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Abstract

Recently, research has shown an increased spread of non-communicable diseases such as

cancer. Lung cancer diagnosis and detection has become one of the biggest obstacles in

recent years. Early lung cancer diagnosis and detection would reliably promote safety and

the survival of many lives globally. The precise classification of lung cancer using medical

images will help physicians select suitable therapy to reduce cancer mortality. Much work

has been carried out in lung cancer detection using CNN. However, lung cancer prediction

still becomes difficult due to the multifaceted designs in the CT scan. Moreover, CNN mod-

els have challenges that affect their performance, including choosing the optimal architec-

ture, selecting suitable model parameters, and picking the best values for weights and

biases. To address the problem of selecting optimal weight and bias combination required

for classification of lung cancer in CT images, this study proposes a hybrid metaheuristic

and CNN algorithm. We first designed a CNN architecture and then computed the solution

vector of the model. The resulting solution vector was passed to the Ebola optimization

search algorithm (EOSA) to select the best combination of weights and bias to train the

CNN model to handle the classification problem. After thoroughly training the EOSA-CNN

hybrid model, we obtained the optimal configuration, which yielded good performance.

Experimentation with the publicly accessible Iraq-Oncology Teaching Hospital / National

Center for Cancer Diseases (IQ-OTH/NCCD) lung cancer dataset showed that the EOSA

metaheuristic algorithm yielded a classification accuracy of 0.9321. Similarly, the perfor-

mance comparisons of EOSA-CNN with other methods, namely, GA-CNN, LCBO-CNN,

MVO-CNN, SBO-CNN, WOA-CNN, and the classical CNN, were also computed and pre-

sented. The result showed that EOSA-CNN achieved a specificity of 0.7941, 0.97951,

0.9328, and sensitivity of 0.9038, 0.13333, and 0.9071 for normal, benign, and malignant

cases, respectively. This confirms that the hybrid algorithm provides a good solution for the

classification of lung cancer.
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1. Introduction

Cancer is a severe public health issue that is becoming more prevalent worldwide. It is a disease

in which cells of particular tissues undergo uncontrolled division, leading to malignant or

tumor growth in the body [1]. In 2020, the GLOBOCAN estimated 19.3 million new cases of

cancer and approximately 10 million cancer deaths globally [2, 3]. Lung cancer is the most

commonly diagnosed cancer and the leading cause of death of men and women globally. Glob-

ally 2.2 million new lung cancer cases are diagnosed annually, which leads to close to 1.8 mil-

lion deaths [2, 4]. There are several common signs and symptoms of lung cancer, including

hemoptysis (coughing up blood), weight loss, and weariness. Moreover, various risk factors

are associated with lung cancer, including smoking, alcohol, air quality, and food [5]. Lung

cancer can be divided into two categories based on the histology of the cancer cells: small-cell

lung cancer (SCLC) and non-small lung cancer (NSCLC) [1]. The NSCLC is considered the

most common type of lung cancer, accounting for 85% compared to the SCLC, representing

5% of all patients [1]. Lung cancer has significantly increased in developing countries over the

past two decades, including Sub-Saharan Africa, where HIV/ AIDS is also overwhelming [6].

The overall 5-year survival rate for all kinds of lung cancer is lower than 18% when compared

to other cancers, such as prostate cancer (99%), colorectal cancer (65%), and breast cancer

(90%) [1]. However, lung cancer demands greater attention from the medical, biological, and

scientific fields to find innovative solutions to promote early diagnosis, which helps in medical

decisions, and evaluates responses to improve health care. An enormous amount of computed

tomography (CT) scan image data for the lungs could help detect lung cancer. Machine learn-

ing and deep learning algorithms can utilize these images to enhance cancer prediction and

diagnosis as early as possible and find the best treatment strategies [7].

Deep Learning (DL) methods have enabled machines to analyze high-dimensional data

such as images, multidimensional anatomical images, and videos [8, 9]. The convolutional

neural network (CNN) and recurrent neural network (RNN) are popular DL models which

are often applied to image and sequential data classification [10–12]. The CNN architectures

are usually composed of blocks of convolutional layers and pooling operations combined with

fully connected layers and a classification layer. The training process on CNN aims to tune the

layers’ weights composing the architectures. This process is considered an NP-hard problem

due to its susceptibility to multiple local optima requiring optimization techniques to break

out of such local optima. To speed up training time and improve performance, CNNs are

trained to optimize algorithms, such as stochastic gradient descent (SGD), Nesterov acceler-

ated gradient, Adagrad, AdaDelta, and Adam, which are used to change the weights and learn-

ing rates that minimize the losses.

Building CNN architecture requires a skilful combination of hyperparameters for improved

classification performance and accuracy. Approaching combinatorial problems using manual

methods is daunting and reduces efficiency. However, metaheuristic algorithms have been

proposed to optimize the process to obtain the best combination of hyperparameters required

for improved performance. Metaheuristic algorithms are nature-inspired optimization solu-

tions designed to help find suitable optimization constructs characterized by local search,

global search and sometimes randomization and have high performances. They often require

low computing capacity, which has successfully solved complex real-life problems in engineer-

ing, medical sciences, and sciences, especially in swarm intelligence algorithms [13, 14]. Con-

sidering the composition of CNN and the complexity of the hyperparameter, which requires

several iterations and computational time for training its optimizers [15], the use of metaheur-

istic algorithms have been endorsed due to their ability to find suitable optimization constructs

for overcoming limitations associated with CNN [16].
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For instance, some well-known evolutionary metaheuristic algorithms are the Genetic

Algorithms (GA) [17], Coral Reefs Optimization Algorithm (CRO) [18], Artificial Bee Colony

(ABC) [19], Bat Algorithm (BOA) [20], Echo-cancellation Cuckoo Search Optimization

(CSO) [21], Grey Wolf Optimizer (GWO) [22], Hunting Mechanism of Whale Optimization

Algorithm (WOA) [23], Blue Monkey Optimization (BMO) [24], Ebola Optimization Search

Algorithm (EOSA) [25, 26], Multiverse Optimizer (MVO), Whale Optimization Algorithm

(WOA), Simulated Annealing (SA), Tabu Search (TS), Particle Swarm Optimization (PSO),

Differential Evolution (DE), Black Hole Algorithm (BHA), Gravitational Search Algorithm

(GSA), Satin Bowerbird Optimizer (SBO), Life Choice-based Optimizer (LCBO), Harmony

Search (HS), and Sandpiper Optimization Algorithm (SOA) [27]. In addition, Sports-based

and Light-based Algorithms are examples of Chaotic League Championship Algorithms

(LCA) [28], Optics Inspired Optimization (OIO) [29], Ray Optimization (RO) [30], and Cha-

otic Optics-inspired Optimization (COIO) [31].

Several algorithms have been applied to medical image classification problems using CNN

for feature extraction. Priyadharshini and Zoraida [32] developed Bat-inspired Metaheuristic

Convolutional Neural Network Algorithms for CAD-based Lung Cancer Forecast. Li et al.

[33] used metaheuristic techniques to optimize the rebalancing of the imbalanced class of fea-

ture selection method for dimension reduction in clinical X-ray image datasets. Abdullah et al.

[34] applied the meta-heuristic optimization algorithm using lung images. Lu et al. [35] pro-

posed a new convolutional neural network for the optimal detection of lung cancer. They used

a marine predator metaheuristic method to improve network accuracy and optimal design.

Asuntha and Srinivasan [36] presented novel deep learning methods to detect malignant lung

nodules using the Fuzzy Particle Swarm Optimization (FPSO) technique to select the optimal

feature after extracting texture, geometric, volumetric, and intensity information. Das et al.

[37] developed a method for detecting malignant tumors by classification called Velocity-

Enhanced Whale Optimization Algorithm and Artificial Neural Network to classify cancer

datasets (breast, cervical, and lung cancer).

Although several studies have reported various designs of CNN algorithms developed for

medical images and lung cancer prediction, there still exists some challenges due to the multi-

faceted designs in the CT scan. In addition, previous studies show different artichecture of the

CNN model that has been used in various domains such as fabric wrinkle images [38–41].

Moreover, DL models have issues affecting their performance, including choosing the feature

representation, optimal architecture, suitable model parameters, and picking the best values

for weights and bias [42]. Therefore, to solve these issues of finding a precise prediction model

and to advance the state-of-the-art use of CNN for the classification of lung cancer, we used

metaheuristic methods to optimize the CNN model. Thus, this study proposes utilizing a meta-

heuristic named Ebola Optimization Search Algorithm (EOSA) [24].

The EOSA algorithm has shown promising results in various optimization problems,

including feature selection and parameter optimization in different domains, such as health-

care, finance, and engineering. Furthermore, the EOSA algorithm has unique features, such as

population-based search, adaptive learning, and self-learning abilities, which may have also

contributed to its selection as a metaheuristic optimization method. Therefore, we selected

EOSA as a metaheuristic optimization method based on its previous success in similar optimi-

zation tasks and its unique features that may provide advantages over other optimization

methods. The reason for hybridizing CNN with a metaheuristic algorithm is to enhance the

performance of the CNN in terms of accuracy, speed, and generalization. Metaheuristic algo-

rithms are optimization techniques that use iterative procedures to search for the best solution

in a large search space. By integrating a metaheuristic algorithm with a CNN, the model can

better optimize its parameters and improve its ability to learn and classify complex patterns in
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the data. This can improve performance in detecting diseases like lung cancer, improving diag-

nostic accuracy and timely treatment. Moreover, good image preprocessing techniques, such

as wavelet decomposition, will be used to enhance image resolution. As a result, this study

aims to combine the EOSA-CNN algorithm with some selected image preprocessing tech-

niques to improve the classification accuracy of the deep learning model on lung cancer CT

images. The metaheuristic algorithm is applied to obtain the best combination of weights

required to learn the feature extraction and classification problem.

The main objective of this article is to create an optimized deep-learning model using a

metaheuristic algorithm to detect lung cancer. This model could greatly assist physicians in

detecting the disease early and making informed decisions to provide suitable treatment. The

following are the technical contributions of the study: (1) applied a combined wavelet decom-

position and erosion, among other image preprocessing techniques, to prepare the input sam-

ples; (2) proposed a hybrid EOSA-CNN algorithm for feature extraction and classification

process on the preprocessed images; and (3) evaluated and compared the hybrid algorithm

with other algorithms such as GA-CNN, WOA-CNN, MVO-CN, SBO-CNN, and

LCBO-CNN.

