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ORIGINAL ARTICLE

Network Preservation Analysis Reveals 
Dysregulated Metabolic Pathways in Human 
Vascular Smooth Muscle Cell Phenotypic 
Switching
R. Noah Perry , BS; Diana Albarracin, BS; Redouane Aherrahrou , PhD; Mete Civelek , PhD

BACKGROUND: Vascular smooth muscle cells are key players involved in atherosclerosis, the underlying cause of coronary 
artery disease. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their 
phenotypic changes. An in-depth characterization of their gene regulatory networks can help better understand how their 
dysfunction may impact disease progression.

METHODS: We conducted a gene expression network preservation analysis in aortic smooth muscle cells isolated from 151 
multiethnic heart transplant donors cultured under quiescent or proliferative conditions.

RESULTS: We identified 86 groups of coexpressed genes (modules) across the 2 conditions and focused on the 18 modules 
that are least preserved between the phenotypic conditions. Three of these modules were significantly enriched for genes 
belonging to proliferation, migration, cell adhesion, and cell differentiation pathways, characteristic of phenotypically modulated 
proliferative vascular smooth muscle cells. The majority of the modules, however, were enriched for metabolic pathways 
consisting of both nitrogen-related and glycolysis-related processes. Therefore, we explored correlations between nitrogen 
metabolism-related genes and coronary artery disease–associated genes and found significant correlations, suggesting the 
involvement of the nitrogen metabolism pathway in coronary artery disease pathogenesis. We also created gene regulatory 
networks enriched for genes in glycolysis and predicted key regulatory genes driving glycolysis dysregulation.

CONCLUSIONS: Our work suggests that dysregulation of vascular smooth muscle cell metabolism participates in phenotypic 
transitioning, which may contribute to disease progression, and suggests that AMT (aminomethyltransferase) and MPI 
(mannose phosphate isomerase) may play an important role in regulating nitrogen and glycolysis-related metabolism in 
smooth muscle cells.
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Coronary artery disease (CAD) is the leading cause 
of death in the United States.1 Although mortality 
due to CAD has decreased by ≈50% in the United 

States since the 1980s, the remaining disease burden 
still has a large socioeconomic impact on our society. 
Though this decrease may be attributed to therapies that 

modify CAD risk factors, such as lipid-lowering and anti-
hypertensive drugs, these therapies do not target the 
vessel wall where the disease develops. Vascular smooth 
muscle cells (VSMCs) make up the medial layer of the 
vessel wall and have been shown to impact every step of 
atherosclerosis, the underlying cause of CAD.2
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VSMCs show remarkable plasticity in response to vascu-
lar injury. Quiescent VSMCs can shift to a highly proliferative 
and migratory phenotype that promotes VSMCs to migrate 
into the intimal layer of the vessel wall. VSMCs in the inti-
mal layer then produce extracellular matrix components and 
promote fibrous cap stability, therefore, protecting against 
plaque rupture. As VSMCs undergo phenotypic switch-
ing, they have been shown to lose the expression of tra-
ditional VSMC marker genes and dedifferentiate into both 
atheroprotective (fibroblast-like) and atherogenic (macro-
phage-like) cell types.2,3 Macrophage-like VSMCs become 
proinflammatory, releasing cytokines, enhancing the migra-
tion of phagocytic cells, and accelerating the rate of cell 
necrosis and plaque growth. Despite intensive research, 
the mechanisms driving the structural and functional phe-
notypic transformations of VSMCs are not fully understood. 
Uncovering how gene expression in VSMCs is being repro-
grammed could lead to the discovery of new treatments.

