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ABSTRACT Petabases of environmental metagenomic data are publicly available, present-
ing an opportunity to characterize complex environments and discover novel lineages of
life. Metagenome coassembly, in which many metagenomic samples from an environment
are simultaneously analyzed to infer the underlying genomes’ sequences, is an essential
tool for achieving this goal. We applied MetaHipMer2, a distributed metagenome assembler
that runs on supercomputing clusters, to coassemble 3.4 terabases (Tbp) of metagenome
data from a tropical soil in the Luquillo Experimental Forest (LEF), Puerto Rico. The resulting
coassembly yielded 39 high-quality (.90% complete, ,5% contaminated, with predicted
23S, 16S, and 5S rRNA genes and $18 tRNAs) metagenome-assembled genomes (MAGs),
including two from the candidate phylum Eremiobacterota. Another 268 medium-quality
($50% complete, ,10% contaminated) MAGs were extracted, including the candidate
phyla Dependentiae, Dormibacterota, and Methylomirabilota. In total, 307 medium- or
higher-quality MAGs were assigned to 23 phyla, compared to 294 MAGs assigned to nine
phyla in the same samples individually assembled. The low-quality (,50% complete, ,10%
contaminated) MAGs from the coassembly revealed a 49% complete rare biosphere
microbe from the candidate phylum FCPU426 among other low-abundance microbes, an
81% complete fungal genome from the phylum Ascomycota, and 30 partial eukaryotic
MAGs with $10% completeness, possibly representing protist lineages. A total of 22,254
viruses, many of them low abundance, were identified. Estimation of metagenome cover-
age and diversity indicates that we may have characterized $87.5% of the sequence diver-
sity in this humid tropical soil and indicates the value of future terabase-scale sequencing
and coassembly of complex environments.

IMPORTANCE Petabases of reads are being produced by environmental metagenome
sequencing. An essential step in analyzing these data is metagenome assembly, the
computational reconstruction of genome sequences from microbial communities.
“Coassembly” of metagenomic sequence data, in which multiple samples are assembled
together, enables more complete detection of microbial genomes in an environment
than “multiassembly,” in which samples are assembled individually. To demonstrate the
potential for coassembling terabases of metagenome data to drive biological discovery,
we applied MetaHipMer2, a distributed metagenome assembler that runs on supercom-
puting clusters, to coassemble 3.4 Tbp of reads from a humid tropical soil environment.
The resulting coassembly, its functional annotation, and analysis are presented here.
The coassembly yielded more, and phylogenetically more diverse, microbial, eukaryotic,
and viral genomes than the multiassembly of the same data. Our resource may facilitate
the discovery of novel microbial biology in tropical soils and demonstrates the value of
terabase-scale metagenome sequencing.

KEYWORDS metagenomics, terabase, tropical soil, redox, rare biosphere

Editor Erik F. Y. Hom, University of Mississippi

Copyright © 2023 Riley et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Robert Riley,
rwriley@lbl.gov.

The authors declare no conflict of interest.

Received 12 January 2023
Accepted 24 May 2023
Published 13 June 2023

July/August 2023 Volume 11 Issue 4 10.1128/spectrum.00200-23 1

RESOURCE REPORT

https://orcid.org/0000-0003-0224-0975
https://orcid.org/0000-0002-8162-1276
https://orcid.org/0000-0002-4439-2398
https://orcid.org/0000-0002-5004-3362
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/spectrum.00200-23
https://crossmark.crossref.org/dialog/?doi=10.1128/spectrum.00200-23&domain=pdf&date_stamp=2023-6-13


Metagenomics projects are producing terabases (Tbp) of sequence data (1–3), with
some 2.5 petabases (Pbp) of metagenome data currently in the NCBI SRA data-

base. These data sets are an opportunity to better understand environments and bio-
geochemical processes, to probe the rare biosphere (low-abundance microbes [4–6]),
and to discover new lineages of life (7). However, using the existing wealth of metage-
nomic data sets to achieve these goals is difficult because the computational task of
reconstructing an environment’s underlying microbes from sequencing reads, known
as genome assembly (8), can be prohibitively computationally expensive for large data
sets (9). Because of this limitation, the data analysis workflows available to most
researchers rely on assembling metagenome samples one at a time, a process called
multiassembly, followed by the complicated process of removing redundancy resulting
from multiple samples of the same environment. Multiassembly is commonly used
because the de Bruijn graph-based assembly software’s (10) memory requirements
increase with sequence complexity and are exceeded at the terabase scale on single
compute nodes. Resource limitations on sequencing capacity may present researchers
with the choice of sequencing more samples at less depth, or fewer samples at more
depth. These tradeoffs may result in a shallower accounting of microbial communities’
full complexity, with incomplete, fragmented metagenome-assembled genomes
(MAGs); a bias toward the most abundant community members; and the absence of
rare biosphere MAGs.