The remaining sections of the paper are organized as follows: Section 2 presents related

studies on using CNN to classify lung images. In section 3, we discuss the methodology applied

in this study. Section 4 presents the configuration for the experimental setup and the datasets

used. Section 5 presents the results obtained and discussions on findings, while the study’s

concluding remarks and future research directions are presented in Section 6.

2. Related works

This section reviews the application of deep learning and metaheuristics algorithms in detect-

ing and classifying cancer cases in medical images.

Song et al. [43] developed three types of deep neural networks (CNN, DNN, and SAE) for

lung cancer classification. These networks were applied to the CT image classification task

with modest modifications for benign and malignant lung nodules. The CNN network showed

an accuracy of 84.15%, a sensitivity of 83.96%, and a specificity of 84.32%. Bhatia et al. [44]

proposed a method for detecting lung cancer from CT data using deep residual learning,

which extracted features with UNet and ResNet models. The feature set was fed through multi-

ple classifiers, including XGBoost and Random Forest, and the individual predictions were

ensemble to obtain an accuracy of 84%. El-Regaily et al. [45] presented a survey of computer-

aided detection systems (CAD) for lung cancer in computed tomography. They compared the

current classification methods and argued that most existing algorithms could not diagnose

certain forms of nodules, such as GGN. Kriegsmann et al. [46] trained and refined a CNN

model to consistently classify the three most frequent lung cancer subtypes. Alrahhal and

Alqhtani [47] presented ALCD, which stands for Adoptive Lung Cancer Detection, and is

based on Convolutional Neural Networks (CNN). The ALCD system performed an excellent

preprocessing step, and features were extracted using Scale Invariant Feature Transform,

which was input into the CNN (SIFT) to perform well.

Bhandary et al. [48] provided a Deep-Learning (DL) framework for investigating lung

pneumonia and cancer, which consisted of AlexNet (MAN), AlexNet, VGG16, VGG19, and

ResNet50. The categorization in the MAN was done with a Support Vector Machine (SVM)

and compared to Softmax. The DL framework provided an accuracy of 97.27%. Zheng et al.

[49] proposed a combination of radiology analysis and malignancy evaluation network

(R2MNet) to evaluate pulmonary nodule malignancy by radiology features analysis. In addi-

tion, they proposed channel-dependent activation mapping (CDAM) to visualize
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characteristics and shed light on the decision process of deep neural networks for model expla-

nations (DNN) that obtained an area under the curve (AUC) of 97.52% on nodal radiology

analysis. Cengil & Cinar [50] presented a classification algorithm of lung nodules using CT

images of SPIE-AAPM-LungX data and a 3D CNN architecture for classification. Coudray

et al. [51] trained a deep convolutional neural network (inception v3) on whole-slide images,

and they yielded an average area under the curve (AUC) of 0.97. They also used the network to

predict the ten most often transformed genes in LUAD. Six of them—STK11, EGFR, FAT1,

SETBP1, KRAS, and TP53 were discovered to be predicted from pathology images on a held-

out population, and AUCs ranged from 0.733 to 0.856. Chon et al. [52] established a CAD sys-

tem for lung cancer classification of CT scans with unmarked nodules. Their initial strategy

was to send segmented CT scans straight into 3D CNNs for classification, which proved

insufficient.

Priyadharshini and Zoraida [32] developed Bat-inspired Metaheuristic Convolutional Neu-

ral Network Algorithms for CAD-based Lung Cancer Forecast. The Discrete Wavelet Trans-

form (DWT) that decomposed the image as input was able to decompose the image into a set

sub-band, one of which was the Low (LL) band. They used CNN to train the lung cancer data

to obtain an accuracy of 97.43%. Li et al. [33] used metaheuristic techniques to optimize the

rebalancing of the imbalanced class distributed to apply it in the feature selection method for

dimension reduction in clinical X-ray image datasets. Using the self-adaptive Bat algorithm,

feature selection with Random-SMOTE (RSMOTE) achieved 94.6% classification accuracy

with 0.883 Kappa. Abdullah et al. [34] applied the meta-heuristic optimization algorithm using

lung images so that features obtained were trained using convolution layers. The system’s effi-

ciency was assessed using the F1 score value, which indicated that the system ensured a 98.9%

ELT-COPD and a 98.9% NIH clinical dataset. Lu et al. [35] proposed a new convolutional neu-

ral network for the optimal detection of lung cancer using a metaheuristic method named

marine predators. The proposed MPA-based approach showed 93.4% accuracy, 98.4% sensi-

tivity, and 97.1% specificity. Asuntha and Srinivasan [36] presented a novel deep-learning

method to detect malignant lung nodules and distinguish the position of the tumorous lung

nodules. They used a Histogram of Oriented Gradients (HOG), wavelet transform-based fea-

tures, Local Binary patterns (LBP), Scale Invariant Feature Transform (SIFT), and Zernike

Moment. The Fuzzy Particle Swarm Optimization (FPSO) technique selected the optimal fea-

ture after extracting texture, geometric, volumetric, and intensity information. Das et al. [37]

developed a Velocity-Enhanced Whale Optimization Algorithm, combined with an Artificial

Neural Network, to classify and diagnose lung cancer. The approach is compared to C4.5,

Learning Vector Quantization, Linear Discriminate Analysis, and Factorized Distribution

Algorithm, giving a classification accuracy of 84%.

Senthil Kumar et al. [53] investigated and implemented new evolutionary algorithms to

detect tumors and overcome the challenges related to medical image segmentation. Five evolu-

tionary techniques were used, including k-means clustering, k-median clustering, particle

swarm optimization, inertia-weighted particle swarm optimization, and guaranteed conver-

gence particle swarm optimization (GCPSO). The GCPSO was found to have the greatest

accuracy of 95.89%. Shan and Rezaei [54] designed a feature selection based on an innovative

optimization method called Improved Thermal Exchange Optimization (ITEO), which aims

to enhance the system’s efficiency and stability. Kapur entropy maximization and mathemati-

cal morphology were used to segment lung areas. The 19 GLCM features were collected from

the segmented images for the final evaluations. ITEO used an efficient artificial neural net-

work, and the results revealed that the proposed method attained 92.27% accuracy. Hans and

Kaur [55] proposed a study that presented some of the most recent techniques. The researchers

attempted to solve the lung cancer image classification challenge by utilizing some of the most
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recent optimization techniques. Wang et al. [56] developed a new residual neural network to

determine the pathological kind of lung cancer from CT scans. They investigated a medical-

to-medical transfer learning technique due to the scarcity of CT images in practice with an

accuracy of 85.71%. In [57] the authors suggested a new feature selection strategy that used

deep learning and integrated the Bhattacharya coefficient and genetic algorithm (GA) to pick

features. Oyelade & Ezugwu [58] proposed a novel Ebola optimization search algorithm

(EOSA) based on the Ebola virus and its related disease propagation model. The results

showed that the proposed algorithm performed comparably to other state-of-the-art optimiza-

tion approaches based on scalability, convergence, and sensitivity analyses.

Harun Bingol [59] proposed a hybrid-based deep learning model for classifying Otitis

Media with Effusion (OME) based on eardrum otoendoscopic images. The proposed model

combined Neighborhood Component Analysis (NCA) and the Gaussian method to extract

and select features. Experimental results on a dataset comprising 910 images indicated that the

proposed model achieved a high accuracy of 94.8%. Harun Bingol [59] presented a novel

approach for classifying cervical cancer on Gauss-enhanced Pap-smear images using a hybrid

CNN model. The performance of the proposed model was tested on a dataset comprising 1000

images, and it was found to achieve an accuracy of 93.6%, which is better than that of various

other existing methods.

Therefore, considering the achievements of applying the hybrid model of CNN and optimi-

zation algorithm as reported in the studies reviewed in this section, this study aims to advance

the state-of-the-art to improve lung cancer detection and classification accuracy.

3. Methodology

In this section, the design of the proposed hybrid EOSA-CNN algorithm is presented. A brief

review of the optimization algorithm, namely the Ebola optimization search algorithm

(EOSA), is presented [49]. This is followed by the design of the CNN architecture. Also, the

pseudocode of the EOSA-CNN algorithm and the corresponding flowchart will be discussed

in this section. The combined preprocessing techniques and the corresponding pipeline of

application of the techniques are also presented.

3.1. The EOSA metaheuristics algorithm

We present the metaheuristic algorithm named Ebola optimization search algorithm (EOSA)

based on the propagation mechanism of the Ebola virus disease [49]. The model of the EOSA

algorithm is based on an improved SIR model of the disease. The model consists of the S, E, I,

R, H, V, Q, and D compartments, which further translates to Susceptible (S), Exposed (E),

Infected (I), Hospitalized (H), Recovered (R), Vaccinated (V), Quarantine (Q), and Death (D).

The composition of these compartments allows the creation of a search space that provides

optimized sets of weights and biases needed for the CNN architecture. The SIR model was

then represented using a mathematical model based on a system of first-order differential

equations. A combination of the propagation and mathematical models was adapted for devel-

oping the new metaheuristic algorithm. Furthermore, the resulting mathematical model was

then used to design the EOSA-CNN algorithm for experimentation. The mathematical models

are as follows:

mItþ1

i ¼ mI
t
i þ rMðIÞ ð1Þ

@SðtÞ
@t
¼ p � b1Iþ b3Dþ b4Rþ b2ðPEÞŋð ÞS � tSþ GIð Þ ð2Þ
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@IðtÞ
@t
¼ b1Iþ b3Dþ b4Rþ b2ðPEÞlð ÞS � Gþ gð ÞI � tð ÞS ð3Þ

@HðtÞ
@t
¼ aI � gþ$ð ÞH ð4Þ

@RðtÞ
@t
¼ gI � GR ð5Þ

@VðtÞ
@t
¼ gI � mþ Wð ÞV ð6Þ

@DðtÞ
@t
¼ tSþ GIð Þ � dD ð7Þ

@QðtÞ
@t
¼ pI � ðgRþ GDð ÞÞ � xQ ð8Þ

In Eq (1), ρ represents the scale factor of displacement of an individual,mItþ1
i andmIti are the

updated and original positions, respectively, at time t and t+1. Update of Susceptible (S),

Infected (I), Hospitalized (H), Exposed (E), Vaccinated (V), Recovered (R), Funeral (F), Quar-

antine (Q), and Dead (D). A system of ordinary differential equations based on Eqs (2)–(8) are

scalar functions and can be evaluated to float values. To compute these equations, the size of

vectors S, I, H, R, V, D, and Q at time t are computed using initial conditions: S(0) = S0, I(0) =

I0, R(0) = R0, D(0) = D0, P(0) = P0, and Q(0) = Q0 where our t follows after the definition of

iterations.

