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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Human microbiome variation is linked to the incidence, prevalence, and mortality of many

diseases and associates with race and ethnicity in the United States. However, the age at

which microbiome variability emerges between these groups remains a central gap in

knowledge. Here, we identify that gut microbiome variation associated with race and ethnic-

ity arises after 3 months of age and persists through childhood. One-third of the bacterial

taxa that vary across caregiver-identified racial categories in children are taxa reported to

also vary between adults. Machine learning modeling of childhood microbiomes from 8

cohort studies (2,756 samples from 729 children) distinguishes racial and ethnic categories

with 87% accuracy. Importantly, predictive genera are also among the top 30 most important

taxa when childhood microbiomes are used to predict adult self-identified race and ethnicity.

Our results highlight a critical developmental window at or shortly after 3 months of age

when social and environmental factors drive race and ethnicity-associated microbiome vari-

ation and may contribute to adult health and health disparities.

Introduction

Two major goals of the human microbiome sciences include increasing the representation of

undersampled groups in microbiome datasets [1–3] and understanding the tempo by which

inequitable experiences, intergenerational inequality, and structural racism impact
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microbiome variation and health outcomes [4–8]. Early-life social and environmental expo-

sures can have large and lasting effects on child development and adult health, and perturba-

tions to the gut microbiome may be important to future disease risk [9–19]. In the United

States, adult gut microbiome diversity correlates with self-identified race and ethnicity [1,3].

However, socioeconomic status (SES)—neighborhood deprivation index, individual and

parental education, or household income—is both correlated with adult gut microbiome

diversity and is associated with race and ethnicity [20–24]. We emphasize that race and ethnic-

ity are proxies for inequitable exposure to social and environmental determinants of health

due to structural racism [6–8,25,26]. When human microbiome differences arise during devel-

opment and whether or not distinguishing gut taxa overlap between childhood and adulthood

are key questions that have implications for long-term effects of early life experiences, includ-

ing structural racism, on microbiome variation.

To identify the developmental window when microbiome variation emerges, how long it

persists during childhood, and which distinguishing taxa overlap between children and adults,

we combined 8 gut microbiome composition datasets from 2,756 samples spanning 729 chil-

dren between birth and 12 years of age throughout the US (S1 Table). We used caregiver-iden-

tified race (Asian/Pacific Islander, Black, White) and ethnicity (Hispanic, non-Hispanic) to

capture complex interactions of multiple biosocial factors that influence gut microbiome com-

position, even though race and ethnicity are not biological categories that directly influence

microbiome variation [5–7,26]. We used a diverse dataset of childhood microbiome samples

to identify features of the gut microbiome that are potential markers of the inequitable experi-

ences underlying health disparities. We selected samples from multiple 16S rRNA gene

sequencing studies that represent a higher diversity of children than is commonly present in

large analyses of the gut microbiome [1–3]. In the present study, 17.2% of samples were from

non-White individuals, and 14.3% of samples were from Hispanic individuals. While the

majority of samples from Hispanic individuals are from Hispanic White children, some His-

panic Black children are present in the dataset.

Results

Microbiome variation emerges at or shortly after 3 months of age

Subject explained the greatest proportion of variation, consistent with other studies of the gut

microbiome (S1 Fig). As age had the second strongest association with gut microbiome com-

position of the variables tested (Figs 1 and S1–S9 and S2–S4 Tables), we stratified samples by

age and analyzed each age category separately while controlling for study differences to disen-

tangle when in development race and ethnicity-associated microbiome variation originates.

Delivery route and infant diet were not included in the age-stratified analysis, as they covaried

with race and ethnicity (S10 and S11 Figs and S5 Table).