Coassembling (simultaneous assembly of multiple samples) metagenome samples
from the same environment, possibly at the terabase scale, is a promising approach
(11), provided that the petabytes of memory potentially required by de Bruijn graph
assemblers can be accommodated. To this end, we previously developed MetaHipMer
(11), a metagenome assembler that runs distributed across hundreds or thousands of
compute nodes to coassemble terabases of metagenomic data, with assembly quality
comparable to the state-of-the-art assemblers metaSPAdes (12) and MEGAHIT (13).
That study (11) provided a proof of principle, illustrating that metagenome coassembly
yields more contiguous assemblies representing more of an environment’s underlying
genome sequences, with less redundancy, and no requirement for complicated dedu-
plication procedures, than multiassembly (while multiassembly remains useful due to,
in addition to its computational feasibility, better characterization of abundant genomes
with high strain variation).

In this paper, we present the coassembly, along with the resulting MAGs and functional
annotations, of 3.4 Tbp of metagenome sequence data derived from soil in the Luquillo
Experimental Forest (LEF) in Puerto Rico, a Long Term Ecological Research Network site (14).
Our goal is to demonstrate the potential wealth of biological discoveries that can be driven
by large-scale metagenomic sequencing and coassembly and to provide a resource of
MAGs and associated functional annotation for an environment in which terabases of
sequence are available. The coassembled data came from the Great Redox Experiment
(GRE) (15), a study focused on how redox oscillation frames the activities of microbial com-
munities in humid tropical soils. The experiment used replicate soil incubations under oscil-
lating oxic and anoxic conditions, along with 13C plant biomass amendments to perform sta-
ble isotope probing (SIP) experiments, resulting in 95 metagenome samples, which were
sequenced at the DOE Joint Genome Institute (proposal: Microbial Carbon Transformations
in Wet Tropical Soils: Effects of Redox Fluctuation https://doi.org/10.46936/10.25585/
60000880). A coassembly of this scale of data was only possible using MetaHipMer on a
supercomputing cluster, in this case the Oak Ridge National Laboratory’s Summit system
(16). Metagenome binning of the coassembly contigs resulted in MAGs from a broad array
of phyla, including some candidate groups, a substantial increase in the number of both
MAGs and phyla over the individual metagenome samples’ assemblies (referred to collec-
tively as the multiassembly). Low-abundance microbes and viruses absent in the multias-
sembly, and a mostly complete fungal genome and several unicellular eukaryotic MAGs,
were found in the coassembly. The coassembly, MAGs, and annotations, along with search
and analysis tools, are available in the IMG/MER Database (17).
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RESULTS AND DISCUSSION
Metagenome coassembly. A total of 3.4 terabase pairs (Tbp) of metagenome

sequence data were coassembled to yield 75 Gbp of sequence in 55 million scaffolds
(Table 1). Consistent with our previous finding (11) that coassembly results in improved
contiguity, the coassembly scaffold L50 value is .3 times greater, and the number of
scaffolds larger than 50 kbp is ;27-fold more, than in the multiassembly (combined
individual metaSPAdes [12] assemblies). The coassembly thus has substantially more of
the lengths of scaffolds interesting to biologists: those which may harbor genes, oper-
ons, and viruses and facilitate more accurate MAG extraction (18). Alignment of
22,666,691,390 reads to coassemble contigs of $500 bp resulted in 19,830,702,257
(87.5%) aligned reads (the median for individual assemblies of the GRE data was
51.2%). The length-weighted mean coverage of coassembly contigs was 40�. The
alignment statistics indicate that substantially more of the LEF’s underlying microbial
communities are being assembled in coasssembly than in multiassembly; nevertheless,
12.5% of the reads are not represented in the coassembly.

We used metaSPAdes rather than MetaHipMer for the individual assemblies because, first,
it is the standard Joint Genome Institute (JGI) metagenome assembler. Second, we could not
use metaSPAdes for the coassembly, because a regression model based on the memory
usage of previous metaSPAdes assemblies indicated that the 265 billion unique 31-mers in
the GRE data would require 4.5 TB of memory to coassemble, 3-fold more than the capacity
of the largest compute node we have access to. Coasssembling the GRE data with
metaSPAdes would also require potentially several weeks of run time, whereas MetaHipMer
completed the coassembly in about 1.5 h. We have previously extensively compared
metaSPAdes and MetaHipMer and found them to be comparable in resulting assembly qual-
ity (11). Moreover, the independent Critical Assessment of Metagenome Interpretation 2
(CAMI2) contest also found MetaHipMer to be at least as good as metaSPAdes in quality (18).