The following steps describe the pseudocode of the EOSA metaheuristic algorithm:

1. Initialize all vector and scalar quantities, which are individuals and parameters: Susceptible

(S), Infected (I), Recovered (R), Dead (D), Vaccinated (V), Hospitalized (H), and Quaran-

tine (Q).

2. Randomly generate the index case (I1) from susceptible individuals.

3. Set the index case as the global best and current best, and compute the fitness value of the

index case.

4. While the number of iterations is not exhausted and there exists at least an infected individ-

ual, then

a. Each susceptible individual generates and updates their position based on their displace-

ment. Note that the further an infected case is displaced, the more the number of infec-

tions, so short displacement describes exploitation, otherwise exploration.

b. Generate newly infected individuals (nI) based on (a).

c. Add the newly generated cases to I.

d. Compute the number of individuals to be added to H, D, R, B, V, and Q using their

respective rates based on the size of I

e. Update S and I based on new I.
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f. Select the current best from I and compare it with the global best.

g. If the condition for termination is not satisfied, go back to step 4.

5. Return global best solution and all solutions.

In the following sub-sections, the application of EOSA to the optimization problem

described by the study is designed and discussed. In Fig 1, an overview of the procedure for

the use of the EOSA and other hybrid metaheuristic-based algorithms is presented.

3.2. Image preprocessing techniques

Image preprocessing techniques are often applied to image samples to improve classification

accuracy by removing noise and introducing sharpness [7]. The preparation of the data, also

known as preprocessing, describes any processing that makes and prepares the raw data for

another task, such as classification, prediction, and clustering, to ensure or enhance the task

performance. In this study, the preprocessing phase includes many functions for manipulating

the images into a suitable form for further analysis. Firstly, we downloaded the data from Kag-

gle and then read it using python. Then we applied image resizing, converting the image into

the grayscale mode, Gaussian blur filter, segmentation, normalization, erosion, noise removal,

and wavelet transform into the lung cancer images. Fig 2 shows the steps we followed in our

preprocessing.

The Gaussian blur is a linear filter-type technique that helps image processing by imple-

menting smoothing and blurring effects to remove the noise. It estimates the weighted mean

of pixel intensities at adjacent positions. Otsu’s thresholding technique uses a threshold value

that divides the image into foreground and background. The threshold value increases gradu-

ally to reach the maximum variance between the pixels of the two classes. Image normalization

is an essential phase in the data preparation that changes the range of pixel intensity values.

Erosion and dilation are the basic morphological operations in image processing. This process

aims to extract the most relevant structure of the image viewed as a set through its subgraph

representation. The mathematical equation of the erosion and dilation process is defined as

Fig 1. The proposed methodology.

https://doi.org/10.1371/journal.pone.0285796.g001
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shown in Eqs (9) and (10):

Y ¼ A� B ¼ fx; yjðBÞxy � Ag ð9Þ

Y ¼ A� B ¼ fy : BðyÞ \ A 6¼ Fg ð10Þ

Y is a binary image, B is a template operator, and A is the original image to be processed.

Image noise is the random variation of brightness or colour information in images. This noise

may come from various sources, which erode image quality. We used a contrast-limited adap-

tive histogram equalization (CLAHE) filter to remove the unwanted noise. Wavelet analysis is

a kind of multivariate analysis commonly used in medical images. The wavelet has two decom-

position levels; the first level produces two coefficient vectors, namely approximation and

detail coefficient, representing low and high-frequency contents. In this study, we used the

biorthogonal family using pywt.dwt2 function. After that, we partitioned the preprocessed data

into 80% and 20% for training and testing sets, respectively. Then we built the CNN model to

compute the solution vector used for the hybrid CNN-metaheuristic algorithm proposed in

this study.

3.3. Design of the CNN architecture

Convolution Neural Networks (CNNs) are deep learning algorithms containing multi-layers

between the input and output and are developed for image analysis and classification. More-

over, CNN is a mathematical model designed from convolution, pooling, and fully connected

layers. The CNN conducts feature extraction using the convolution and pooling layers, while

the fully connected layers map the extracted features into the final output. In this study, we

proposed CNN architecture for design and experimentation. This architecture is depicted in

Fig 3.

The CNN architecture described in Fig 3 consists of 4 blocks of convolutional-pooling lay-

ers. Each block consists of two convolutional layers, a zero-padding layer and a mas-pooling

layer. The filter size and count application for the convolutional layers in the first block are 3x3

and 32x32, respectively. The PoolHelper layer is a custom layer implemented as a class and

used for preselecting some features before applying the max-pooling operation. The

Fig 2. The data preprocessing steps.

https://doi.org/10.1371/journal.pone.0285796.g002
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convolutional layers in the second block consist of 64x64 filter counts and use the same 3x3 fil-

ter size as seen in the first block. The same pattern of filter size of 3x3 is seen in the convolu-

tional blocks 3 and 4. Meanwhile, the filter count in the convolutional layers of those blocks 3

and 4 consists of 128x128 and 256x256, respectively. The max-pooling layers applied an inter-

leaved pattern of 2x2 and 3x3 from block 1 through block 4 of the CNN architecture. After the

fully connected layer appears close to the last max-pooling layer, a dropout operation uses a

0.5 drop rate. This is followed by a dense layer using the softmax function for the classification

task. Feature extraction from input samples is achieved with the blocks of convolutional-pool-

ing layers described earlier.

3.4. EOSA-CNN algorithm

The procedure for building the proposed CNN architecture and the application of the optimiza-

tion procedure is described in Fig 4. Three major phases are considered in the design: the initiali-

zation phase, the CNN composition phase, and the optimization phase. Meanwhile, we also

demonstrate the need for full training in optimized CNN architecture, as seen in the flowchart.

The notations ncls, nblks, fracl, and evd represent the number of convolutional layers, the number

of convolutional blocks, the fraction of infected cases and the estimated virus incubation duration.

The optimization process for the CNN architecture is as follows: first, the problem size for

the optimization algorithm is obtained by summing the size of the weights w and the bias b for

the CNN architecture. Both w and b were obtained from the input and output sizes of the

CNN, respectively. So, problem size pz is defined by Eq (11). Initial solutions of pz size were

then generated, and their fitness values were computed using the Eq (12). For t iterations, the

optimization algorithm is trained until the initial solutions improve to yield the most optimal

solution for solving the classification problem. Meanwhile, for each 1,2. . .t, the fitness values

of the solutions are recomputed using (12) so that the best solution is buffered. In addition, for

each of those t, the solutions s are passed to the CNN architecture for reconstruction, as seen

in Eq (13), and testing datasets are applied for predicting purposes. The error rate is computed

and minimized further through progressive training of the optimizer to obtain an optimal

solution.

pz ¼ wþ b ð11Þ

Fig 3. The architecture of the proposed CNN model for lung cancer detection, where F, K, and S indicate the

filters, kernels, and strides, respectively.

https://doi.org/10.1371/journal.pone.0285796.g003
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fit ¼
1

1

N

PN
n¼1

PM
m¼1

tnmlog2Pnm þ e
ð12Þ

model ¼ cnn:setweightsðsÞ ð13Þ

Where e denotes a small value used to control the fit yielding a wrong value, note that once the

best solutions are computed, the combination of weights and bias are unwound from the solu-

tions and then plugged back into the CNN architecture for full training. The fully trained

model is then applied for prediction to solve the domain problem of classifying lung cancer

images.

The procedure of creating the CNN architecture, computation of the solution vector, opti-

mization of its weights, and full training of the architecture using the optimized weights is pre-

sented in Algorithm 1. Lines 4–13 describe the configuration required to design the CNN

architecture based on the parameters supplied. The solution vector of CNN architecture is

then computed and supplied to the optimization algorithm as the search space in Line 20.

Lines 19–22 of the algorithm show the initialization phase of the metaheuristic algorithm

applied in this study.

Algorithm 1: EOSA-CNN algorithm
Result: trained CNN model
Input: numclasses, numblocks, kSize, epoch, psize, evdincub, objfunc
Output: cnn
1 cnn = ;; // initialize the model
2 blk=0;
3 n = 5;
4 while blk numblocks do
5 kcount=2n;
6 cnn layer2D(kSize, kcount, relu);
7 cnn zeropad(1);

Fig 4. The flowchart of the EOSA-CNN algorithm showing the optimization process for the computed solution

vector.

https://doi.org/10.1371/journal.pone.0285796.g004
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8 if blk %= 2 then
9 cnn maxpool(2);
10 end
11 else
12 cnn maxpool(3);
13 end
14 n+=1;
15 end
16 cnn  avgpool(2);
17 cnn  flatten();
18 cnn  dropout(0.5); cnn dense(softmax, numclasses);
19 S, E, I, H, R, V, Q, topSols  ;
20 S  cnn.getweights()
21 icase  S[0]
22 gbest, cbest  icase
23 while e � epoch ^ len(I) > 0 do
24 Q  rand(0, Eq.8 × I)
25 fracI = I − Q
26 for i  1 to len(fracI) do
27 posi  movrate() using Eq.1
28 di  rand()
29 if di > evdincub then
30 neighborhood prob(posi)
31 if neighborhood < 0.5 then
32 tmp rand(0, Eq.1 I srate)
33 end
34 else
35 tmp rand(0, Eq.1 I lrate)
36 end
37 newI+  tmp
38 end
39 I+  newI
40 end
41 h rand(0, Eq.4 I), H+ h
42 r rand(0, Eq.5 I), R+ r
43 v rand(0, Eq.6 h), V + v
44 d rand(0, Eq.7 I), D+ d
47 S d
48 cbest = fitness(objfuncs, S);
49 if cbest > gbest then
50 gbest = cbest
51 topSols  gbest
52 end
53end
54 cnn.setweight(topSols)
55 cnn.train()
56 return cnn

Meanwhile, an index case, the infected case, is generated, and then the training process is

commenced within the loop. The infected cases (s) are exposed to susceptible individuals to

simulate infection, hospitalization, vaccination, dead, recovery, and quarantining in each itera-

tion. In line 8, we showed that some infected cases (I) are drawn into the quarantine compart-

ment so that only a fraction of I infect S individuals. For lines 26–40, new infections are

generated from S and then added to I. Since R, V, H, and V are only derivable from I, we

applied the updated I on Lines 41–47 to generate and update individuals using the correspond-

ing equations. In our algorithm, recovered cases are added to S while dead individuals are

PLOS ONE Ebola optimization search algorithm for detection and classification of lung cancer on CT images

PLOS ONE | https://doi.org/10.1371/journal.pone.0285796 August 17, 2023 12 / 33

https://doi.org/10.1371/journal.pone.0285796


replaced in S with new cases, as shown in lines 46–47. Once the loop’s termination condition

is satisfied, the algorithm terminates, and the optimized solution vector is passed back to the

CNN architecture for full training.