Notably, race and ethnicity did not significantly vary with gut microbiome alpha diversity

(within-individual diversity) or beta diversity (between-individual diversity) in the early weeks

and months of life, including the first week, 1 to 5.9 weeks, and 6 weeks to 2.9 months (permu-

tational multivariate analysis of variance (PERMANOVA), all p> 0.05) (Figs 2, S2, S12, and

S13 and S2 Table). However, at 3 to 11.9 and 12 to 35.9 months, gut microbiome composition

based on UniFrac distances varied slightly but significantly by both race and ethnicity (PER-

MANOVA, all p< 0.05) (Figs 2B, S2, S12, and S13 and S2 Table). Additionally, most measures

of alpha diversity varied across racial categories at 3 to 11.9 months and across both racial and

ethnic categories at 12 to 35.9 months (LME, p< 0.05) (Fig 2A and S4 Table). Pairwise com-

parisons confirmed that Black individuals had higher within-sample diversity than White indi-

viduals at 3 to 11.9 and 12 to 35.9 months for at least one of the 5 measures of diversity (Fig 2A
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and S4 Table) [27]. While higher alpha diversity is consistently associated with better cardio-

metabolic health and lower incidence of inflammatory disease in adults [28–30], studies have

found mixed results in children. For example, studies of associations between alpha diversity

and risk of allergic disease have found negative [31], positive [32], and no [33] association.

From 3 to 11.9 years, race associated with gut microbiome composition using only unweighted

UniFrac distances (PERMANOVA, all p< 0.05) (S12 and S13 Figs and S2 Table). Collectively,

these results reveal that race and ethnicity associate with microbial diversity after 3 months of

age, and, notably, this variation persists through childhood years.

Child gut microbiome variation recapitulates that of adults

To identify differentially abundant taxa, we used analysis of compositions of microbiomes

with bias correction (ANCOM-BC) for each variable of interest across all age categories. Age

was included as a factor in the models, and numerous taxa were differentially abundant across

age categories (S6–S9 Tables). The abundances of several taxa significantly were associated

with race and/or ethnicity in all samples combined (S5–S9 Tables), including several that var-

ied in abundance between age categories (S14 and S15 Figs). Taxa positively associated with

breastfeeding (Bifidobacterium, Lactobacillus, and Staphylococcus) [34,35] were significantly

negatively correlated with age, as expected (S14 and S15 Figs and S9 Table). These taxa were

differentially abundant between racial or ethnic categories, likely due to differences in rates of

breastfeeding across these groups (S10 and S11 Figs and S5 Table). Delivery route also differed

between racial and ethnic categories—vaginal delivery was more likely than expected in

White, Asian/Pacific Islander, and non-Hispanic children and less likely than expected in

Black and Hispanic children (S10 and S11 Figs and S5 Table). However, some individual spe-

cies within Bacteroides, which is often more abundant in vaginally delivered children [34,35],

were more enriched in Black and Hispanic children (S9 Table), contrary to our expectations.

Notably, there was moderate overlap between studies for differentially abundant taxa

(S10 Table). Of the 57 gut microbial taxa that varied in abundance between children of differ-

ing self-identified racial categories, 19 were previously identified as differentially abundant

between Black and White adult individuals in a recent controlled study of gut microbiome var-

iation [3] (Fig 3A and S9 Table). Four of the 19 overlapping taxa were higher in abundance in

both Black children and adults compared with White children and adults, and 4 of the
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Fig 1. Age structures variation in the gut microbiome. (A) Boxplots show increases in Shannon diversity with age, and (B) nonmetric multidimensional

scaling (NMDS) plots show a significant association of age with weighted UniFrac distances. Colors and 95% confidence ellipses denote age, and shape denotes

race. Blue text in the panels highlights significant p-values. Data underlying this figure can be found in S1 and S2 Data.

https://doi.org/10.1371/journal.pbio.3002230.g001
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overlapping taxa were lower in abundance in both Black children and adults. The remaining

11 overlapping taxa were either differentially abundant between either Asian/Pacific Islander

children and Black children or Asian/Pacific Islander children and White children, or the

direction of effect differed between Black and White adults and children. Among the 8 taxa

that overlapped and had the same effect in children and adults, Haemophilus spp. and