Annotation and MAG recovery. The ;55 million assembled contigs were annotated
and binned using the JGI metagenome workflow (19). In all, 112,151,078 genes were pre-
dicted, 99.4% of which are protein-coding genes (the remainder being RNA genes), with
nearly all having some predicted function (Table 2). Metagenome binning resulted in 1,321
MAGs, 307 of which were high or medium quality (39 high and 268 medium) (20), and 1,014
of which were of low quality (which, because they are not made available in the IMG/MER
Database, are provided in Table S1). The high- and medium-quality MAGs are made available
on IMG and are the default set of MAGs discussed in this paper unless otherwise noted. These
307 MAGs represented 23 distinct phyla, including candidate groups Dormibacterota (candi-
date division AD3), Eremiobacterota (candidate division WPS-2), Dependentiae (candidate divi-
sion TM6), and Methylomirabilota (candidate division NC10). With the exception of one me-
dium-qualityMethylomirabilotaMAG in the multiassembly, these candidate phyla were absent
from the 294 high- and medium-quality multiassembly MAGs, which in contrast, represented
nine phyla (Table 3). Of note, the two Eremiobacterota (21) MAGs were of high quality (both
.96% complete and,1% contaminated), indicating the potential of terabase-scale coassem-
bly to produce reference-quality genomes for unculturable microbes.

The RNA Pol-based phylogenetic tree in Fig. 1 provides an overview of the distribution
of MAGs derived from our MetaHipMer coassembly versus the metaSPAdes multiassembly.

TABLE 1 GRE coassembly summary statisticsa

Statistic Coassembly Multiassembly Individual assembly (median)
No. of scaffolds 55,342,847 279,810,992 2,893,912
Scaffold (bp) 74,970,251,022 146,314,652,061 1,479,843,562
Scaffold N50 9,058,474 70,618,834 734,629
Scaffold L50 (bp) 1,656 526 517
Longest scaffold (bp) 1,464,928 1,406,223 80,051
No. of scaffolds.50 Kbp 26,818 1,000 3
Assembled sequence in scaffolds.50 Kbp (%) 3.25 0.05 0.015
Avg GC (%) 64.1 65.0 65.3
aStatistics from 95 individual assemblies (collectively referred to as the multiassembly) of the same data are shown for comparison.
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Consistent with our finding of a broader array of phyla captured in the coassembly MAGs
(Table 3), the phylogenetic diversity (PD) of coassembly MAGs was also far greater than
that of the multiassembly MAGs (PD, 17.5 for the coassembly MAGs; PD, 3.4 for the multias-
sembly MAGs). Mash 0.05 clustering (22) of the 307 coassembly MAGs did not reveal any
species-level redundancy, whereas clustering of the multiassembly MAGs reduced the spe-
cies-level operational taxonomic unit (OTU) count to 38, indicating that the same commu-
nity members were likely being assembled across samples (indicated by OTU abundance
in Fig. 1). Of these 38 species-level OTUs from the multiassembly, 9 were found in the coas-
sembly MAGs (using Mash 0.05 clustering), 298 clustered OTUs remained unique to the
coassembly, and 29 OTUs were uniquely found in the multiassembly MAGs. The finding of
some MAGs unique to the multiassembly is an expected result, as we previously found (11)
that multiassembly better captures abundant, high-strain-variation genomes, while coas-
sembly better captures low-abundance, rare genomes. At the phylum level, however, the
coassembly MAGs contain more than twice as many taxa, and no taxa were uniquely
found in the multiassembly MAGs.

Rare biosphere. We hypothesized that low-abundance rare biosphere microbes (4)
might be present in the low-quality MAGs (completion,,50%; contamination,,10%) and
might have low completeness due to low coverage in the data. Among the low-quality
MAGs, we noticed a bin trivially lower than the medium-quality (MQ) completeness cutoff
(49.1% completeness, 0.0% contamination) assigned to the candidate phylum FCPU426.
FCPU426 has been detected in a 16S rRNA gene amplicon survey (23) and a function-
driven single-cell genomics analysis (24) of different hot springs. Both studies estimated
FCPU426’s abundance in its environment to be,1% of total microbial community compo-
sition. Here, the FCPU426 bin was covered at 23� in the coassembly. None of the 95 sam-
ples contributed more than ;1� coverage to the FCPU426 bin, indicating that this
microbe would have been impossible to assemble using a multiassembly approach, as
optimal microbial genome assembly typically requires .20� coverage (25). The NCBI tax-
onomy database currently has eight nucleotide sequences belonging to FCPU426, suggest-
ing that, in addition to being low abundance in its environment, this candidate phylum is
also poorly represented in genomic repositories.

