Table 4.
Classification results of the training set (cross-validation approach) and test set with new unseen data.
Classifier | Training set (cross-validation approach) | Test set (new unseen data) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc. | BAcc | Sens. | Spec. | Prec. | F1 | #F | Acc. | BAcc | Sens. | Spec. | Prec. | F1 | |
Random Forests | 0.78 (0.02) | 0.74 (0.03) | 0.64 (0.09) | 0.84 (0.05) | 0.66 (0.06) | 0.65 (0.05) | 2(N), 1(C) | 0.75 | 0.71 | 0.58 | 0.83 | 0.62 | 0.60 |
Extra Trees | 0.76 (0.04) | 0.72 (0.03) | 0.61 (0.07) | 0.83 (0.08) | 0.66 (0.10) | 0.63 (0.04) | 3(N), 1(C) | 0.74 | 0.70 | 0.59 | 0.81 | 0.61 | 0.59 |
AdaBoost | 0.73 (0.06) | 0.69 (0.05) | 0.50 (0.06) | 0.88 (0.05) | 0.68 (0.09) | 0.57 (0.06) | 3(N), 1(C) | 0.73 | 0.64 | 0.48 | 0.85 | 0.60 | 0.54 |
Gradient Boosting | 0.76 (0.04) | 0.71 (0.05) | 0.59 (0.11) | 0.84 (0.04) | 0.63 (0.04) | 0.60 (0.07) | 3(N), 1(C) | 0.72 | 0.64 | 0.41 | 0.87 | 0.60 | 0.49 |
XGBoost | 0.77 (0.04) | 0.73 (0.05) | 0.65 (0.11) | 0.82 (0.07) | 0.65 (0.09) | 0.64 (0.06) | 3(N), 2(C) | 0.74 | 0.69 | 0.55 | 0.83 | 0.61 | 0.58 |
Acc, accuracy; Bacc, balanced accuracy; Sens, sensitivity; Spec, specificity; Prec, precision; F1, F1-score; #F, number of features; N, numerical; C, categorical. The results indicates mean and standard deviation in parenthesis.