Fig 2. Microbiome variation emerges at or shortly after 3 months of age. (A) Dot and whisker plots show estimates for Tukey pairwise comparisons in the

alpha diversity linear mixed effects models. Dots indicate the estimated difference in alpha diversity when accounting for other covariates in the model,

whiskers denote 95% confidence intervals, and the dashed line indicates zero or no difference. Comparisons with whiskers that do not cross zero indicate a

significant difference in alpha diversity between those 2 categories. Colors in the dot whisker plots denote alpha diversity metric, and dot shape and line type

denote age category. (B) NMDS plots show weighted UniFrac distances between by race and ethnicity at 0–2.9 months, 3–11.9 months, and 12–35.9 months.

Colors and 95% confidence ellipses in the NMDS plots denote race, and shape denotes ethnicity. Blue text in the panels highlights significant p-values. NMDS

plots for additional age categories and unweighted UniFrac distances can be found in the Supporting information (S12 and S13 Figs). Data underlying this

figure can be found in S1, S2, and S4 Data.

https://doi.org/10.1371/journal.pbio.3002230.g002
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Fig 3. Child gut microbiome variation recapitulates that of adults. (A) Boxplots showing the relative abundance of select taxa identified as differentially

abundant using ANCOM in the current study that overlap with taxa identified as differentially abundant in adults [3]. All boxplots show the median and

interquartile range (IQR), and whiskers extend to 1.5*IQR. Relative abundances for boxplots and histograms are square root transformed. (B) Venn diagram

showing overlapping taxa that are differentially abundant in the gut microbiome between Black individuals and White individuals in the present study in children

and in previously published work in adults. (C) Receiver operating characteristic (ROC) curves for a random forest model classifying race and ethnicity metadata

based on the gut microbiome. Shading represents a 50% confidence interval around the median. Overall model accuracy for race and ethnicity was>87% (the

percentage of samples correctly classified as Asian/Pacific Islander, Black, or White and Hispanic and non-Hispanic). Data underlying this figure can be found in

S5, S6, and S7 Data and S9 Table.

https://doi.org/10.1371/journal.pbio.3002230.g003
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Prevotella copri are higher in abundance in both Black children and adults compared to White

individuals (Haemophilus spp.: log2 fold change (log2FC)adults = 0.712, log2FCchildren = 0.739;

P. copri: log2FCadults = 5.110, log2FCchildren = 2.513) (ANCOM-BC, all q< 0.05) (Fig 3C).

These taxa have been associated with an increased risk of autoimmune and allergic diseases,

asthma, and obesity across humans in Europe and North America [28,36–39]. Faecalibacter-
ium, which is generally considered to be protective against inflammation [33,40], is lower in

abundance in Black children and adults compared to White individuals (log2FCadults = −1.356,

log2FCchildren = −0.230) (ANCOM-BC, q< 0.05) (Fig 3C). Conversely, Veillonella, which is

associated with a decreased risk of asthma and allergic disease [33,36], is consistently lower in

abundance in White children (Veillonella dispar: log2FCadults = 1.295, log2FCchildren = 0.550;

Veillonella parvula: log2FCadults = 3.321, log2FCchildren = 1.010) (ANCOM-BC, both q< 0.05)

(Fig 3C). Thus, we are finding higher relative abundances of at least one taxon that is positively

associated with health in Asian/Pacific Islander, Black, and White children, highlighting the

complexity of linking the relative abundance of individual gut microbial taxa to health as a

whole. We do note, however, that several of the 19 differentially abundant taxa that overlap

between adults and children (S8 Table) have also been found to be associated with SES and

unfavorable social and environmental exposures [10,23,41,42].