Two low-quality bins with contamination slightly higher than the MQ cutoff were

TABLE 2 Summary statistics on the functional annotation of coassembly contigs

Type of gene No. Percent of total
All genes 112,151,078
RNA genes 655,297 0.58
rRNA genes 26,420 0.02
5S rRNA 5,637 0.01
16S rRNA 8,150 0.01
18S rRNA 468 0.00
23S rRNA 11,438 0.01
28S rRNA 727 0.00
tRNA genes 628,877 0.56
Protein-coding genes 111,495,781 99.42
With product name 57,522,550 51.29
With COG 53,798,710 47.97
With Pfam 57,522,915 51.29
With TIGRfam 11,086,716 9.89
With SMART 11,999,050 10.70
With SUPERFam 55,768,333 49.73
With CATH FunFam 41,525,148 37.03
With KO 30,524,203 27.22
With enzyme 17,696,960 15.78
With MetaCyc 11,000,722 9.81
With KEGG 17,363,888 15.48
COG clusters 4,617 99.70
Pfam clusters 11,088 57.81
TIGRfam clusters 3,895 86.79
CRISPR count 31,334
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assigned to the genus Labilithrix (90.5% completeness, 10.32% contamination) and order
UTPRO1 of the uncultured phylum Binatota (candidate division UBP10, 65.96% complete-
ness, 10.53% contamination), covered at 19� and 55�, respectively. Labilithrix is a myxobac-
terium genus of the phylum Myxococcota, isolated from forest soil (26). Labilithrix is typically
considered rare and it is of particular interest for secondary metabolite production capabil-
ities along with other Myxococcota (27, 28). Myxobacteria grow as saprophytes on decaying
organic matter, but under nutrient-limiting conditions, these bacteria form a cooperative
multicellular swarm that becomes predatory (29). Given the supply of plant litter as a carbon
source in these samples, it is reasonable to assume this Labilithrix organism was growing in
its single cellular saprophyte low-density state; hence its low coverage. Binatota, on the
other hand, is largely undescribed. Binatota genomes recovered from metagenome assem-
blies appear capable of aerobic methylotrophy, alkane degradation, and pigment produc-
tion, but these have not yet been confirmed (30, 31). None of the 95 samples contributed
more than 1� coverage to either of these bins, which again indicates the usefulness of coas-
sembly for rare biosphere discovery.

In this data set, numerous LQ bins nearing the MQ completeness and contamina-
tion cutoffs have only phylum-level taxonomic assignment. For some of these unre-
solved bins, sequencing reads mapped from the 95 samples point to increased abun-
dance specific to one of the redox treatment growth conditions relative to the others,
including the carbon isotope supplied. Increased abundance under specific growth
conditions could yield clues about the ecological niches these potentially novel taxa
occupy that would have been missed with a multiassembly approach.

High- and medium-quality MAGs are often prioritized by biologists, but lower-qual-
ity MAGs, or even unbinned contigs, can enable insight into rare biosphere microbes.
In the absence of targeted enrichment techniques (24), exhaustive sequencing may be
required for sufficient coverage to resolve MAGs for the rarest microbes in an

TABLE 3 Summary of coassembly MAGs, multiassembly MAGs, and species-level clusters
(Mash distance of#0.05) per phyluma

Phylum
Coassembly
MAGs (n)

Multiassembly
MAGs (n)

Species-level
clusters (n)

Acidobacteriota 59 71 64
Actinobacteriota 37 22 39
Bacteroidota 13 7 13
Bdellovibrionota 2 2
Chloroflexota 7 7
Cyanobacteria 1 1
Dependentiae 1 1
Desulfobacterota 1 1
Desulfobacterota_B 6 6
Dormibacterota 3 3
Eisenbacteria 2 25 4
Eremiobacterota 2 2
Fibrobacterota 1 1
Gemmatimonadota 1 1
Methylomirabilota 2 1 3
Myxococcota 29 15 32
Myxococcota_A 2 32 3
Patescibacteria 5 5
Planctomycetota 42 42
Proteobacteria 79 111 93
Spirochaetota 1 1
Verrucomicrobiota 7 10 8
Verrucomicrobiota_A 4 4
Total MAGs 307 294 -
Distinct phyla 23 9 -
aNotice that while the coassembly and multiassembly have similar total numbers of MAGs, the coassembly
covers more than twice as many phyla and that species-level clustering of the coassembly and multiassembly
MAGs combined reveals the considerable redundancy in the multiassembly (e.g., in the phyla Eisenbacteria and
Myxococcota_A). Notice also that for a few phyla (e.g., Acidobacteriota and Proteobacteria) the multiassembly
captures some species-level diversity that the coassembly does not. -, not applicable
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environment, which are often at ,1% of total abundance. Our findings demonstrate
the utility of massive metagenome sequencing and coassembly of the resulting data
sets and suggest the possibility of coassembling agglomerated publicly available data
sets (1, 3) for the discovery of rare biosphere microbes.

Eukaryotic MAGs.We hypothesized that other low-quality MAGs, or MAGs that do not
even meet the MIMAG (20) standard for low quality due to high contamination, might be of
eukaryotic origin. To test this hypothesis, we ran EukCC (32) to assign a eukaryotic origin to
the low-quality MAGs. Applying the MIMAG (20) standards for medium- or higher-quality
(completion, $50%; contamination, ,10%), we identified one MAG at 81.2% completeness
and 0.75% contamination, apparently belonging to the fungal class Sordariomycetes. The
Sordariomycetes include the model fungus Neurospora crassa (33), important plant patho-
gens (34), and numerous endophytes (35). BUSCO (36) analysis, which estimates genome
completeness based on the presence or absence of conserved single-copy orthologs, esti-
mated the apparent fungal MAG to be 77.5% and 74.7% complete with respect to the fun-
gal and Sordariomycetes lineages, respectively, roughly consistent with the EukCC com-
pleteness estimate. BLAST searches against reference databases indicated that this fungus is
likely in the Coniochaeta clade (37), which includes fungal species found in decaying wood,