Systems biology approaches have been used to 
describe the components of the cardiovascular system.4,5 
These approaches postulate that networks of genes, 
rather than linear pathways, define complex physiological 
and pathological processes.6,7 Therefore, we used gene 
coexpression networks to identify modules that represent 
highly correlated transcript profiles in both quiescent and 
proliferative VSMCs to study the properties of the network 
modules. We then used network-based preservation statis-
tics to quantify within-module topology that are preserved 
between the 2 conditions. By focusing on the modules 
with the lowest preservation, we were able to identify net-
works of genes, and therefore, complex physiological and 
pathological processes, specific to each phenotypic condi-
tion. A deeper investigation of these modules highlighted 
reprogrammed gene expression profiles that occur during, 
and potentially drive, VSMC phenotypic transformation. 
Because loci associated with CAD through genome-wide 
association studies have been reported to regulate VSMC 
plasticity,8 we then highlighted genes present in CAD 
genome-wide association studies loci to further demon-
strate that the dysregulated pathways may be contributing 
to phenotypic plasticity and disease progression.

METHODS
A detailed description of the methods and the experimental 
procedures are provided in the Supplemental Material. The 

RNA-sequencing data are available at GEO with the acces-
sion number GSE193817. Data published in this article can 
be queried at http://civeleklab.cphg.virginia.edu. Personalized 
scripts used in this article can be found at https://github.com/
civeleklab/Network-Preservation-VSMC. University of Virginia 
Institutional Review Board determined that the study is exempt 
from human subject research regulations since the data were 
collected from cells derived from cadavers.

RESULTS
Gene Expression Modules in Human VSMCs
We constructed gene coexpression networks from 
RNA-sequencing data of aortic smooth muscle cells 
(SMCs) isolated from 151 heart transplant donors 
from distinct genetic ancestries cultured in quiescent 
and proliferative conditions (see Methods). The overall 
analysis workflow adopted in this work is summarized 
in Figure  1. After preprocessing and sample outlier 
detection, 151 samples with gene expression data 
for 11 330 genes were inputted into the weighted 
gene coexpression network analysis9 to create gene 
coexpression modules for both VSMC phenotypic 
conditions. We performed module detection using 
iterative weighted gene coexpression network analy-
sis.10 To identify modules of coexpressed genes, we 
searched for genes with similar patterns of connec-
tion strengths to other genes or high topological over-
lap. A soft-threshold power of 3 and 6 were used for 
quiescent and proliferative conditions, respectively, to 
ensure resulting coexpression networks are closer to a 
scale-free network frequently observed in large-scale 
biological networks11–13 (Figure S1). An equal soft 
thresholding power was not used for both conditions as 
the network connections, and thus the power law dis-
tribution that leads to scale-free topology, are unique 
to each dataset.14 Setting a soft-threshold power of 6 
for the quiescent condition results in high reproduc-
ibility of coexpression networks, but several modules 
previously capturing potential biological interactions 
lose connectivity (Table S1). The quiescent condition 
resulted in 10 764 coexpressed genes segmented into  
41 modules (Q1 - Q41), and the proliferative condi-
tion resulted in 8422 coexpressed genes segmented 
into 45 modules (P1 - P45). The modules ranged in 
size from 34 to 2134 genes. The contingency table in 
Figure S2 reports the number of genes that fall into 
quiescent (rows) and proliferative (columns) modules. 
This table also shows that some modules possess high 
gene overlap (preserved) across conditions while oth-
ers appear to be phenotype-specific (unpreserved). 
Because coexpression modules can capture genes 
operating within similar biological pathways and func-
tions, deciphering the modules that are context-spe-
cific could lead to understanding genes and pathways 
operating in phenotype-specific context.