To detect differentially abundant taxa within each age category, we used generalized linear

mixed models with a negative binomial distribution (ANCOM-BC requires more samples per

group than we had within each age category). However, few taxa were identified as differen-

tially abundant within each age category (S6–S9 Tables). No phyla or families were differen-

tially abundant between racial and ethnic categories within any age category, and only one

genus differed between White and Asian/Pacific Islander children (S6–S9 Tables). Of the 6

species that differed in abundance between racial categories and 4 species that differed in

abundance between ethnic categories, none were found in more than one age group

(S9 Table). Coprococcus, one of the differentially abundant taxa within a specific age group (12

to 35.9 months), was more abundant in non-Hispanic children and has been previously associ-

ated both with obesity and a high-fiber diet [43]. The other differentially abundant taxa within

specific age groups did not have clear links to health-related outcomes in the literature. Over-

all, taxa with age-associated variation did not systematically vary by race or ethnicity.

We next used a machine learning approach to identify additional characteristics of the

microbiome that may be markers of inequitable exposure to social and environmental deter-

minants of health. A random forest classifier based on the abundance of genera spanning all

childhood samples distinguished Black versus White versus Asian/Pacific Islander categories

and Hispanic versus non-Hispanic categories with 87% accuracy. Notably, 13 amplicon

sequence variants (ASVs)AU : Pleaseprovidefullspellingfor}ASV}atfirstmentioninthesentence}Notably; 13ASVsamongthetop30mostimportantgenera:::; }ifthisindeedisanabbreviation; andaddittotheAbbreviationslist:among the top 30 most important genera that increased classifica-

tion accuracy in the model (S16 and S17 Figs and S11 Table) are taxa identified as differentially

abundant between self-identified racial categories in both children in the current study and

adults in previous work [3] (Fig 3B and S9 Table). For race, we used a 3-part model, and

model performance estimated as area under the curve (AUC; values above 0.5 indicate the

classifier is performing better than chance) was 0.914 (Fig 3B). For ethnicity, we used a binary

model, and AUC was 0.886 (Fig 3B).

Additionally, we used the childhood microbiome data in a random forest model to assess if

childhood microbiome variation predicts that of healthy adults in the American Gut Project

(AGP) dataset. As expected, compositional data from children did not reliably distinguish

adults of differing racial categories (S18 and S19 Figs), with an AUC of 0.570. Twenty-six of

the top 30 taxa identified as important microbiome characteristics in the model using data

from children to predict adult metadata were also identified as important taxa in the random

forest model that only used data from children (S16 and S19 Figs). However, the taxa with the
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highest importance differed with respect to the magnitude and direction of the differences

between adults and children (S20 Fig).

Specifically, Enterobacteriaceae and Prevotella are highly important in child–child models

but are of modest importance in child–adult models (S16 and S19 Figs), and their relative

abundances are lowest in White children but highest in White adults (S20 Fig). Other studies

have similarly found that specific taxa can be used to differentiate the gut microbiome of

groups of people but that the direction of effect can differ between adults and children. Prevo-
tella was highly important in both adult and child random forest models used to detect taxa

that distinguish the gut microbiome across geographic regions, but the direction of the differ-

ences in relative abundance differed [44]. In children, Prevotella was more abundant in the US,

but Prevotella was more abundant in adults outside of the US [44]. Alistipes was found to be pro-

tective against irritable bowel syndrome (IBS)AU : Pleaseprovidefullspellingfor}IBS}atfirstmentioninthesentence}AlistipeswasfoundtobeprotectiveagainstIBSinadults:::; }ifthisindeedisanabbreviation; andaddittotheAbbreviationslist:in adults, but predictive of IBS in children [45].