4. Experimentation

The experimentation to investigate the performance of the EOSA metaheuristic algorithm was

first implemented, and after that, we experimented with its applicability to the hybrid

EOSA-CNN algorithm. This section describes the experimental setup and parameter selection

techniques used for these two experiments. Also, we present detailed datasets used in the study

and demonstrate the outcome of the image preprocessing techniques applied. The benchmark

functions used to evaluate the performance of the EOSA metaheuristic algorithm are also listed

and discussed. Lastly, a brief discussion of evaluation metrics used to compare the perfor-

mance of the hybrid’s algorithms (EOSA-CNN, GA-CNN, MVO-CNN, LCBO-CNN,

WOA-CNN and SBO-CNN) are also presented.

4.1. Parameter settings

We conducted five experiments to independently investigate and explore the performance of

the traditional CNN model and the proposed CNN using the metaheuristic optimization algo-

rithms, including GA, SBO, MVO, WOA, LCBO, and EOSA. All the experiments were carried

out on a Dell machine (Optiplex 5050) with the following specifications: Intel core i5, 7th gen-

eration, 16GB memory, and 500GB hard drive. Table 1 shows the proposed CNN hyperpara-

meter configuration.

The input to the proposed CNN architectures is 258 × 258, representing the preprocessed

images with a size of 512 × 512. Table 2 presents the metaheuristic algorithms’ configuration

for optimizing the proposed CNN model. All the methods shared the same values of parame-

ters, such as the batch size and the number of epochs.

In Table 2, the initial values for each parameter are defined. Considering the stochastic

nature of EOSA, which falls within the characteristic of biology-based optimization algo-

rithms, values for some parameters are randomly assigned. The problem size applied for all

experimentation is 100. We note that these values remain fixed for all experiments on the

benchmark functions.

Table 1. CNN hyperparameter configuration.

Parameter Notation CNN Architecture (C1)

Learning rate α 0.0001

Loss function l(x) categorical cross entropy

Epoch e 5

Batch size bs 32

Optimizer θt Adam

Kernel size/count f/k [3,3]

Convolution layers conv [2conv-2conv]

Activation function ∑wibi Relu

Pooling layers P [(2,2), (3,3)]

Padding/Stride d / s same / (1,1)

https://doi.org/10.1371/journal.pone.0285796.t001
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4.2. Datasets and image preprocessing

We used The Iraq-Oncology Teaching Hospital/ National Center for Cancer Diseases

(IQ-OTH/NCCD) lung cancer dataset (https://www.kaggle.com/kerneler/ starter-the-iq-oth-

nccd-lung-cancer-09c3a8c9-4/data). This dataset was collected from two specialist hospitals

for three months in 2019. The data is composed of CT scans taken from lung cancer patients

diagnosed in various stages and normal patients. The data consist of 1097 samples (images)

taken from 110 cases categorized into three classes: normal, benign, and malignant. One hun-

dred and twenty (120) samples are benign, 561 samples are malignant, and 416 are normal

samples. Fig 5 shows random samples of the original dataset.

In Section 3.2, a detailed schematic diagram of the process for the image preprocessing

technique applied was discussed. These techniques included grayscale, Gaussian Blur, image

segmentation, image normalization, erosion and dilation CLAHE, and wavelet transform. We

used the cvtColor () function in the OpenCV library to convert the lung cancer images into

Table 2. Notations and description of variables and parameters for SEIR-HDVQ.

Symbols Descriptions Value

π Recruitment rate of susceptible human individuals 0.1

N Number of iterations 100

psize Problem size 100

R Domain ranges (lower and upper) [(-1, 1)]

β1 Contact rate of infectious human individuals 0.1

β2 Contact rate of pathogen individuals/environment 0.1

β3 Contact rate of deceased human individuals 0.1

β4 Contact rate of recovered human individuals 0.1

Γ Disease-induced death rate of human individuals [0, 1]

[0, 1]

range of 0–1
γ Recovery rate of human individuals

Decay rate of Ebola virus in the environment

α Rate of hospitalization of infected individuals

τ Natural death rate of human individuals

δ Rate of burial of deceased human individuals

ϑ Rate of vaccination of individuals

Rate of response to hospital treatment

μ Rate of response to vaccination

ξ Rate of quarantine of infected individuals

https://doi.org/10.1371/journal.pone.0285796.t002

Fig 5. An illustration of samples from the original dataset showing images with normal, benign, and malignant

labels. (a) Normal, (b) Bengin, and (c) Malignant.

https://doi.org/10.1371/journal.pone.0285796.g005
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grayscale. The grayscale images are shown in Fig 6. We utilized the GaussianBlur () function of

the OpenCV library in Python. Fig 7 below describes the results of the Gaussian blur filter on

normal, benign, and malignant lung images.

The main objective of Otsu’s method was to obtain the optimum threshold value. It can be

calculated by grouping pixels into two classes, C1 and C2, and has bimodal histograms. Otsu’s

method is suitable for distinguishable foreground and background with a widely reported

interesting performance [60]. Considering the nature of the dataset used in this study, we

applied the method for the preprocessing task. The method also reduces the intra-class vari-

ance by selecting a suitable threshold value. We used the threshold function in Python. Fig 8

below demonstrates the effects of Otsu’s method on lung cancer images. We used normalize

function in Python for normalizing the lung cancer images, as seen in Fig 9. The processed

lung cancer images after applying the erosion and dilation are shown in Fig 10.

The result of the CLAHE filter can be seen in Fig 11. The wavelet output is depicted in

Fig 12 and is decomposed into four quadrants with different interpretations (LL, LH, HL,

HH). We selected the LL part for further analysis, as shown in Fig 13.

4.3. Benchmark functions for evaluating EOSA

To evaluate the effectiveness of the performance of the EOSA metaheuristic algorithm, we

employed using 15 standard and high dimensional benchmark functions via experimentation.

First, we sought to investigate the relevance of EOSA in achieving the optimization required

Fig 6. Illustration of the transformed binary images of normal, benign, and malignant samples into grayscale. (a)

Normal, (b) Bengin, and (c) Malignant.

https://doi.org/10.1371/journal.pone.0285796.g006

Fig 7. Outcome of application of Gaussian blur filter works on the lung cancer images of normal, benign, and

malignant samples. (a) Normal, (b) Bengin, and (c) Malignant.

https://doi.org/10.1371/journal.pone.0285796.g007
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for the classification problem. Secondly, it was necessary to compare the performance of

EOSA with state-of-the-art optimization algorithms’ performance. These functions are listed

in Table 3 and were subsequently used to compare similar metaheuristic algorithms in Section

5. We list the names, mathematical representations, and range values of the functions in

Table 3 below.

4.4. Classification evaluation metrics

In this paper, the comparison was based on seven performance measures, as defined in the fol-

lowing paragraphs. These measures were calculated from the generic confusion matrix in

Table 4.

Accuracy is the percentage of correctly classified samples:

Accuracy ¼
TP þ TN

ðTP þ TN þ FPþ FNÞ
ð14Þ

Kappa is a chance-corrected measure of agreement between the classifications and the true

classes:

kappa ¼
Accuracy � Random Accuracy

1 � Random Accuracy
ð15Þ

Fig 8. Illustrates the outcome of the Otsu’s method on normal, benign, and malignant samples. (a) Normal, (b)

Bengin, and (c) Malignant.

https://doi.org/10.1371/journal.pone.0285796.g008

Fig 9. Shows normalized lung cancer on normal, benign, and malignant samples. (a) Normal, (b) Bengin, and (c)

Malignant.

https://doi.org/10.1371/journal.pone.0285796.g009
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Specificity is the proportion of actual negatives which are predicted negative:

Specificity ¼
TN

ðTN þ FPÞ
ð16Þ

Sensitivity is the proportion of actual positives which are predicted positive:

Sensitivity ¼
TP

ðTP þ FNÞ
ð17Þ

Precision is a metric which supports the ability to determine how correctly our model predicts

Fig 10. Shows the erosion (a), (b), and (c) images and dilation (d), (e), and (f) images for normal, benign, and

malignant samples, respectively. (a) Normal, (b) Bengin, and (c) Malignant, (d) Normal, (e) Bengin, and (f) Malignant.

https://doi.org/10.1371/journal.pone.0285796.g010

Fig 11. Explain the output of the CLAHE filter for normal, benign, and malignant lung cancer samples. (a)

Normal, (b) Bengin, and (c) Malignant.

https://doi.org/10.1371/journal.pone.0285796.g011
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positive cases.

Precision ¼
TP

ðTP þ FPÞ
ð18Þ

Recall is used to measure the ability of a model to pick out positive samples from the data

source used for the experiment.

Recall ¼
TP

ðTPþ FNÞ
ð19Þ

F1-score is computed using a combination of recall and precision. This then allows for using

Fig 12. Explains the output of the wavelet filter for normal, benign, and malignant lung cancer samples. (a)

Normal, (b) Bengin, and (c) Malignant.

https://doi.org/10.1371/journal.pone.0285796.g012

Fig 13. Shows the LL component of output from the wavelet filter function for normal, benign, and malignant

lung cancer samples. (a) Normal, (b) Bengin, and (c) Malignant.

https://doi.org/10.1371/journal.pone.0285796.g013
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the metric as the weighted average of the two underlying metrics

F1 � score ¼
ð2∗Precision∗RecallÞ
ðPrecisionþ RecallÞ

ð20Þ

Table 3. Standard benchmark functions used for the experimentation of EOSA and other similar optimization algorithms.

