterward, the cells were filtered twice through a 70-mm nylon cell strainer (BD). The filtered cell
suspension was diluted 1:1 with lymphocyte medium RPMI 1640, layered on Ficoll-Paque PLUS medium
(GE Healthcare Biosciences), and centrifuged at 400 � g for 25 min to obtain an enriched fraction of tu-
mor infiltrating lymphocytes (TILs).

Flow cytometry. At least 1� 106 cells from cell suspensions (PBMCs and TILs) were incubated with fluo-
rescently labeled primary monoclonal antibodies (see Table S5 in the supplemental material) diluted in fluo-
rescence-activated cell sorter (FACS) buffer (phosphate saline buffer [PBS] with 1% fetal bovine serum and
0.01% NaN3) for 30 min at 4°C followed by washing with PBS. Labeled cells were acquired on a BD FACS
Canto II flow cytometer (BD Biosciences). The data were analyzed using FlowJo v10 (FlowJo, LLC).

RT-qPCR analysis. The mRNA expression levels of T helper cell subset-associated genes, namely, T-
bet for TH1, GATA-3 for TH2, RORgT for TH17, FOXP3 for regulatory T cells (Tregs), and three cytokine genes
IL-10, IL-1b , and IFN-g , were determined by RT-qPCR. Total RNA was isolated from tumor tissue, and pre-
cancerous lesions stored in RNA later by using TRIzol reagent (Sigma-Aldrich). One microgram of total RNA
was reverse transcribed to prepare cDNA using the high-capacity cDNA reverse transcription kit (Applied
Biosystems, Foster City, CA). Real-time PCR was performed with SYBR green PCR master mix (Applied
Biosystems, Foster City, CA) in a 7500 fast real-time PCR system (Applied Biosystems) using the following
program: initial incubation at 50°C for 20 s, then 95°C for 10 min, and followed by 40 cycles of 95°C for 15s
and 60°C for 1 min. Respective primers for amplifying concerned genes and the reference gene (GAPDH)
are listed in Table S6 in the supplemental material. Relative mRNA expression for every sample was
quantified using the delta cycle threshold (CT) method, normalized to GAPDH mRNA of the same sample
as the reference. Thus, the relative gene expression was calculated as follows: relative gene expression =
2(CT target gene)2(CT reference gene).

Immunohistochemistry. Paraffin-embedded tissue sections (4mm) were fixed on silane-coated slides,
followed by deparaffinization in xylene for 15 min and rehydration in graded alcohol. Antigen retrieval
was done by incubating the slides in Tris-EDTA buffer and microwaving at 98°C for 15 min. They were
cooled at room temperature (RT) and washed twice with Tris-buffered saline (TBS) buffer. The slides were
then incubated with Dako Peroxidase blocking reagent for 5 min and subsequently stained with the fol-
lowing primary antibodies: CD3 (1:200; Dako, Hamburg, Germany) and CD20 (1:200; Dako) for 90 min at
room temperature. Slides were washed twice in TBS buffer and incubated with horseradish peroxidase
(HRP)-tagged secondary antibody for 30 min. The tissue sections were immersed in 3,39-diaminobenzidine
tetrahydrochloride (Dako) solution and then counterstained with hematoxylin. Finally, sections were dehy-
drated with graded alcohol, cleared with xylene, and mounted in DPX solution (Sigma).

Evaluation and scoring. All slides were first scanned under �200 magnification (10� eye piece,
20� objective) with a standard light microscope (Olympus CX33) to determine the tumoral boundaries.
Cell-rich peritumoral areas were selected and marked, and TILs were counted under �400 magnification
(10� eyepiece, 40� objective). Necrotic and degenerated areas were discarded. The percentage of posi-
tive cells was derived by counting the positively stained cells for an immune cell marker out of the total
number of cells in the peritumoral areas. Data are represented as the percentage of positive cells.

Statistical analysis. An intergroup comparison of intratumoral, systemic immune cell markers and sys-
temic cytokines was performed using GraphPad software 8.4 (La Jolla, CA). Two groups were compared
using a Mann-Whitney U nonparametric test, while multiple groups were compared using Kruskal-Wallis
analysis of variance (ANOVA) and Student’s t test. A Pearson’s correlation analysis was used to plot the corre-
lation between biological markers (FACS-based data as a percentage and relative gene expression data) and
the relative abundance of bacteria at the genus level. A P value of ,0.05 was considered significant, and
positive and negative correlation values were indicated. An association with Pearson’s coefficient (r) (.0.2)
and significant P value (P, 0.05) were represented with a heat map using GraphPad software 8.4.2.

Data availability. The sequencing data and corresponding metadata from this study have been de-
posited at the GenBank Sequence Read Archive with the accession number PRJNA813034.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
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