In contrast, other taxa have a similar direction of effect in both children and adults. Rumi-
nococcus is specifically important in the child–adult models, likely due to similar variation in

abundance between racial categories in both children and adults (S20 Fig). Higher abundances

of Ruminococcus are linked with an increased risk of colorectal cancer [46], a disease for which

there is a known racial health disparity [47,48]; however, we find that Ruminococcus is most

abundant in White individuals, a group whose colorectal cancer risk is lower than that of

Black individuals but higher than that of Asian/Pacific Islander individuals. Race-associated

variation in the relative abundance of Ruminococcus across adult guts is not universal, is likely

due to a subset of Ruminococcus species, and may interact with other factors such as stress or

BMI [1,49]. Thus, it is difficult to know how or if the differences observed in the microbiome

here contribute directly to health disparities.

Discussion

Race and ethnicity associate with gut microbiome composition and diversity beginning at 3

months of age, indicative of a narrow window of time (at or shortly after 3 months) and tempo

when this variation emerges. Specifically, we found both race and ethnicity account for small

but statistically significant proportions of the variation in gut microbiome composition, multi-

ple taxa were differentially abundant between self-reported racial and ethnic categories, several

of which were previously identified as differentially abundant in adults [3], and a random for-

est classifier reliably distinguishes caregiver-identified race and ethnicity. Notably, our findings

do not support race- or ethnicity-associated variation appearing at birth or shortly after, when

mother-to-infant and other mechanisms of vertical microbial transmission are expected to be

strongest [50,51]. None of the differentially abundant taxa identified in the current study are

known to be vaginally acquired by infants, and only 2 species are known to be vertically trans-

mitted from the mother [51]. Instead, external factors are most likely shaping race- and ethnic-

ity-associated microbiome variation at or shortly after 3 months. Our results highlight the

impetus to increase the diversity of individuals included in studies in the microbiome sciences

[1–3] and support the call for studies investigating how structural racism and other structural

inequities affect microbiome variation and health [4–7].

The race- and ethnicity-associated differences in the gut microbiome likely reflect differ-

ences in environmental and social factors [6–8,25,26]. In the US, there are clear racial and eth-

nic disparities in health that are tied to differences in these same factors—psychosocial

stressors, socioeconomic differences, culture, diet and access to food, access to healthcare and

education, interactions with the built environment, and environmental pollutants

[6,25,49,52,53]. These factors are important social and environmental determinants of health

that have tangible impacts through the modification of human physiology [52,53]. In addition,
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there is evidence that the developmental trajectory of the gut microbiome is associated with

immune system development, metabolic programming, antibiotic resistance, and risk of

asthma, allergic, and autoimmune disease [17,33,36,54–60]. Thus, variation in social and envi-

ronmental determinants of health that is associated with race and ethnicity may not only

shape microbiome variation and impact health but also contribute to health disparities

[6,7,20,25]. The tempo and types of factors contributing significantly to race- and ethnicity-

associated gut microbiome variation are a priority for research.

Previous studies have identified race- and ethnicity-associated variation in the gut micro-

biome of children [27,61–64], though they did not pinpoint when in development variation

appears and the association is not consistent across studies [36,41,65–73]. In particular, previ-

ous work demonstrated that sociodemographic factors related to rates of exposure to stress,

access to grocery stores and healthcare, and environmental exposure risk are correlated with

race-associated variation in the gut microbiome and that the effect of some of these factors,

such as household income, are stronger in infants compared with neonates [27]. Due to the

limitations of available metadata for all studies, we were not able to include all factors known

to be important in our analysis, such as antibiotic exposure [10,27,74,75], environmental

microbial exposures [27,34,56,76], childhood diet [54,70], and various measures of maternal

health during pregnancy [9,27,54,63,66,72,77–79]. Many of the studies did not measure poten-

tially important factors that are associated with race and ethnicity, including SES, discrimina-

tion or stress, and detrimental environmental exposures. Factors that are known to impact gut

microbiome composition and were included in our models—age, sex, delivery route, and

infant diet—were not independent of race and/or ethnicity (S10 and S11 Figs and S5 Table).