ID Function name Model of the function Range

F1 Bent Cigar
f20ðxÞ ¼ x2

1
þ 106

XD

i¼2

x2
i

[–100,100]

F2 Composition2 g1 = Ackley’s Function

g2 = High Conditioned Elliptic Function

g3 = Griewank Function

g4 = Rastrigin’s Function

[–100,100]

F3 Dixon and Price
f18ðxÞ ¼ 106x2

1

XD

i¼2

x2
i

[–10, 10]

F4 Discus Function
f ðxÞ ¼ ðx1 � 1Þ

2
þ
Xn

i¼2

ið2x2
i � xi� 1Þ

2 [−100, 100]

F5 Fletcher–Powel f ðxÞ ¼ 100f½x3 � 10yðx1;x2Þ�
2
þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1
þ x2

2

p
� 1Þ

2
g þ x2

3

Where 2py x1;x2

� �
¼

tan� 1
x2

x1

; if x1 � 0

p � tan� 1
x2

x1

; otherwise

8
>><

>>:

[−100, 100]

F6 Generalized Penalized Function 1 f xð Þ ¼ p

n Xf10sin2ðpyiÞ þ
Pn� 1

i¼1
ðyi � 1Þ

2
½1þ 10sin2ðpyiþ1Þ� þ ðyn � 1Þ

2
g þ

Pn
i¼1
uðxi; a; k;mÞ

Where yi ¼ 1þ 1

4
xi þ 1ð Þ; u xi; a; k;mð Þ ¼

kðxi � aÞ
m if xi > a

0 if � a � xi � a

kð� xi � aÞ
m if xi<� a

8
>><

>>:

a = 10, k = 100, m = 4

[–50, 50]

F7 Generalized Penalized Function 2 f ðxÞ ¼ 0:1 Xfsin2ð3px1Þ þ
Pn� 1

i¼1
ðxi � 1Þ

2
½1þ sin2ð3pxiþ1Þ� þ ðxn � 1Þ

2
½1þ sin2ð2pxnÞ�g þ

Pn
i¼1
uðxi; a; k;mÞ

Where uðxi; a; k;mÞ ¼

kðxi � aÞ
m if xi > a

0 if � a � xi � a

kð� xi � aÞ
m if xi<� a

8
>><

>>:

a = 5, k = 100, m = 4

[-5.12, 5.12]

F8 Holzman 2 function
f ðxÞ ¼

Xn

i� 1

ix4
i

[–100,100]

F9 HGBat

f23 xð Þ ¼ jð
XD

i¼1

x2
i Þ

2
� ð
XD

i¼1

xiÞ
2
j
1=

2 þ ð0:5
PD

i¼1
x2
i þ

PD
i¼1
xiÞ
�

D þ 0:5

[–100,100]

F10 Inverted Cosine Mixture
f14ðxÞ ¼ 0:1n � ð0:1

Xn

i¼1

cosð5pxiÞ �
Xn

i¼1

x2
i Þ

[–1,1]

F11 Levy
f12ðxÞ ¼

Xn

i¼1

ðxi � 1Þ
2
½sin2ð3pxiþ1Þ� þ sin2ð3px1Þ þ jxn � 1j½1þ sin2ð3pxnÞ�

[−10, 10]

F12 Rosenbrock
f ðxÞ ¼

Xn� 1

i¼1

½100ðxiþ1 � x2
i Þ

2
þ ðxi � 1Þ

2
�

[−30, 30]

F13 Step
f ðxÞ ¼

Xn

i¼1

ðfloorðxiÞ þ 0:5Þ
2 [−100, 100]

F14 SR- Sum of Different Power Shifted and Rotated Sum of Different Power Function [–100,100]

F15 Wavy 1
f ðxÞ ¼

Xn

i¼1

x2
i þ ð

Pn
i¼1

0:5ixiÞ
2
þ ð
Pn

i¼1
0:5ixiÞ

4 [–100,100]

https://doi.org/10.1371/journal.pone.0285796.t003
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5. Results and discussion

The performance of the proposed hybrid algorithm EOSA-CNN is evaluated in this section.

The outcome of this evaluation is compared with other CNN solutions applied to the same

classification problem. We also present the EOSA metaheuristic algorithms’ performance

compared with other state-of-the-art methods using the benchmark functions listed in the pre-

vious section.

The performance of EOSA was compared with nine different optimization algorithms,

namely Artificial Bee Colony (ABC), Whale Optimization Algorithm (WOA), Butterfly Opti-

mization Algorithm (BOA), Particle Swarm Optimization (PSO), Differential Evolution (DE),

Genetic Algorithm (GA), Henry Gas Solubility Optimization Algorithm (HGSO), Blue Mon-

key Optimization (BMO), and Sandpiper Optimization Algorithm (SOA). The experimenta-

tion, which was executed for five 500 iterations and 20 different runs, was applied to 15

benchmark functions.

Using the benchmark functions listed in Table 3, the performance of EOSA compared with

other state-of-the-art methods showed better outcomes, as seen in Table 5. For example, the

number of times when each algorithm dominated others is described as follows: for ABC,

WOA, BOA, PSO, DE, GA, BMO, EOSA, HGSO, and SOA, dominant over other methods are

2, 2, 2, 1, 1, 0, 0, 6, 1, and 4 respectively. This confirms that EOSA demonstrated superiority

over other methods eight times out of all the 15 benchmark functions we experimented with.

The SOA algorithm is another competitive method that follows EOSA in performance with

four benchmark functions. Considering the capability of the EOSA metaheuristic algorithm to

obtain more best solutions out of all the benchmark functions, it became necessary to investi-

gate its applicability to the optimization problem described in this study. Meanwhile, Fig 14

shows a convergence graph of EOSA over some selected benchmark functions. The plot

showed that the convergence pattern of the EOSA method is smooth, especially in the cases of

F1-F6 and F9, and even those of F7-8 and F10-13 are seen to converge well. This demonstrates

that the algorithm can search for the best solution from the global search space. This also con-

firms the algorithm’s applicability in solving complex real-life problems, as investigated in this

study. Fig 15 shows the comparison of the convergence of EOSA with those of ABC, WOA,

BOA, PSO, DE, GA, BMO, EOSA, HGSO, and SOA.

The optimized CNN architecture was fully trained to learn the classification problem of

detecting and classifying lung cancer from the database samples used in the study. The trained

model was then applied to a dataset for prediction. Results showed that the optimization pro-

cess’s impact benefited the entire process. In Table 6, an outline of the performance of

GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, and EOSA-CNN is compared

with the basic CNN with no optimization applied. The classification accuracy of EOSA-CNN

yielded 0.87, demonstrating superiority over those of GA-CNN, LCBO-CNN, MVO-CNN,

SBO-CNN, and WOA-CNN hybrid algorithms, which obtained 0.82, 0.83, 0.81, 0.82, 0.82,

0.87, respectively. Similarly, we observed that the EOSA-CNN algorithm demonstrated superi-

ority over other hybrid algorithms for Kappa, recall, F1 score, and specificity by obtaining

0.70, 0.82, 0.82 and 0.98, respectively. These outcomes imply that applying the proposed

Table 4. Structure of the confusion matrix.

True Condition

Predicted Condition Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

https://doi.org/10.1371/journal.pone.0285796.t004

PLOS ONE Ebola optimization search algorithm for detection and classification of lung cancer on CT images

PLOS ONE | https://doi.org/10.1371/journal.pone.0285796 August 17, 2023 20 / 33

https://doi.org/10.1371/journal.pone.0285796.t004
https://doi.org/10.1371/journal.pone.0285796


Table 5. Comparison of best, worst, mean, median and standard deviation values for ABC, WOA, BOA PSO, EOSA, DE, GA, HGSO, SOA, and BMO metaheuristic

algorithms using the classical benchmark functions over 500 runs and 100 population size.

ABC WOA BOA PSO DE GA BMO EOSA HGSO SOA

F1 Best 2.47E-12 2.48E-12 2.50E-12 2.44E-12 1.46E+11 4106464761 1.04867E+11 2.44E-12 8.23E-104 0

Worst 2.60168E+11 2.48E-12 2.50E-12 2.44E-12 2.58E+11 1.35E+11 1.26382E+11 2.44E-12 1.07E+11 2.55822E+11

Mean 2.04696E+11 2.48E-12 2.50E-12 2.44E-12 2.06E+11 5647478875 1.04953E+11 2.44E-12 489880801.7 9790935384

F2 Best 2.40E-18 2.44E-18 2.37E-18 2.44E-18 1.49E+17 53323511.38 209785.6196 2.37E-18 44.10261447 44.33953792

Worst 1.45E+17 2.44E-18 2.37E-18 2.44E-18 1.49E+17 2.52E+16 209785.6196 2.40E-18 1.04E+16 1.70E+17

Mean 6.40E+16 2.44E-18 2.37E-18 2.44E-18 1.49E+17 5.83E+13 209785.6196 2.37E-18 3.01E+13 2.59E+16

F3 Best 2.86E-12 2.82E-12 2.76E-12 2.86E-12 2.71E-146 865.7595089 260316.6212 2.57E-12 1.02E-241 0

Worst 100289061.5 2.82E-12 2.76E-12 2.86E-12 24647958.47 652837.5949 260316.6212 2.80E-12 54779492.97 5871510.079

Mean 256702.4063 2.82E-12 2.76E-12 2.86E-12 85506.69928 26635.78996 260316.6212 2.57E-12 114542.9249 11743.02016

F4 Best 1.01E-10 1.02E-10 1.02E-10 1.01E-10 152250.3059 11996.3679 210095.2125 1.01E-10 1.22E-109 0

Worst 2219235.401 1.02E-10 1.02E-10 1.01E-10 1083569.996 242291.8529 210095.2125 1.02E-10 1472206.755 482941.467

Mean 260786.7052 1.02E-10 1.02E-10 1.01E-10 225703.8591 23799.47495 210095.2125 1.01E-10 5060.550052 27644.49411

F5 Best 1.08E-19 1.16E-19 1.13E-19 1.04E-19 1.00E-24 911.4244623 209785.6196 9.62E-20 0.15590465 10460.04926

Worst 18770598227 1.16E-19 1.13E-19 1.04E-19 92699584231 1419691418 209785.6196 9.90E-20 3.69E+11 34961399751

Mean 59781217.28 1.16E-19 1.13E-19 1.04E-19 238666361.4 5408441.124 209785.6196 9.62E-20 745438916.6 156886793.6

F6 Best 1.71E-10 1.76E-10 1.72E-10 1.73E-10 2394966487 4.159217166 11210910151 1.72E-10 1.02650854 1.187374865

Worst 2594482104 1.76E-10 1.72E-10 1.73E-10 2567488472 678040718.4 33979497609 1.74E-10 429173991.9 78169609340

Mean 975017964 1.76E-10 1.72E-10 1.73E-10 2524020304 1702811.703 11346936651 1.72E-10 1632585.894 5291097513