Nonstandard Abbreviations and Acronyms

BN	 Bayesian network
CAD	 coronary artery disease
KD	 key driver
SMC	 smooth muscle cell
VSMC	 vascular smooth muscle cell
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Preservation Analysis of VSMC Modules in 
Distinct Phenotypic States
We assessed whether the 41 modules identified in qui-
escent VSMCs were preserved in the 45 modules identi-
fied in proliferative VSMCs. We utilized statistics that do 
not depend on a gene’s particular module assignment, 
but rather network properties such as density and con-
nectivity which rely on connection strengths and topol-
ogy among all genes.15 Using a composite statistic of 
preservation from the weighted gene coexpression 
network analysis R package, medianRank, we ranked 
the preservation of each module across phenotypes. A 
low medianRank score represented a highly preserved 
module expected to capture biological pathways that 
are fundamental to VSMC function. A high median-
Rank represented a less preserved module expected 
to identify genes and biological pathways that become 
rewired and are most likely to be enriched for phenotype-
specific functions. Therefore, we identified the modules 
scoring in the bottom 20th percentile of preservation. 
This cutoff denoted the 9 least preserved modules in 
both the quiescent and proliferative conditions, repre-
sented by the modules beneath the red line (Figure 2A 
and 2B). Together these 18 modules contain 2379 
unique genes with topological connectivity representing 

phenotype-specific interactions. Of the 2379 genes, 
<10% were shared across the conditions (Figure S3). 
Pathway analysis of the 18 modules revealed pathways 
representative of differential conditions that were not 
identified with differential gene expression16 or gene set 
enrichment analyses17 at both the 0.05 and 0.25 false 
discovery rate cutoffs. Gene set enrichment analyses and 
differential gene expression analysis primarily captured 
pathways that were up or down regulated, such as cell 
cycle checkpoints, DNA replication, and RNA process-
ing. Pathway analysis of modules scoring in the top 20th 
percentile of preservation showed enrichment for similar 
cellular functions (Table S2). This indicates that preserva-
tion statistics were able to differentiate between up and 
downregulated pathways with rewired or dysfunctional 
biological functions between the quiescent and prolifera-
tive conditions.

Enrichment Analysis of Unpreserved Modules
Multiple unpreserved modules captured previously 
described biological functions that occur during VSMC 
phenotypic transition from a quiescent to a proliferative 
state. Gene Ontology enrichment18,19 revealed modules 
in the proliferative condition to be overrepresented with 
genes belonging to cell-cell junction organization (P6), 

Figure 1. Schematic representation of the overall study design.
Smooth muscle cells (SMCs) from the ascending aortas of 151 multiethnic donors were cultured with and without FBS to mimic the quiescent 
and proliferative phenotypes of vascular SMCs. Gene expression was measured with RNA-sequencing (RNA-seq). There were 11 300 genes 
expressed in at least 80% of the samples across both culture conditions. Coexpression modules were created using the expression levels of 
the 11 300 genes. Network preservation analysis was performed to rank modules based on preservation. To interrogate the modules, pathway 
enrichment analysis was performed and Bayesian networks were created. Key driver analysis was performed to identify key regulating genes.

https://www.ahajournals.org/doi/suppl/10.1161/CIRCGEN.122.003781
https://www.ahajournals.org/doi/suppl/10.1161/CIRCGEN.122.003781


Perry et al Network Analysis of Smooth Muscle Cell Phenotypes

Circ Genom Precis Med. 2023;16:e003781. DOI: 10.1161/CIRCGEN.122.003781� August 2023 375

vasculature development and migration (P16), and regula-
tion of the Suppressor of Mothers Against Decapentaple-
gic pathway (P42), all representative of the proliferative 
phenotype20–22 (Figure 3A). Furthermore, these 3 modules 
contain 38 CAD candidate genes and 11 CAD prioritized 
genes (see Methods). Thirty CAD genes are differentially 
expressed between quiescent and proliferative conditions, 
including all 11 prioritized genes (Figure 3B). Upregula-
tion of PHACTR1 and CDH13 in the proliferative state is 
consistent with the direction of their association with CAD 
risk alleles23,24 (Table S3). Furthermore, the directionality 
of gene expression of the remaining 8/9 prioritized genes 
(excluding VAMP8) are consistent with CAD pathogen-
esis.25–30 For example, upregulation of FLT1 increases cell 
migration through modulating actin reorganization and 
downregulation of CXCL12 promotes destabilization of 
atherosclerotic lesions.31,32 Differential expression of these 
CAD-associated genes suggests their involvement in the 
phenotypic plasticity of VSMCs.