While our study included a relatively high proportions of non-Hispanic Black and Hispanic

White children, our inferences were limited by low numbers of Asian American/Pacific

Islander children. The datasets used in the current study did not have a sufficient number of

Middle Eastern, Native American, and Alaskan Native children to include those individuals in

the analysis.

Self-identified race and ethnicity are complex concepts and have limitations. Self-identifica-

tion varies over time, may not be reflected by predetermined categories used in surveys, and

may not capture all aspects of race and ethnicity [80–82]. An additional limitation is that the

majority of included studies were conducted in urban areas in distinct geographic locations.

The data may not be representative of children from rural areas or the entirety of the US. The

results of our study are also not generalizable to other countries due to cultural variation in

definitions of racial and ethnic categories. These limitations highlight the necessity of future

efforts to recruit a far greater diversity of participants for understanding human microbiome

diversity [1–3].

During the first 3 months of age, typically high inter- and intraindividual variability in the

infant gut microbiome may contribute to the effect of race and ethnicity, in addition to other

maternal, environmental, and social factors that associate with the gut microbiome during this

developmental period [35,83,84]. Additionally, the rapid development and marked variation

in abundance of microbial taxa within and between individuals continues for at least the first

year of life [34,85,86]. Differences in social exposures through childcare, dietary variation due

to differential rates of breastfeeding and methods of starting solid food, and environmental

exposures through time spent in green spaces may be especially impactful starting at 3 months

of age and continuing throughout the first year [9–19,87,88]. Many studies of early life and

external factor associations with gut microbiome variation have had limited power to detect

the effects of multiple factors, finding few or inconsistent relationships between early life deter-

minants and gut microbiome diversity and composition [10,17,76]. Our findings underscore

the need for well-powered, longitudinal studies of diverse cohorts that comprehensively assess
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all internal and external factors known to affect the developmental trajectory of the micro-

biome [5–7,25,89–92]. Other studies have found that the development of the gut microbiome

appears to be particularly sensitive to environmental factors and early life events during the

first 3 years of life [14,34,93,94]. Additional work is now needed to assess if social and environ-

mental determinants of health begin to influence variation in the microbiome at or near 3

months of age in a way that is potentially important for understanding health disparities in

adults, providing a relatively narrow window of time in which to identify potentially impactful

factors.

Materials and methods

Eight datasets with 16S rRNA sequencing data and available race and ethnicity metadata were

used in this study [27,66,67,70,72,95,96] (S21 Fig and S1 Table). Individuals between birth and

12 years of age, living in the US, with a caregiver-reported race of Black, White, or Asian/

Pacific Islander, and with a caregiver-reported ethnicity of Hispanic or non-Hispanic were

included in the analysis. Individuals were not selected based on a known disease phenotype

(e.g., type 1 diabetes). Study was included in all models as strata to control for the effects of dif-

ferent study parameters, and individual identity was included as a factor in all models to assess

the impact of individual differences on microbiome communities. While sequencing method,

primer choice, and sequencing depth did have a significant association with microbial com-

munity composition when included in models, including study as strata removed the effect of

these study-specific parameters (S2 Table). As some of the included studies had multiple par-

ticipants from the same family, we also tested if individual identity or family had a larger effect

size. In all cases, individual identity explained a larger proportion of the variation than family

(S2 Table).

Sequence analyses were carried out in QIIME2 (v.2021.4) [97]. Each study was individually

imported into QIIME, and the DADA2 algorithm was used to denoise each study separately to

allow us to use appropriate trimming and truncation parameters for each dataset. Feature

tables and representative sequences from all studies were then merged using the fragment

insertion method [98] to control for differences in amplification and sequencing methodolo-

gies between studies. The merged table was filtered to remove sequences absent from the inser-

tion tree. Taxonomy was assigned using a Naïve-Bayesian classifier trained on the Greengenes

13_8 99% OTU full-length 16S rRNA gene sequence database. Mitochondria and chloroplast

sequences were filtered from the merged feature table prior to downstream analysis.