FIG 1 Phylogenetic overview of the MAG set (coassembly and multiassembly MAGs combined and dereplicated at 0.05 Mash pairwise distance, or
approximately species level) from the Great Redox Experiment (GRE), a study of a humid tropical soil incubated under multiple redox conditions and
amended with plant biomass. MAGs derived from either the multiassembly or coassembly are denoted by the red circles and blue stars, respectively. The
phylogeny, consisting of MAGs and a reference set of genomes containing roughly genus- to family-level representatives spanning both bacterial and
archaeal domains, was constructed by extracting, aligning, and concatenating the alignments of a set of three RNA polymerase subunit genes. Bubble sizes
refer to the number of multiassembly MAGs within each Mash 0.05 cluster, noted by “OTU abundance” in the legend, and indicate community members
assembled across multiple samples. All 307 coassembly MAGs were distinct species-level OTUs, whereas the 294 multiassembly MAGs contained 38 species-
level OTUs. Phylum-level annotations are shown using GTDB-Tk taxon strings.

Terabase-Scale Coassembly of a Soil Microbiome Microbiology Spectrum

July/August 2023 Volume 11 Issue 4 10.1128/spectrum.00200-23 6

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.00200-23


leaf litter, and soil and likely represents a fungus occupying a saprotrophic role in the LEF
soils. The fungal MAG’s coverage was 13� across all 95 samples, with no individual sample
contributing more than 4� coverage; thus, it is unlikely this fungus could have been
assembled using a multiassembly approach.

At lower completeness levels (10 to 50%), 30 additional partial eukaryotic MAGs were
found, including multiple MAGs from the protist orders Tintinnida (5 MAGs), Diplonemea
(5 MAGs), Diplomonadida (4 MAGs), and Hymenostomatida (2 MAGs). These may represent
starting points for more detailed analyses of unicellular eukaryotes in LEF soils.

Viruses. To detect viral genomes in the GRE coassembly, assembled contigs were proc-
essed with a novel bioinformatic pipeline, geNomad (38). A total of 22,254 viral sequences
were identified, of which 239 (1.1%) were found to represent high-quality genomes (esti-
mated completeness, $90%) and 470 (2.1%) corresponded to medium-quality genomes
(estimated completeness, 50 to 90%). Cross-referencing the identified viruses with medium-
and high-quality MAGs revealed 44 proviruses integrated into 35 different genomes, mostly
assigned to Proteobacteria (17 MAGs), Planctomycetota (8 MAGs), and Acidobacteriota (4
MAGs). Clustering of coassembly viruses together with similarly detected multiassembly
viruses resulted in 25,355 species-level virus taxonomic units (vOTUs); 85.6% of these were
unique to the coassembly, 12.3% were unique to the multiassembly, and the remaining
2.1% were shared. When clustering at the genus or family levels, the proportion of vOTUs
unique to the coassembly remained roughly the same, while the proportion of vOTUs
unique to the multiassembly shrank (4.2% genus level and 3.2% family level). These results
indicate that, while multiassembly still captures some potentially valuable species-level
metagenomic diversity, coassembly captures substantially more viral contigs from a broader
phylogenetic distribution. Moreover, the read coverage of viruses unique to the coassembly
was substantially lower than in those viruses found in both the coassembly and multiassem-
bly, indicating, as with microbial MAGs, that the GRE coassembly may contain potentially
rare, low-abundance viruses.

Sequencing coverage and diversity. To assess how thoroughly 3.4 Tbp of sequenc-
ing covers the LEF microbial communities, we applied Nonpareil (39) to the 95 GRE metage-
nomes. The fraction of a metagenomic community covered by a sequencing effort may bias
the results due to insufficient coverage of less abundant microbes, resulting in fragmented,
incomplete assemblies; thus, an assessment of the coverage of a sequencing effort given di-
versity in the community is useful. Nonpareil samples reads and analyzes the redundancy of
k-mers to estimate coverage and predict the amount of sequencing effort required to
achieve.95% of the diversity in an environment. The median diversity index, Nd, computed
by Nonpareil for the GRE data sets was 22.8, consistent with soil samples analyzed in refer-
ence 39. As expected, the bulk samples, which are not biased by stable isotope probing
(SIP) fractionating, have a higher Nd (median, 23.1) than the SIP fractions (median, 22.7).
Nonpareil’s estimate of the projected sequencing to cover 95% of the sequence diversity
(median of 1.25 Tbp based on the bulk samples) is exceeded by the 3.4 Tbp we have from
the GRE. Allowing for bias that may have been introduced by the redox and SIP experi-
ments, the GRE metagenomes may cover the majority of the microbial diversity in the LEF.