We created Bayesian networks (BNs) using the 
Reconstructing Integrative Molecular BNs algorithm33 
from genes within coexpression modules to refine regu-
latory interactions to predict how CAD genes are being 
regulated or regulating gene expression (Figure  3C 
through 3E). We next performed key driver (KD) analy-
sis34 to identify the genes with high regulatory potential. 
We highlighted genes with a KD score >1 to capture 
a wide range of genes with regulatory potential based 
on network topology. These KD genes are expected to 
have a greater effect in regulating downstream gene 
expression and the function of biological pathways. In 

Figure  3C through 3E, genes in CAD genome-wide 
association studies loci are denoted by red nodes, and 
genes with a KD score greater than one are denoted 
by a rectangular node. Gene Ontology Term enrichment 
analysis of all KD genes across the three modules 
revealed enrichment for cell differentiation (false dis-
covery rate, 0.031), macrophage activation (false dis-
covery rate, 0.025), and response to TGF (transforming 
growth factor)-β stimulus (false discovery rate, 0.023), 
suggesting a role in regulating VSMC dedifferentiation 
into macrophage-like35,36 and fibroblast-like37 SMCs. We 
examined RNA single-cell expression profiles of KDs 
in disease-associated cell types from the Human Pro-
tein Atlas38 and found that all KD genes are expressed 
in dedifferentiated cell types of fibroblasts or macro-
phages. Furthermore, many of the KDs are also tradi-
tional endothelial genes (eg, PECAM1, TIE1, CDH5). 
Despite still being expressed in VSMCs, the presence 
of endothelial genes could also represent the dediffer-
entiation into an SMC-derived intermediate state repre-
sentative of stem, endothelial, and monocyte cells that 
eventually transitions into macrophage-like and fibro-
blast-like phenotypes.39 Together, the pathway analysis 
and expression profiles suggest that these modules are 
representative of VSMCs that have dedifferentiated 
from a quiescent state into a phenotype representative 
of atherosclerotic behavior (Figure 3F). These analyses 
show strong evidence that using preservation statistics 
can capture biologically accurate activity occurring in 
VSMCs during the transition from a quiescent to a pro-
liferative state.

Figure 2. Composite preservation statistics for modules between quiescent and proliferative conditions.
The composite statistic, medianRank (y axis), as a function of the module size. Each point represents a module, labeled by color and a 
secondary numeric label. Low numbers on the y axis indicate a high preservation. The red line denotes the bottom 20th percentile of 
preservation scores. Modules at or below the red line represent the least preserved modules. A, medianRank scores for the preservation of 
quiescent modules identified in quiescent vascular smooth muscle cells (VSMCs) in proliferative modules identified in proliferative VSMCs. B, 
medianRank scores for the preservation of proliferative modules in quiescent modules. There are 9 modules at or below the red line cutoff in 
each condition.
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Figure 3. Characterization of modules representative of phenotypic conversion of vascular smooth muscle cells (VSMCs) from 
a quiescent to a proliferative state.
A, Gene Ontology enrichment of proliferative VSMC-related pathways in the P6, P16, and P42 modules. Each point is scaled according to 
-log10(false discovery rate [FDR]) values. B, Volcano plot displaying differential expression of the 38 coronary artery disease (CAD) candidate 
genes present in the P6, P16, and P42 modules. The 11 CAD prioritized genes are labeled. Blue points represent genes downregulated and 
red points represent genes upregulated in proliferative VSMCs compared to quiescent VSMCs. C through E, Bayesian networks created from 
genes in the (C) P6, (D) P42, and (E) P16 modules. Red nodes represent CAD candidate genes and square nodes represent genes with a key 
driver score greater or equal to 1. F, Horizontal bar plots of single-cell RNA-sequencing expression data from Protein Atlas of key driver genes 
in smooth muscle cells, fibroblasts, and macrophages.