Alpha and beta diversity indices were calculated in QIIME and exported for statistical anal-

ysis in R [99]. Linear mixed effects models as implemented in the lme4 package [100] were

used to detect significant associations between race, ethnicity, age, sex, delivery route, and

infant diet on multiple measures of within-sample diversity (Faith’s PD, observed ASVs, Chao

1, Shannon diversity, and Pielou’s evenness). Study and individual identity were included as

random effects in all linear models to control for the effects of different study parameters and

repeatedly sampling individuals. PERMANOVA, as implemented in the vegan package [101],

was used to examine associations between race, ethnicity, age, sex, delivery route, and infant

diet on unweighted and weighted UniFrac distances (example model: WeightedUniFrac ~

Race + Ethnicity + Age + Sex + Delivery route + Infant diet + SubjectID, strata = Study). Study

was included as the strata in the PERMANOVA models to constrain permutations within each

study and control for study-specific methodological differences in sample collection and pro-

cessing. For both the alpha and beta diversity analyses, we additionally examined the effect of

sequencing technology, primer set, and sequencing depth (S2 and S4 Tables) (S7–S9 and

S21 Figs). Analysis of composition of microbiomes was used to identify differentially abundant
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phyla, families, genera, and species across all samples using the ANCOM-BC package [102].

Generalized linear models using a negative binomial distribution were used to detect differen-

tially abundant phyla, families, genera, and species within each age category using the

glmmTMB package [103]. Random forest classification was performed using the mikropml
package [104] in R. A totalAU : PleasenotethatasperPLOSstyle; numeralsarenotallowedatthebeginningofasentence:Pleasecheckandconfirmthattheeditstothesentence}Atotalof 100training=testdatasplitswereused:::}arecorrect; andamendifnecessary:of 100 training/test data splits were used for each model, and 5-fold

cross-validation was repeated 100 times for each of the 100 training/test data splits using the

default settings of the run_ml() command. Median AUC, precision recall AUC (prAUC), accu-

racy, sensitivity, and specificity are reported for each model.

Supporting information

S1 Text. Impact of age, delivery mode, and infant diet on gut microbiome composition

and diversity.

(DOCX)

S1 Fig. Nonmetric multidimensional scaling plots showing the effect of race on weighted (A)

and unweighted (B) UniFrac distances in all samples combined. Data underlying this figure

can be found in S2 and S3 Data.

(TIF)

S2 Fig. Nonmetric multidimensional scaling plots showing the effect of age on unweighted

UniFrac distances. Data underlying this figure can be found in S2 and S3 Data.

(EPS)

S3 Fig. Nonmetric multidimensional scaling plots showing the effect of sex on weighted (A)

and unweighted (B) UniFrac distances. Data underlying this figure can be found in S2 and

S3 Data.

(TIF)

S4 Fig. Nonmetric multidimensional scaling plots showing the effect of delivery mode on

weighted (A) and unweighted (B) UniFrac distances. Data underlying this figure can be found

in S2 and S3 Data.

(TIF)

S5 Fig. Nonmetric multidimensional scaling plots showing the effect of infant diet on

unweighted and weighted UniFrac distances. Data underlying this figure can be found in

S2 and S3 Data.

(TIF)

S6 Fig. Nonmetric multidimensional scaling plots showing the effect of study on

unweighted and weighted UniFrac distances. Data underlying this figure can be found in

S2 and S3 Data.

(TIF)

S7 Fig. Nonmetric multidimensional scaling plots showing the effect of sequencing tech-

nology on unweighted and weighted UniFrac distances. Data underlying this figure can be

found in S2 and S3 Data.

(TIF)

S8 Fig. Nonmetric multidimensional scaling plots showing the effect of primer set on

unweighted and weighted UniFrac distances. Data underlying this figure can be found in

S2 and S3 Data.