F7 Best 0.00537744 0.005388969 0.005480457 0.005391917 59.10789733 6.976934078 14981554900 0.003344178 9.850801272 9.800000008

Worst 106.5810109 0.005388969 0.005480457 0.005391917 107.3461889 63.34963883 27264639920 0.004373574 43.96722626 1.03559E+11

Mean 11.41374051 0.005388969 0.005480457 0.005391917 81.28584828 8.490634765 15100740067 0.003346353 10.05723641 6446484084

F8 Best 3.65E-10 3.74E-10 3.66E-10 3.73E-10 985634985.2 17956.26097 354906921.5 3.74E-10 4950 4950

Worst 1384897512 3.74E-10 3.66E-10 3.73E-10 1361818654 464120523.3 554301224 3.75E-10 340835146.7 1457114306

Mean 889078912.1 3.74E-10 3.66E-10 3.73E-10 1254140695 1772015.04 355869483 3.74E-10 1336939.589 24765556.99

F9 Best 2.45E-06 2.45E-06 2.44E-06 2.42E-06 150745.5792 4173.394244 123695.6791 2.43E-06 0.5 0.5

Wworst 263287.4203 2.45E-06 2.44E-06 2.42E-06 262848.6996 139559.2807 140863.5674 2.44E-06 75064.78913 264461.4534

Mean 205450.4186 2.45E-06 2.44E-06 2.42E-06 207583.4194 5816.112605 123809.6376 2.43E-06 366.1429711 7460.348419

F10 Best 0.065264947 0.055534741 0.065630095 0.065272135 11.29812226 4.736804364 9702.905179 0.046648475 0 0

Worst 11.507642 0.065329978 0.065630095 0.065272135 11.44580276 10.09038934 13005.22209 0.058911739 8.480262936 26494.77467

Mean 2.862967765 0.057169632 0.065630095 0.065272135 11.40128365 5.190692848 9721.634657 0.046680024 0.114397103 1112.80629

F11 Best 0.000250786 0.000246696 0.000249866 0.000252195 13.25336872 40.41662168 1985.011032 0.000246298 11.51810893 100

Worst 1477.956124 0.000246696 0.000249866 0.000252195 1437.269586 820.6332779 58896.95022 0.000247986 669.1654077 9900

Mean 106.6199225 0.000246696 0.000249866 0.000252195 225.3094727 57.42482498 3143.086142 0.000246305 29.56622817 3803.34477

F12 Best 4.59E-10 4.56E-10 4.50E-10 4.62E-10 921421360.4 16533.59328 23577837147 4.51E-10 98.86771563 98.97310275

Worst 1085749209 4.56E-10 4.50E-10 4.62E-10 1105359990 365586773.6 48156845615 4.57E-10 237130959.5 1.37169E+11

Mean 391773892 4.56E-10 4.50E-10 4.62E-10 1041990575 1472601.153 23631867107 4.51E-10 746936.1114 13444857087

F13 Best 2.47E-06 2.43E-06 2.45E-06 2.44E-06 149354.2611 4296.604798 105811.7963 2.43E-06 19.93229264 23.75105029

Worst 257643.1306 2.43E-06 2.45E-06 2.44E-06 261762.2494 138652.6906 142526.1384 2.44E-06 91297.1041 275194.0507

Mean 205778.2306 2.43E-06 2.45E-06 2.44E-06 204473.9907 5798.078168 106135.334 2.43E-06 401.736332 18094.64593

F14 Best 3.01E-70 3.60E-70 2.93E-70 2.61E-70 8.61E+48 1200.2428 5490765292 2.02E-70 1200.00029 36750667194

Worst 4.50E+54 3.60E-70 2.93E-70 2.61E-70 7.42E+54 1.37E+51 5.41E+39 2.53E-70 2.72E+54 1200.052508

Mean 1.09E+52 3.60E-70 2.93E-70 2.61E-70 5.52E+53 5.37E+48 2.73E+48 2.02E-70 1.08E+52 9.95E+52

F15 Best 2.09E-29 1.78E-29 1.89E-29 2.03E-29 438320.8487 110941.4238 10.88064761 1.79E-29 592240.2576 248.3259763

Worst 2.76E+24 1.78E-29 1.89E-29 2.03E-29 1.10E+24 1.04E+24 1.10E+24 1.93E-29 1.92E+23 1.06326E+12

Mean 1.43E+22 1.78E-29 1.89E-29 2.03E-29 3.47E+21 3.14E+21 1.10E+24 1.79E-29 6.82E+20 8.71E+18

Total Count 2 2 2 1 1 0 0 6 1 4

https://doi.org/10.1371/journal.pone.0285796.t005
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EOSA-CNN hybrid algorithm benefited the classification process, leading to better classifica-

tion accuracy in detecting malignancy. Furthermore, we noted that the good performance of

the hybrid algorithm for specificity metric showed that it could effectively detect true negative

cases, thereby reducing false-negative reports. Meanwhile, we observed that EOSA-CNN out-

performed similar hybrid algorithms and outperformed the traditional CNN model, which

achieved an accuracy of 0.80.

We examined the performance of the EOSA-CNN algorithm on the three classes of labels

seen on the samples drawn from the datasets. These results are listed in Table 6, where the

specificity, sensitivity, precision, recall, F1-score and balanced accuracy are computed and

reported. In most cases, all the hybrid algorithms competed very closely with the proposed

EOSA-CNN algorithm, while it was seen to outperform the traditional CNN in most metrics.

Again, this confirms that EOSA-CNN successfully indicated the features of each class and cor-

rectly classified them on an excellent performance. This further reinforces the need for the

algorithm’s usefulness in addressing the classification problem in the domain.

Furthermore, a detailed report on the performance of the hybrid algorithms, when com-

pared with the EOSA-CNN algorithm and then with the traditional CNN, is presented in

Fig 14. Convergent curves of EOSA on standard benchmark functions over 1, 50, 100, 200, 300, 400 and 500

epochs.

https://doi.org/10.1371/journal.pone.0285796.g014

Fig 15. Convergent curves of EOSA and related optimization algorithms benchmark functions over 1, 50, 100,

200, 300, 400 and 500 epochs.

https://doi.org/10.1371/journal.pone.0285796.g015
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Table 7, where we computed the best, mean, standard deviation, median, and worst values.

These were computed for all metrics of accuracy, kappa, precision, recall, F1 score, specificity,

and sensitivity for the overall performance of the algorithms. For instance, the best values

obtained for accuracy for GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, and

EOSA-CNN were 0.81, 0.81, 0.79, 0.81, 0.81, and 0.82, respectively. We see that the

EOSA-CNN algorithm yielded a better performance when compared with other hybrid algo-

rithms. In addition to the EOSA-CNN surpassing other hybrids, it also outperformed the basic

CNN architecture by an increase of 0.06. Similarly, the EOSA-CNN algorithm demonstrated

good competitive performance with other hybrid algorithms and surpassed the traditional

CNN as seen in the following: where GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN,

WOA-CNN, EOSA-CNN and CNN reported for recall are 0.81, 0.81, 0.79, 0.81, 0.81, 0.82, and

0.76 respectively; GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, EOSA-CNN

Table 6. The overall and per-class performance of the GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, and EOSA-CNN hybrid algorithms as com-

pared with the basic CNN architecture.

Measure/ Methods GA-CNN LCBO-CNN MVO-CNN SBO-CNN WOA-CNN EOSA-CNN CNN

Overall Performance

Accuracy (95% CI) 0.82 0.83 0.81 0.82 0.82 0.87 0.80

Cohens kappa 0.63 0.61 0.59 0.62 0.63 0.70 0.60

Precision 0.84 0.81 0.79 0.81 0.82 0.83 0.81

Recall 0.77 0.77 0.76 0.77 0.77 0.82 0.75

F1 score 0.80 0.78 0.77 0.79 0.79 0.82 0.78

Specificity 0.73 0.86 0.82 0.76 0.75 0.98 0.70

Sensitivity 0.57 0.45 0.33 0.43 0.41 0.38 0.53

Performance per class

Sensitivity

Normal 0.7212 0.8558 0.7885 0.7500 0.7404 0.9231 0.6827

Benign 0.5333 0.4333 0.3333 0.4333 0.400 0.36667 0.5333

Malignant 0.8643 0.7714 0.8214 0.8571 0.8786 0.8500 0.8500

Specificity

Normal 0.8941 0.7765 0.7882 0.8235 0.8588 0.8294 0.8529

Benign 0.8320 0.9016 0.8893 0.8689 0.8525 0.9508 0.8320

Malignant 0.9776 0.9851 0.9701 0.9925 0.9851 0.9478 0.9851

Precision

Normal 0.8065 0.7008 0.6949 0.7222 0.7624 0.7680 0.7396

Benign 0.2807 0.3514 0.2703 0.2889 0.2500 0.4783 0.2807

Malignant 0.9758 0.9818 0.9664 0.9917 0.984 0.9444 0.9835

Recall

Normal 0.7212 0.8558 0.7885 0.7500 0.7404 0.9231 0.6827

Benign 0.5333 0.4333 0.3333 0.4333 0.400 0.3667 0.5333

Malignant 0.8643 0.7714 0.8214 0.8571 0.8786 0.8500 0.8500

F1 score

Normal 0.7614 0.7706 0.7387 0.7358 0.7512 0.8384 0.71

Benign 0.36782 0.38806 0.2985 0.34667 0.3077 0.41509 0.36782

Malignant 0.9167 0.864 0.888 0.9195 0.9283 0.8947 0.9119

Balanced Accuracy

Normal 0.8076 0.8161 0.7883 0.7868 0.7996 0.8762 0.7678

Benign 0.68265 0.66749 0.6113 0.65109 0.6262 0.65874 0.68265

Malignant 0.9209 0.8783 0.8958 0.9248 0.9318 0.8989 0.9175

https://doi.org/10.1371/journal.pone.0285796.t006
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and CNN reported for precision are 0.81, 0.81, 0.81, 0.82, 0.81, 0.82, and 0.78 respectively;

GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, EOSA-CNN and CNN

reported for specificity are 0.9, 0.94, 0.9, 0.98, 0.94, 0.98, and 0.73 respectively.

In Table 8, we compute the values for the same set of metrics, namely best, mean, standard

deviation, median, and worst with respect to class labels seen in the samples from the dataset.