Perry et al Network Analysis of Smooth Muscle Cell Phenotypes

Circ Genom Precis Med. 2023;16:e003781. DOI: 10.1161/CIRCGEN.122.003781� August 2023 377

Metabolic Pathway Enrichment in Unpreserved 
Modules
Over half of the unpreserved modules representative of 
phenotype switching were enriched for metabolic path-
ways. Of these 10 modules, 9 showed enrichment for 
nitrogen-specific metabolism (Figure 4A). The network 
preservation analysis strongly supports a novel role of 
nitrogen metabolism in regulating VSMC plasticity but is 
further supported by the differential expression of a sub-
set of the canonical cellular nitrogen metabolism path-
way genes (Figure S4). Changes in nitrogen metabolism 
have been demonstrated in endothelial cells to promote 
endothelial cell phenotypic transition from a quiescent to 
a proliferative state.40 It is well documented that changes 
in nitrogen content, specifically nitric oxide, also regu-
late VSMC proliferation, migration, and calcification,41,42 
but it is unclear if changes in nitrogen processes are a 
byproduct or causal of phenotypic switching in VSMCs. 
One hundred fourteen of the CAD candidate genes 
were members of the nitrogen metabolism enriched 
modules. To further test the potential role of nitrogen 
metabolism in contributing to phenotypic plasticity, we 
calculated correlations between expression levels of 
8 genes in the Nitrogen Metabolism Kyoto Encyclo-
pedia of Genes and Genomes pathway43,44 expressed 

in quiescent and proliferative VSMCs and 114 genes 
in the CAD candidate gene set present in our 9 nitro-
gen metabolism enriched modules (Figure  4B; Figure 
S5). Seventy-five percent of the Nitrogen Metabolism 
Kyoto Encyclopedia of Genes and Genomes pathway 
genes were significantly correlated (Bonferroni cor-
rected P<5×10-5, Pearson r>|0.3|) with CAD candidate 
genes in both the quiescent and proliferative conditions. 
The strongest correlations for both phenotypes were 
with AMT, which encodes the aminomethyltransferase 
enzyme. Eleven CAD candidate genes in the quiescent 
condition and 12 CAD candidate genes in the prolifera-
tive condition were moderate to highly correlated with  
AMT (Pearson r values between |0.5 and 0.75|).45,46 
AMT gene expression has previously been shown to be 
associated with CAD risk.47 AMT was also differentially 
expressed between quiescent and proliferative condi-
tions, suggesting that gene expression levels of CAD 
genome-wide association studies genes functioning 
in nitrogen metabolic enriched modules were repro-
grammed due to changes in AMT expression levels, or 
vice versa. These data suggest that nitrogen metabo-
lism plays a role in the progression of CAD, potentially 
through regulating VSMC plasticity.

In addition to modules enriched for nitrogen meta-
bolic processes, another module was enriched for 

Figure 4. Presence of nitrogen metabolic processes in the least preserved modules.
A, Gene Ontology enrichment of metabolically related pathways in 10 of the least preserved modules. Each point is scaled according to 
−log10(false discovery rate [FDR]) values. Blue points represent modules from the quiescent condition and red points represent modules from 
the proliferative condition. B, Heatmap of Pearson correlations (r) between 55 coronary artery disease (CAD) candidate genes in the P4, P18, 
P28, and P45 modules and 8 genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) Nitrogen Metabolism pathway. Asterisk 
marks denote genes in the KEGG Nitrogen Metabolism pathway with at least one correlation (r) ≥|0.3| at a Bonferroni corrected P≤5×10-5. C, 
Expression levels of AMT in quiescent and proliferative conditions. AMT is downregulated in proliferative conditions (P<9.3×10-28).
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NADH (reduced nicotinamide adenine dinucleotide) 
regeneration and canonical glycolysis pathways (Q23; 
Figure 4A). This analysis was also supported by the dif-
ferential expression of a subset of the canonical gly-
colysis pathway genes (Figure S6). Glycolysis plays an 
important role in the proliferation of VSMCs.48,49 Conse-
quently, proliferative VSMCs demonstrate an increase in 
glycolytic flux so it is unsurprising that we identified a 
context-specific function of glycolysis.50 Exploring the 
glycolytic alterations of VSMCs, however, may provide 
new insights into the genes involved in the quiescent 
and proliferative functions of glycolysis. To address the 
potential rewiring of glycolysis, we compared network 
topology between the unpreserved Module Q23 in the 
quiescent condition, and a proliferative module, Module 
P17, that is also enriched for NADH regeneration and 
canonical glycolysis. Again, using Reconstructing Inte-
grative Molecular BNs, we created BNs for each coex-
pression module to predict genetic regulatory function 
and identified KDs to isolate potential genes responsible 
for driving glycolytic rewiring (Figure 5A and 5B). There 
were 11 shared genes between the 2 BNs, 7 unique to 
the quiescent condition, and 11 unique to the prolifera-
tive condition. The BNs shared 2 CAD candidate genes, 