The implication that 3.4 Tbp of sequencing is possibly enough to cover 95% of the
diversity in LEF soils is tempered by our finding that 87.5% of the reads mapped to
contigs, leaving 12.5% of the reads unaccounted for. The JGI assembly release process
excludes all scaffolds of ,500 bp, and it is possible that a substantial fraction of the
unmapped reads would map to these excluded contigs. It could also be that some rare
biosphere microbes in the LEF are at such low abundance that 3.4 Tbp of sequencing
still does not provide sufficient coverage to assemble them.

Conclusions. In summary, we present the coassembly, MAGs, and functional annota-
tions of 3.4 Tbp of tropical soil metagenome data. We suggest that terabase-scale metage-
nome coassembly captures substantially more high-quality MAGs from a broader array of
phyla than multiassembly of the same samples and is a useful tool for characterizing an
environment’s full taxonomic diversity, including eukaryotic organisms and rare, low-abun-
dance microbes and viruses. Multiassembly remains a valuable approach as, in addition to
its computational feasibility, it may recover more species- and strain-level variation than
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coassembly. Thus, coassembly and multiassembly are complementary strategies for meta-
genome analysis, and we suggest that the optimal results can be achieved when both can
be performed. As sequencing of environments goes deeper and bioinformatics methods
improve, we may enter the era of the reference metagenome, in which high-quality MAGs
may be assembled for the majority of a microbial community, and provide broad utility for
the interpretation of experiments such as the GRE.

MATERIALS ANDMETHODS
Sample collection. Several kilos of soil was collected from the Luquillo Experimental Forest soil, homoge-

nized, and incubated as described in reference 15. Briefly, we collected surface soil from a mid-ridge position
in the LEF near the El Verde Field Station and then conducted a well-replicated resolution redox oscillation
study in the laboratory at Lawrence Livermore National Laboratory (LLNL), the Great Redox Experiment (GRE).
These soils are pH 5 clay-rich volcanoclastic oxisols overlain by a tabunuco forest and receive 2,000 to
6,000 mm in annual rainfall. In 178 microcosms, soils were amended with 13C-labeled or unlabeled (12C) plant
litter and incubated for 44 days under four treatments: (i) static anoxic, (ii) static oxic, (iii) flux 4-day (4 days
anoxic, 4 days oxic), and (iv) flux 8-day (4 days anoxic, 8 days oxic). DNA was extracted from replicate micro-
cosms harvested at 44 days using a modified Griffith’s protocol (40). DNA was then density fractionated on the
LLNL HT-SIP pipeline (41). A total of 10 unfractionated bulk samples (2 replicates from each redox treatment
and 2 time-zero original samples) and 86 stable isotope probing density fractions (2 samples per treatment/iso-
tope, and the 5 to 6 heaviest fractions per sample) were submitted to the JGI for metagenomic sequencing.
One sample failed during library prep and was abandoned.

Genome sequencing. Libraries were generated using either using the Kapa Biosystems library prepara-
tion kit (Roche) or the Nextera XT kit (Illumina), depending on available mass. For the Kapa Biosystems libra-
ries, 200 ng of DNA was sheared to approximately 500 bp using an LE220 focused-ultrasonicator (Covaris).
The sheared DNA fragments were size selected by double-solid phase reversible immobilization (SPRI), and
then the selected fragments were end-repaired, A-tailed, and ligated with Illumina-compatible sequencing
adaptors from IDT containing a unique molecular index barcode for each sample library. For the Nextera XT
libraries, 2 ng of DNA was fragmented and adapter ligated. The ligated DNA fragments were enriched with 9
to 12 cycles of PCR and purified using SPRI beads (Beckman Coulter or Omega Bio-tek). Quantitative PCR
(qPCR) was used to determine the concentration of the libraries using a LightCycler 480 real-time PCR instru-
ment (Roche). Sequencing of the flow cell was performed on the NovaSeq (Illumina) sequencer using
NovaSeq XP V1 reagent kits, S4 flow cell, following a 2� 151-indexed run recipe.

Metagenome assembly. For the individual metaSPAdes assemblies, paired-end Illumina reads were
trimmed and screened according to the documentation for BBTools (42) filtered reads and were read
corrected using BFC (43) version r181 (bfc -1 -s 10g -k 21 -t 10). Reads with no mate pair were removed.
The resulting reads were then assembled using metaSPAdes version 3.12.0 (12) using a range of kmers
(spades.py -m 2000 –only-assembler -k 33,55,77,99,127 –meta -t 32 -1 -2). The entire filtered read set
was mapped to the final assembly, and coverage information was generated using BBMap version 38.22
using default parameters except for “ambiguous=random.”

