Skip to main content
. 2023 Aug 1;10:1219586. doi: 10.3389/fcvm.2023.1219586

Table 4.

Classification results of the training set (cross-validation approach) and test set with new unseen data.

Classifier Training set (cross-validation approach) Test set (new unseen data)
Acc. BAcc Sens. Spec. Prec. F1 #F Acc. BAcc Sens. Spec. Prec. F1
Random Forests 0.78 (0.02) 0.74 (0.03) 0.64 (0.09) 0.84 (0.05) 0.66 (0.06) 0.65 (0.05) 2(N), 1(C) 0.75 0.71 0.58 0.83 0.62 0.60
Extra Trees 0.76 (0.04) 0.72 (0.03) 0.61 (0.07) 0.83 (0.08) 0.66 (0.10) 0.63 (0.04) 3(N), 1(C) 0.74 0.70 0.59 0.81 0.61 0.59
AdaBoost 0.73 (0.06) 0.69 (0.05) 0.50 (0.06) 0.88 (0.05) 0.68 (0.09) 0.57 (0.06) 3(N), 1(C) 0.73 0.64 0.48 0.85 0.60 0.54
Gradient Boosting 0.76 (0.04) 0.71 (0.05) 0.59 (0.11) 0.84 (0.04) 0.63 (0.04) 0.60 (0.07) 3(N), 1(C) 0.72 0.64 0.41 0.87 0.60 0.49
XGBoost 0.77 (0.04) 0.73 (0.05) 0.65 (0.11) 0.82 (0.07) 0.65 (0.09) 0.64 (0.06) 3(N), 2(C) 0.74 0.69 0.55 0.83 0.61 0.58

Acc, accuracy; Bacc, balanced accuracy; Sens, sensitivity; Spec, specificity; Prec, precision; F1, F1-score; #F, number of features; N, numerical; C, categorical. The results indicates mean and standard deviation in parenthesis.