ENO2 and SPAG4, with the addition of RAB20 in the 
proliferative network. RAB20 expression was downregu-
lated in proliferative VSMCs (P<0.001). Downregulation 
of RAB20 gene expression has been shown to promote 
glycolysis and contribute to enhanced cell proliferation 
and motility.51 KD analysis identified a novel KD gene in 
the proliferative BN, MPI, which encodes for mannose 
phosphate isomerase. Gene Ontology Term analysis of 
the genes present in each BN showed that all enriched 
pathways present in the quiescent condition were pre-
served in the proliferative condition. However, in the 
proliferative condition, there were more genes in each 
shared pathway and the addition of new pathways. Three 
of the new Gene Ontology Term pathways in the pro-
liferative BN were represented by the presence of the 
KD, MPI, suggesting that mannose metabolism could be 
driving glycolysis rewiring during VSMC transition (Fig-
ure  5C through 5E). To validate KD predictions within 
our networks, we regenerated BNs for Modules Q23 
and P17 using bnlearn,52,53 an R package for Bayesian 
network learning and inference (Figure S7). key driver 
analysis again identified FAM162A and MPI as KDs in 
the Q23 and P17 networks and replicated the results of 
genes downstream of MPI, including ENO2 and RAB20.

Figure 5. Rewiring of glycolysis metabolic pathway in vascular smooth muscle cell (VSMC) phenotypic transition.
Bayesian networks (BNs) of genes in the (A) Q23 module and (B) P17 module. Red nodes represent coronary artery disease (CAD) candidate 
genes and yellow diamonds represent the highest-scoring key driver gene. Bold node outlines in (B) represent genes unique to the P17 BNs. 
C through E, Hypergraph representations of enriched Gene Ontology (GO) terms (false discovery rate [FDR] ≤0.05) based on genes present 
in the (C) Q23 and (E) P17 BNs. Each node represents a GO term (D). Nodes are scaled according to the number of genes functioning in the 
GO Term. Edges represent the gene or genes present in the enriched GO term (node).
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DISCUSSION
VSMCs are a major cell type present at all stages of an 
atherosclerotic plaque. Lineage-tracing studies have high-
lighted that VSMCs can adopt alternative phenotypes that 
positively and negatively contribute to disease progres-
sion.35,54,55 VSMCs dedifferentiating away from a quiescent 
state due to vascular injury have the potential to stabilize 
the fibrous cap (fibroblast-like) as well as contribute to the 
advancement of the necrotic core (macrophage-like).56 
Investigating the genetic architecture of quiescent VSMCs 
compared with proliferative VSMCs could identify biologi-
cal pathways being rewired during phenotypic transfor-
mation, leading to mechanistic predictions driving VSMC 
plasticity in atherosclerosis, the underlying cause of CAD.