To generate the coassembly, 95 FASTQ files totaling 7.74 TB of filtered reads, representing 3.40 Tbp of
sequence and 265 billion unique 31-mers, were coassembled with MetaHipMer2 (11) version 2.0.1.v2.0.0-
110-gb87d7c1-Issue69 (mhm2.py -v –post-asm-align –post-asm-abd –checkpoint=yes –checkpoint-mer-
ged=no –pin=none –ranks-per-gpu = 7) on 512 nodes on the Oak Ridge National Laboratory (ORNL)
Summit supercomputer, taking approximately 1 h 24 m. Following assembly, contigs smaller than 500 bp
were removed. Alignment coverage information was computed internally in MetaHipMer2 using a method
similar to merAligner (44) during postassembly processing. Alignments for binning and annotation purposes
were computed with BBTools (42) version 38.90 (bbmap.sh nodisk=true interleaved=true ambiguous=ran-
dom mappedonly=t trimreaddescriptions=t usemodulo=t fast=t). Coverage information was determined
using BBTools version 38.79 (pileup.sh) and default parameters on the combined read set, and again for
each of the 95 individual read sets. Bin- or contig-wise coverage information reported in this paper was
taken from the Avg_fold field output by pileup.sh.

Annotation. Feature prediction and functional annotation of the assembled contigs were performed
with version 5.0.24 of the IMG Annotation Pipeline (available for data set submission at https://img.jgi
.doe.gov/submit). CRISPR elements were predicted via an in-house modified version of CRT-CLI version
1.2 (45) using the following search criteria: an element needs to have at least three repeats, search win-
dow size is set to 7 bp, minimum and maximum spacer length is set to 20 and 60 bp, respectively, and
minimum and maximum repeat lengths are set to 20 and 50 bp, respectively. rRNA genes (5S, 16S, 23S),
RNA regulatory features, and noncoding RNA genes were identified by comparing the contigs against
the Rfam version 13.0 database (46) via cmsearch from the Infernal version 1.1.3 package (47) using the
trusted cutoffs parameter (–cut_tc). Prediction of tRNAs was performed using the “bacterial” and “arch-
aeal” search modes (-B/-A) of tRNAscan-SE version 2.0.8 (48). A combination of GeneMarkS-2 version
1.05 (49) (–Meta mgm_11.mod –incomplete_at_gaps 30) and Prodigal version 2.6.3 (50) (-p meta -m)
was used to predict protein-coding genes.

Thereafter, the protein-coding genes were associated with functional annotations. KEGG Orthology
(KO) terms and Enzyme Commission (EC) numbers were derived by running lastal 1066 from the LAST
package (51) with default parameters against a reference database of isolate proteomes (IMG-NR
20190607). Comparison of the protein sequences against the remaining databases was performed with
the HMMER version 3.1b2 (52) package, and specifically, via a thread-optimized version of hmmsearch
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(53). Assignments to version 15.0 of the TIGRFAM database (54), the frozen set of version 4.2.0 of the
CATH-FunFam database (55), version 1.75 of the SUPERFAMILY database (56), version 01_06_2016 of the
SMART database (57), and the updated 2014 COG models (58) were derived using a per-domain E value
cutoff of 0.01 (–domE 0.01), whereas for Pfam-A assignments, the proteins were compared to version 30
of the Pfam database (59) using model-specific trusted cutoffs (–cut_tc).

Based on the name of their associated protein family, protein product names were then assigned in
the order of priority: KO term . TIGRFAM . COG . Pfam. If none of the mentioned annotations were
assigned, proteins were annotated as “hypothetical protein.”

Overlap resolution, filtering, and postprocessing of the various steps were executed as detailed in
reference 19.

Binning and MAG extraction. MetaBAT version 2:2.15 (60) was used to generate the depths from
the per-sample alignment files (jgi_summarize_bam_contig_depths –outputDepth) and generate the
bins (metabat2 -m 3000 –minS 80 –maxEdges 500 –seed 1000), completeness and contamination were
assessed with CheckM version 1.1.3 (checkm lineage_wf -x fa) (61), and taxonomy was assigned using
GTDB-Tk version 1.3.0 and GTDB database release 95 (gtdbtk classify_wf –extension fa) (62). Bins were
assigned as high, medium, or low quality based on the MiMAG standards (20). The multiassembly MAGs
were generated by applying the same procedure to each of the individual added metaSPAdes assem-
blies, using each assembly’s read alignment file to generate the depths for MetaBAT. The 294 medium-
and high-quality multiassembly MAGs are provided in Table S2.