This allows for investigating that the algorithms are not biased in detecting and classifying fea-

tures from each class. We observed that results were obtained for accuracy, kappa, precision,

recall, F1 score, specificity, and sensitivity for all hybrid algorithms and the traditional CNN

for malignancy labels. The result obtained for the best values in all those metrics confirmed the

good performance of the hybrid algorithms over the CNN architecture and for EOSA-CNN

Table 7. Results comparison of the best, mean, standard deviation, median, and worst overall performance based on the GA-CNN, LCBO-CNN, MVO-CNN,

SBO-CNN, WOA-CNN, and EOSA-CNN hybrid algorithms compared with the basic CNN architecture.

Measure Metric GA-CNN LCBO-CNN MVO-CNN SBO-CNN WOA-CNN EOSA-CNN CNN

Accuracy Best 0.81 0.81 0.79 0.81 0.81 0.82 0.76

Mean 0.77 0.78 0.772 0.776 0.778 0.81 0.738

STD 0.025495 0.018708 0.016432 0.027928 0.031145 0.012247 0.016432

Median 0.77 0.78 0.78 0.77 0.78 0.81 0.73

Worst 0.74 0.76 0.75 0.75 0.73 0.79 0.72

Kappa Best 0.67 0.68 0.66 0.67 0.67 0.70 0.6

Mean 0.622 0.634 0.62 0.626 0.632 0.676 0.574

STD 0.031145 0.035071 0.03 0.042778 0.043243 0.018166 0.026077

Median 0.62 0.64 0.63 0.62 0.64 0.68 0.57

Worst 0.59 0.59 0.59 0.58 0.56 0.65 0.54

Precision Best 0.84 0.87 0.85 0.86 0.83 0.83 0.81

Mean 0.81 0.824 0.808 0.81 0.812 0.818 0.798

STD 0.025495 0.031305 0.0249 0.030822 0.014832 0.008367 0.013038

Median 0.81 0.81 0.8 0.81 0.81 0.82 0.8

Worst 0.78 0.79 0.79 0.78 0.79 0.81 0.78

Recall Best 0.81 0.81 0.79 0.81 0.81 0.82 0.76

Mean 0.77 0.78 0.772 0.776 0.778 0.81 0.738

STD 0.025495 0.018708 0.016432 0.027928 0.031145 0.012247 0.016432

Median 0.77 0.78 0.78 0.77 0.78 0.81 0.73

Worst 0.74 0.76 0.75 0.75 0.73 0.79 0.72

F1 score Best 0.81 0.81 0.81 0.82 0.81 0.82 0.78

Mean 0.786 0.79 0.782 0.788 0.79 0.812 0.762

STD 0.018166 0.02 0.016432 0.027749 0.024495 0.013038 0.017889

Median 0.78 0.80 0.78 0.79 0.79 0.82 0.76

Worst 0.77 0.76 0.77 0.76 0.75 0.79 0.74

Specificity Best 0.9 0.94 0.9 0.98 0.94 0.98 0.73

Mean 0.782 0.828 0.83 0.824 0.808 0.926 0.692

STD 0.079498 0.133866 0.072111 0.104067 0.127161 0.0498 0.023875

Median 0.76 0.86 0.82 0.77 0.78 0.92 0.68

Worst 0.7 0.62 0.72 0.73 0.64 0.85 0.67

Sensitivity Best 0.66 0.79 0.67 0.53 0.41 0.38 0.53

Mean 0.45 0.426 0.396 0.35 0.358 0.256 0.484

STD 0.156045 0.222778 0.17883 0.135093 0.074297 0.11349 0.063875

Median 0.37 0.37 0.37 0.33 0.37 0.27 0.53

Worst 0.3 0.2 0.18 0.18 0.23 0.13 0.40

https://doi.org/10.1371/journal.pone.0285796.t007
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Table 8. Class-based results comparison for the best, mean, standard deviation, median, and worst of class-based performance based on the GA-CNN, LCBO-CNN,

MVO-CNN, SBO-CNN, WOA-CNN, and EOSA-CNN hybrid algorithms and as compared with the basic CNN architecture.

Measure Metric GA-CNN LCBO-CNN MVO-CNN SBO-CNN WOA-CNN EOSA-CNN CNN

Sensitivity

Normal Best 0.8654 0.9368 0.875 0.9712 0.9135 0.9231 0.7115

Mean 0.75772 0.81814 0.81156 0.8154 0.78464 0.90 0.67306

STD 0.0791 0.14166 0.06252 0.10164 0.13072 0.04171 0.02451

Median 0.7308 0.8558 0.8077 0.7596 0.75 0.9231 0.6635

Worst 0.6635 0.5962 0.7212 0.7308 0.6058 0.8269 0.6538

Benign Best 0.63333 0.76667 0.66667 0.53333 0.4 0.36667 0.53333

Mean 0.42 0.41333 0.38665 0.34667 0.34666 0.24 0.48666

STD 0.15741 0.21551 0.18349 0.14259 0.06912 0.10382 0.06498

Median 0.36667 0.36667 0.3333 0.3333 0.36667 0.26667 0.53333

Worst 0.26667 0.20 0.16667 0.16667 0.23333 0.13333 0.4

Malignant Best 0.9 0.9214 0.8429 0.9071 0.9214 0.9071 0.85

Mean 0.85858 0.82858 0.82286 0.83856 0.86856 0.86712 0.83858

STD 0.03655 0.07676 0.01706 0.0543 0.05613 0.04213 0.01082

Median 0.8643 0.8143 0.8214 0.8429 0.8786 0.8643 0.8357

Worst 0.8143 0.7429 0.8 0.7571 0.7786 0.8071 0.8286

Specificity

Normal Best 0.8941 0.9588 0.8882 0.9059 0.8824 0.8882 0.8529

Mean 0.85296 0.81882 0.81762 0.80234 0.83412 0.81292 0.83292

STD 0.043 0.09532 0.04138 0.06625 0.05712 0.04893 0.01535

Median 0.8647 0.7941 0.8059 0.7882 0.8588 0.7941 0.8353

Worst 0.7824 0.7059 0.7882 0.7412 0.7588 0.7588 0.8176

Benign Best 0.92623 0.93443 0.91803 0.97131 0.94262 0.97951 0.84836

Mean 0.86803 0.8872 0.88359 0.89342 0.88443 0.93689 0.83361

STD 0.04351 0.05474 0.03602 0.05011 0.05636 0.03169 0.00943

Median 0.86066 0.90164 0.8893 0.877 0.877 0.93443 0.83197

Worst 0.82377 0.80328 0.84426 0.84016 0.8115 0.89344 0.8238

Malignant Best 0.985 1 1 1 0.9851 1 0.9851

Mean 0.9612 0.98358 0.97462 0.98656 0.97016 0.96568 0.9776

STD 0.01932 0.01435 0.01946 0.00973 0.01903 0.03192 0.0053

Median 0.9552 0.9851 0.9701 0.9851 0.9776 0.9478 0.9776

Worst 0.9403 0.9627 0.9478 0.9776 0.9403 0.9328 0.9701

Precision

Normal Best 0.8065 0.8986 0.8155 0.8261 0.7959 0.819 0.7396

Mean 0.76264 0.74924 0.73322 0.72264 0.7482 0.74984 0.71148

STD 0.03492 0.09224 0.04791 0.06092 0.03739 0.04546 0.02475

Median 0.7667 0.7177 0.7165 0.7063 0.759 0.7328 0.7113

Worst 0.7087 0.6599 0.6949 0.6716 0.6985 0.7007 0.6869

Benign Best 0.30769 0.40741 0.35088 0.41667 0.42308 0.47826 0.30189

Mean 0.28194 0.31394 0.28188 0.30389 0.29414 0.339 0.26439

STD 0.04213 0.07393 0.06118 0.07401 0.09156 0.12445 0.0328

Median 0.30556 0.32394 0.2703 0.29091 0.2857 0.33333 0.27586

Worst 0.2093 0.21429 0.2 0.2105 0.1786 0.18182 0.2182

Malignant Best 0.9844 1 1 1 0.984 1 0.9835

Mean 0.9585 0.98232 0.97164 0.98464 0.96884 0.9652 0.97508

STD 0.02039 0.01412 0.02146 0.01097 0.018 0.03218 0.00594

Median 0.9508 0.9818 0.9672 0.9815 0.9732 0.9478 0.975

Worst 0.9394 0.9627 0.9421 0.9748 0.9407 0.9338 0.9667

(Continued)
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Table 8. (Continued)