Quantification of VSMC phenotypes in cell culture 
relevant to atherosclerosis has inevitable limitations. For 
example, the culture conditions lack the key interactions 
with other cell types and environmental conditions in the 
vessel wall and atherosclerotic plaque. In addition, athero-
sclerosis takes decades to develop; therefore, it cannot be 
adequately replicated in vitro. Despite these challenges, 
cultured human coronary artery SMCs have been success-
fully used in previous studies to investigate genetic deter-
minants of CAD.57,58 Due to the difficult nature of capturing 
vascular wall phenotypes in cellular detail in the arteries 
of humans, our approach provides a reasonable proxy for 
in vivo characteristics of VSMCs. We cultured VSMCs iso-
lated from an ancestrally diverse population of 151 heart 
transplant donors in 2 conditions that are believed to rep-
resent the quiescent and proliferative state of the cells. 
Differential gene expression analysis confirmed the gene 
expression profiles are consistent with the phenotypic state 
of the cells.59 To our knowledge, this work is the first to pro-
pose a comprehensive approach exploring gene coexpres-
sion networks observed in proliferative VSMCs that are not 
preserved in quiescent VSMCs, and vice versa. Because 
coexpression networks are representative of functionally 
related genes, a network preservation approach was able 
to capture dysregulated pathways whose gene-gene inter-
actions were rewired as a result of phenotypic transition of 
VSMCs. Our findings, however, must be considered under 
the current limitations of employing system genetics and 
network analyses. There are many decisions made during 
the model-building phase that can affect the results and 
conclusions. This strategy may not fully detect the dysregu-
lated pathways underlying VSMC phenotypic transitioning.

Preservation analysis identified the least preserved gene 
coexpression modules between quiescent and proliferative 
VSMCs. Three of these modules were significantly enriched 
for biological pathways representative of VSMCs in athero-
sclerotic lesions, such as proliferation, migration, cell differ-
entiation,3 cell-cell junction assembly,20 and Suppressor of 
Mothers Against Decapentaplegic regulation.22 Capturing 
physiologically relevant in vivo biology assured that our in 
vitro experimental design was able to capture aspects of 

VSMC plasticity. Furthermore, over half of the unpreserved 
modules were enriched for metabolic function. Emerg-
ing evidence has shown that the metabolism of VSMCs is 
correlated with the phenotype switching and the progres-
sion of atherosclerosis, among other vascular diseases.60 
Unpreserved modules enriched for metabolic functions 
were present in our quiescent and proliferative conditions 
representing genetic rewiring of metabolic pathways con-
tributing to a phenotype-specific role of metabolism. Thus, 
our results support the claims that metabolism of VSMCs 
are correlated with phenotype switching.

Although nitrogen and glycolytic metabolism in VSMCs 
are not fully understood, previous reports have identified 
their potential role in VSMCs and atherosclerosis.60 We are 
the first to hypothesize mannose metabolism as a possi-
ble mechanism contributing to proliferative VSMCs. Man-
nose is not a significant energy source in humans but it 
is required for protein glycosylation.61 Mannose treatment 
was shown to attenuate weight gain, improve glucose and 
lipid homeostasis, and reduce gene expression of inflam-
matory markers in adipocytes of high-fat diet mice.62 In 
addition, plasma levels of mannose have recently been 
shown to be a biomarker of CAD and a more vulnerable 
plaque phenotype.63 It is not clear whether mannose is 
related to CAD because it of its role in regulating insu-
lin resistance or because of an intrinsic biological prop-
erty.64 As VSMCs respond to vascular injury and transition 
to a more proliferative, disease-like phenotype, mannose 
metabolism may be mediating changes in metabolism 
due to imbalances in energy uptake, thus contributing 
to disease development through a discrete biological 
mechanism.

This study demonstrates the power of network preser-
vation statistics to identify differences between 2 biological 
states. We provide new evidence supporting the role of nitro-
gen metabolism as a potential regulator of VSMC plasticity. 
Further studies need to be conducted to discern whether dys-
regulated metabolism in VSMCs is a byproduct or a driving 
mechanism of phenotypic plasticity. Specifically, considering 
the role of AMT (aminomethyltransferase) in regulating nitro-
gen metabolism and MPI (mannose phosphate isomerase) 
in regulating mannose and glycolysis metabolism in VSMCs.
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