Construction of a concatenatedmarker gene phylogeny. A three-subunit RNA polymerase (COG00085,
COG00086, and COG0202) concatenated marker gene tree was constructed by combining a set of reference
genomes spanning the bacterial and archaeal domains together with the GRE query genomes, i.e., the GRE
coassembly and multiassembly MAGs. The set of reference genomes was collected by clustering the full set
of public Integrated Microbial Genomes (IMG) isolate genomes using Cd-hit (63) version 4.8.1 to cluster the
RNA polymerase gene (rpoB) at 80%, producing a set of references that was roughly unique at the genus to
family taxonomic level. The GRE MAGs were dereplicated by grouping MAGs into species-level groups using
a Mash (22) version 2.0 cutoff distance of 0.05, followed by clustering with mcl (64) version 14-137 with an
inflation parameter of 1.5. The dereplicated set of MAGs and the reduced set of archaeal and bacterial refer-
ence genomes were passed through the SGTree version 0.0.10 pipeline (65). Briefly, this pipeline extracts the
set of three marker genes from the set of query and reference genomes using hmmsearch version 3.1b2 (52),
performs alignments of each marker with MAFFT (66) version v7.490 (2021/Oct/30) using the mafft-linsi
option, trims alignments with trimAl version 1.4 (67), and removes sites when more than 90% of taxa contain
a gap. The presence of all 3 subunits was required for a reference and/or query genome to be included into
the tree; thus, due to various levels of MAG completeness, not all MAGs are included in Fig. 1. Finally, individ-
ual protein alignments were concatenated, followed by maximum likelihood tree construction with IQ-TREE
(68) multicore version 1.6.1 using the WAG substitution model with 1,000 bootstraps. Trees were visualized
with ggtree (69) version ggtree_3.2.1, and Faith’s phylogenetic diversity (PD, the sum of all branch lengths
separating taxa in a community) was computed using the R Picante package (70) version picante_1.8.2.
Phylum-level taxonomic designations were assigned using GTDB-Tk (62).

Rare biosphere microbes. Taxonomic assignment of low-quality MAGs was performed with GTDB-
Tk version 1.5.1 (gtdbtk classify_wf –extension fa) (62). Completeness and contamination metrics were
calculated with CheckM during the binning procedure detailed above. Bin contig coverage information
was calculated with BBTools as described above in the metagenome assembly details. Coassembly and
multiassembly coverage of rare biosphere bins as a whole were calculated as contig length-weighted
means of Avg_fold values for each contig.

Eukaryotic MAGs. To detect possible eukaryotic MAGs, EukCC version 2.1.2 (32) (eukcc folder –threads
32 –suffix fa) was run on the nucleotide sequences of the low-quality bins (completion, ,50%; contamina-
tion,,10%) using the database downloaded from http://ftp.ebi.ac.uk/pub/databases/metagenomics/eukcc/.

The fungal MAG’s completeness was estimated using BUSCO version 5.4.3 (36) (busco -m genome -c
32 -q -f) and the fungi_odb10 database and was inferred to be in the Coniochaeta clade based on BLAST
searches against the MycoCosm (71) and NCBI nonredundant (nr) (72) databases.

Virus identification and clustering. To identify and taxonomically classify viral genomes in the mul-
tiassembly and coassembly, contigs with at least 3,000 bp were processed with geNomad version 1.1.0
(available at https://github.com/apcamargo/genomad) (38). Composition-based score calibration was
employed to set the false-discovery rate to 5% (–enable-score-calibration –max-fdr 0.05), and the pres-
ence of at least one virus hallmark was required (–min-virus-hallmarks 1). Genome completeness was
estimated using CheckV version 1.0.1 (database version 1.4) (73).

To cluster the viral genomes identified across all the assemblies into viral taxonomic units (vOTUs), we
first performed an all-versus-all BLAST (74) search (version 2.13.01, parameters: -task megablast -evalue
1e-5 -max_target_seqs 20000) to align pairs of similar sequences. Next, the average nucleotide identity
(ANI) and the aligned fraction (AF) of each pair were computed from the alignments, and a graph was con-
structed by connecting viral contigs with an ANI of$95% and AF of$85% (75). Last, sequences were clus-
tered into vOTUs using the Leiden algorithm (76) (from the igraph Python library, version 0.9.10, resolution
parameter = 1.0). The code used for vOTU-level clustering can be found at https://github.com/apcamargo/
bioinformatics-snakemake-pipelines/tree/main/genome-ani-leiden-clustering-pipeline. Genomes were also
clustered at the genus and family levels using pairwise average amino acid identities (AAI) computed from
the output of an all-versus-all DIAMOND (version 2.0.15.153) search, as described previously (77). Scripts
used for AAI-based clustering can be found at https://github.com/snayfach/MGV/tree/master/aai_cluster.

Metagenome coverage and diversity. To estimate metagenome coverage and diversity, we used
Nonpareil3 version 3.3.03 (39) (nonpareil -T kmer -f fastq -t 32 -R 110000). FASTQ files were pooled into
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23 groups according to the SIP/bulk experiment (Table S3) and split by read pair using BBTools version
38.75 (reformat.sh int=t). Because Nonpareil analyzes only one member of each paired read, and
because ours is a paired-read data set, we take the computed LRstar of 1.25 Tbp to obtain our estimate
of how much sequencing would be required to cover 95% of the diversity in the LEF.

Data availability. The GRE coassembly, high- and medium-quality MAGs, and annotations are available
in the IMG/MER Database under the taxon object ID 3300047160. The corresponding data for the 95 individual
metagenomes that were individually assembled for this work can be found by following the related sample
links from the microbiome details page. The metadata for these samples can be found in the GOLD database
(https://gold.jgi.doe.gov/) under the analysis project identifier Ga0500728. Raw reads can be found in the NCBI
SRA database using the accession numbers provided in Table S4.

SUPPLEMENTAL MATERIAL
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