Measure Metric GA-CNN LCBO-CNN MVO-CNN SBO-CNN WOA-CNN EOSA-CNN CNN

Recall

Normal Best 0.8654 0.9368 0.875 0.9712 0.9135 0.9231 0.7115

Mean 0.75772 0.81814 0.81156 0.8154 0.78464 0.90 0.67306

STD 0.0791 0.14166 0.06252 0.10164 0.13072 0.04171 0.02451

Median 0.7308 0.8558 0.8077 0.7596 0.75 0.9231 0.6635

Worst 0.6635 0.5962 0.7212 0.7308 0.6058 0.8269 0.6538

Benign Best 0.63333 0.76667 0.66667 0.53333 0.4 0.36667 0.53333

Mean 0.42 0.41333 0.38665 0.34667 0.34666 0.24 0.48666

STD 0.15741 0.21551 0.18349 0.14259 0.06912 0.10382 0.06498

Median 0.36667 0.36667 0.3333 0.3333 0.36667 0.26667 0.53333

Worst 0.26667 0.2 0.16667 0.16667 0.23333 0.13333 0.40

Malignant Best 0.9 0.9214 0.8429 0.9071 0.9214 0.9071 0.85

Mean 0.85858 0.82858 0.82286 0.83856 0.86856 0.86712 0.83858

STD 0.03655 0.07676 0.01706 0.0543 0.05613 0.04213 0.01082

Median 0.8643 0.8143 0.8214 0.8429 0.8786 0.8643 0.8357

Worst 0.8143 0.7429 0.80 0.7571 0.7786 0.8071 0.8286

F1 score

Normal Best 0.785 0.8128 0.8116 0.8178 0.8085 0.8384 0.722

Mean 0.75714 0.76846 0.7691 0.76138 0.7595 0.8164 0.69172

STD 0.02938 0.03413 0.0408 0.03759 0.05248 0.01586 0.02356

Median 0.7614 0.7706 0.7879 0.7563 0.7723 0.817 0.6866

Worst 0.7113 0.7168 0.7143 0.7215 0.6738 0.7967 0.67

Benign Best 0.41304 0.45545 0.45977 0.37647 0.39286 0.41509 0.38554

Mean 0.3293 0.34205 0.31888 0.30383 0.30819 0.26946 0.34253

STD 0.06568 0.09716 0.09907 0.06419 0.06051 0.09936 0.04303

Median 0.33333 0.38596 0.32099 0.3226 0.3077 0.27692 0.36364

Worst 0.24658 0.23077 0.18182 0.2353 0.2326 0.15385 0.2824

Malignant Best 0.9403 0.9416 0.9105 0.9513 0.9416 0.9272 0.9119

Mean 0.90558 0.897 0.89096 0.90512 0.91492 0.9125 0.90168

STD 0.02643 0.04082 0.01476 0.03521 0.02937 0.01712 0.00829

Median 0.9118 0.8976 0.888 0.9042 0.9236 0.9203 0.90

Worst 0.8736 0.849 0.8736 0.8548 0.8651 0.8933 0.8923

Balanced Accuracy

Normal Best 0.8274 0.8655 0.848 0.862 0.8508 0.8762 0.7764

Mean 0.80532 0.81848 0.81458 0.80886 0.80936 0.85648 0.753

STD 0.02315 0.03129 0.03384 0.03411 0.04133 0.01314 0.01856

Median 0.8076 0.8161 0.8316 0.8033 0.8162 0.8576 0.7494

Worst 0.77 0.7775 0.7694 0.7739 0.7441 0.841 0.7357

Benign Best 0.72855 0.78497 0.75751 0.68675 0.6526 0.65874 0.69085

Mean 0.64402 0.65027 0.63513 0.62007 0.61554 0.58844 0.66014

STD 0.06144 0.08653 0.07787 0.05084 0.03404 0.04905 0.03479

Median 0.6321 0.64929 0.6257 0.6216 0.6262 0.59672 0.6806

Worst 0.58033 0.56721 0.54235 0.56899 0.5724 0.52978 0.6119

Malignant Best 0.9425 0.9421 0.9179 0.9536 0.9421 0.9321 0.9175

Mean 0.90986 0.90608 0.89874 0.91256 0.91936 0.91642 0.9081

STD 0.02425 0.03313 0.01405 0.0302 0.02448 0.0146 0.00747

Median 0.913 0.9071 0.8958 0.9102 0.9237 0.92 0.9067

Worst 0.881 0.8677 0.881 0.8711 0.8781 0.8989 0.8994

https://doi.org/10.1371/journal.pone.0285796.t008
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over the other hybrid algorithms. For sensitivity, GA-CNN, LCBO-CNN, MVO-CNN,

SBO-CNN, and WOA-CNN obtained 0.9, 0.9214, 0.8429, 0.9071, and 0.9214, respectively,

EOSA yielded 0.9071 while the CNN obtained 0.85. Similarly, for specificity, GA-CNN,

LCBO-CNN, MVO-CNN, SBO-CNN, and WOA-CNN gave 0.985, 1, 1, 1, and 0.9851, respec-

tively, but EOSA-CNN gave output 1, while the traditional CNN yielded 0.9851. These showed

that for both specificity and sensitivity, the EOSA-CNN demonstrated good performance com-

pared with the other hybrid algorithms and the basic CNN algorithm.

Furthermore, we observed that for precision, GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN,

WOA-CNN and EOSA-CNN obtained 0.9844, 1, 1, 1, 0.984, and 1, while CNN gave 0.9835; for

recall, GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN and EOSA-CNN yielded

0.9, 0.9214, 0.8429, 0.9071, 0.9214, and 0.9071 respectively, while the traditional CNN obtained

0.85. In both cases of recall and precision, EOSA-CNN and the other hybrid CNN algorithms per-

formed well. Also, we see that for F1 scores, 0.9403, 0.9416, 0.9105, 0.9513, 0.9416, 0.9272, and

0.9119 were reported for GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN,

EOSA-CNN and CNN, while 0.9425, 0.9421, 0.9179, 0.9536, 0.9421, 0.9321 and 0.9175 were

obtained for GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, EOSA-CNN and

CNN respectively with respect to balanced accuracy. A good competitive performance is seen for

the classification accuracy of all hybrid algorithms, with the basic CNN architecture lagging.

Fig 16 shows the confusion matrix plot for all hybrid algorithms with respect to all the class

labels observed in the dataset. The classification accuracy of all classes is indicated for each plot

of the confusion matrix to give an accurate report on their performances. Taking the case of

EOSA-CNN as an example, we see that 90% of all cases with normal labels were correctly iden-

tified, and over 86% of cases labelled as malignant were correctly identified by the hybrid algo-

rithm proposed in this study. This is contrary to what is reported for the traditional CNN,

Fig 16. Overlapped confusion matrix for all hybrid algorithms with CNN. (a) GA-CNN, (b) LCBO-CNN, (c)

MVO-CNN (d) SBO-CNN, (e) WOA-CNN, (f) EOSA-CNN, and (g) CNN.

https://doi.org/10.1371/journal.pone.0285796.g016
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where only 67.31% of samples with normal labels were correctly identified, while about 83% of

those with malignancy were correctly identified. This reinforces the impact of the hybrid algo-

rithm proposed in this study since it improved classification accuracy.

In Table 9, we compare the performance of the proposed EOSA-CNN hybrid algorithm

with those reported in similar studies. The classification accuracy obtained in the approach

proposed in this study competes with those seen in the works of Chen et al. [61] Sultana et al.

[62], Bangare et al. [63] Al-Yasriy et al. [64] Dass and Kumar [65] and Lyu [66]. All the similar

methods applied basic and benchmark CNN architectures with known use of any parameter

optimization strategy. Although the result obtained by most of the studies are interesting, we

note that such models will under-perform when some performance tilting conditions are

introduced. These approaches are far below that proposed in this study, which aimed to stabi-

lize and solve classification problems using optimized CNN architectures. As seen in this

study, we argue that the hyperparameter optimization applied using metaheuristic algorithms

promises a stabilized model that learns the classification problem effectively and can address

the underlying condition. Therefore, the approach can eliminate false positive rates (FPR) and

false negative rates (FNR), often making a mal-trained model yield pseudo-performance. Fur-

thermore, several studies have confirmed that optimizing the architectural configuration of

CNN models has now become the state-of-the-art (SOTA) in yielding the best-performing

classification models. Therefore, considering such a SOTA approach, which resulted in an

impressive performance, demonstrates that classification problem-solving is reliable.

In this study, the result of specificity and precision, which are 1.0 for both cases as obtained,

confirms that classification accuracy alone is insufficient to demonstrate the methods’ superi-

ority. It can be seen that the proposed method in this study gave a very good performance in

its ability to eliminate the presence of false positives and ensured that our model correctly clas-

sified negative cases as negative and positive cases as positive. Also, the value of 1.0 for specific-

ity reported for the method proposed in this study showed that the total number of negative

cases (normal and benign) in our datasets discovered to be truly negative was very accurate.

That means all negative cases were truly confirmed negative by our method. This is very

important to rule out the possibility of false negative and false positive results. Yielding a zero

level for false positive and false negative rates, as seen by our proposed method, showed that

the EOSA-CNN hybrid algorithm is good for classification accuracy and obtains results. This

will boost confidence in the resulting output of the proposed algorithm when deployed for use.

Therefore, this study has demonstrated the importance of using the hybrid metaheuristic algo-

rithm and CNN models to solve the difficult problem of selecting the best combination of

Table 9. Performance comparison of the proposed method and some similar methods of CNN for the classification of lung cancer.

Author and

Reference

Method Dataset Performance

Chen et al., [61] CNN+ Natural language processing (NLP) IQ-OTH/NCCD dataset Accuracy of 88.0%

Sultana et al.,

[62]

2-D CNN with SVM, ResNet-50,

InceptionResNetV2, Inception-V3, and VGG-19

IQ-OTH/NCCD dataset Accuracy 99.13%

Bangare et al.,

[63]

CNN model IQ-OTH/NCCD dataset Accuracy: 86.42%; Specificity: 86.72%; and Sensitivity: 86.11%

Al-Yasriy et al.,

[64]

CNN: AlexNet architecture IQ-OTH/NCCD dataset Accuracy: 93.548%; Sensitivity: 95.714%; Specificity: 95%

Dass and Kumar

[65]

Deep ensemble Convolution neural network

(DECNN)

IQ-OTH/NCCD dataset Accuracy of 99.80%.

Lyu [66] CNN models: AlexNet, VGG, DCNN and DenseNet IQ-OTH/NCCD dataset Accuracy: 97.48% and AUC: 0.99019

This study EOSA-CNN and selected preprocessing methods IQ-OTH/NCCD lung

cancer dataset

Accuracy of 93.21%, Sensitivity of 90.71%, Specificity of 1.0,

Precision 0f 1.0, F1-score of 92.72% Recall of 90.71%

https://doi.org/10.1371/journal.pone.0285796.t009
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weights and biases required for training a CNN model. Moreover, the approach demonstrates

that combining the methods can improve classification accuracy and the general performance

of classifying lung cancer in CT images.

6. Study limitations

The study has a few limitations, including insufficient data sample size and the lack of consid-

eration for possible imbalanced data and time complexity due to limited resources. We suggest

that future work should address these limitations by using techniques such as random under

and over-sampling or cluster-based over-sampling and incorporating larger sample sizes to

improve model performance. Despite these limitations, the proposed EOSA-CNN model out-

performed other hybrid algorithms and traditional CNNs on all seven metrics evaluated,

which is significant compared to previous studies. Further research is necessary to evaluate the

EOSA model’s performance on other medical problems.

7. Conclusion

This study presents a novel hybrid algorithm to improve the accuracy of lung cancer classifica-

tion using a CNN model. The EOSA algorithm was used to optimize the solution vector of the

CNN architecture, which was trained on distinct 2D samples categorized based on their abnor-

malities. The resulting model performed well on new datasets, indicating its generalization

ability. The EOSA-CNN algorithm outperformed traditional CNN and other metaheuristic-

based hybrid algorithms, as demonstrated by accuracy, kappa, precision, recall, F1 score, speci-

ficity, and sensitivity metrics. The contribution of this study is the successful use of the EOSA

algorithm, a virus-based optimization technique, to improve the solution vector of the pro-

posed CNN architecture. Future work includes optimizing the hyperparameters of the CNN

model, investigating the possibility of using the hybrid approach to auto-design the CNN

architecture and comparing the proposed CNN architecture against benchmarked models for

further evaluation. Overall, this study provides a promising classification model for identifying

malignant and benign lung cancer cases from digital images, with potential applications in

early detection and improved decision-making for patient treatment.
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