(TIF)
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S9 Fig. Nonmetric multidimensional scaling plots showing the effect of sequencing depth

on unweighted and weighted UniFrac distances. Low depth is<20,000 reads, medium depth

is 20,000–49,999 reads, and high depth is�50,000 reads. Data underlying this figure can be

found in S2 and S3 Data.

(TIF)

S10 Fig. Barplots of observed and expected numbers of individuals by age category, sex,

delivery mode, and infant diet for each racial category. Data underlying this figure can be

found in S5 Table.

(EPS)

S11 Fig. Barplots of observed and expected numbers of individuals by age category, sex,

delivery mode, and infant diet for each ethnicity category. Data underlying this figure can

be found in S5 Table.

(EPS)

S12 Fig. Nonmetric multidimensional scaling plots showing the effect of race on weighted

UniFrac distances for additional age categories. Data underlying this figure can be found in

S2 and S3 Data.

(EPS)

S13 Fig. Nonmetric multidimensional scaling plots showing the effect of race on

unweighted UniFrac distances within age categories. Data underlying this figure can be

found in S2 and S3 Data.

(EPS)

S14 Fig. Correlation plots showing the association between age and species relative abun-

dance by race. Taxa that are differentially abundant across age categories according to

ANCOM-BC results and were identified as differentially abundant between racial categories

are included. Data underlying this figure can be found in S8 Data.

(EPS)

S15 Fig. Correlation plots showing the association between age and species relative abun-

dance by ethnicity. Taxa that are differentially abundant across age categories according to

ANCOM-BC results and were identified as differentially abundant between ethnicity catego-

ries are included. Data underlying this figure can be found in S9 Data.

(EPS)

S16 Fig. Feature importance from a random forest model used to identify taxa distinguish-

ing children of different self-identified racial categories. Dots denote the median impor-

tance, and whiskers denote 95% confidence intervals. Data underlying this figure can be found

in S10 Data.

(TIFF)

S17 Fig. Relative abundances across White (blue), Black (yellow), and Asian/Pacific Islander

(red) children of the 13 taxa identified as (1) important features in the random forest model;

(2) differentially abundant in the ANCOM analysis; and (3) differentially abundant in a previ-

ous study of adult gut microbiomes. All boxplots show the median and interquartile range

(IQR), and whiskers extend to 1.5*IQR. Relative abundances for boxplots are square root

transformed. Data underlying this figure can be found in S11 Data.

(EPS)
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S18 Fig. Receiver operating characteristic (ROC) curves for a random forest model classi-

fying adult gut microbiome samples by race using samples from children as a training

dataset. Shading represents a 50% confidence interval around the median. Data underlying

this figure can be found in S12 Data.

(TIFF)

S19 Fig. Feature importance from a random forest model used to identify taxa distinguish-

ing adults of different self-identified racial categories based on data from children. Dots

denote the median importance, and whiskers denote 95% confidence intervals. Data underly-

ing this figure can be found in S13 Data.

(TIFF)

S20 Fig. Relative abundance of highly important features from the random forest models

using data from multiple child microbiome studies and adults from the American Gut

Project. Enterobacteriaceae and Prevotella (A and B) were highly important in the child–child

models and Ruminococcus (C) was highly important in the child–adult models. All boxplots

show the median and interquartile range (IQR), and whiskers extend to 1.5*IQR. Relative

abundances for boxplots are square root transformed. Data underlying this figure can be

found in S14 Data.

(EPS)

S21 Fig. Box plots showing sequencing depth (number of forward reads prior to filtering

for each sample) by study. Data underlying this figure can be found in S15 Data.

(EPS)

S22 Fig. Box plots showing Shannon diversity and observed ASV alpha diversity metrics

by age. Data underlying this figure can be found in S1 Data.

(TIF)

S23 Fig. Box plots showing Shannon diversity and observed ASV alpha diversity metrics

by race. Data underlying this figure can be found in S1 Data.

(TIF)

S24 Fig. Box plots showing Shannon diversity and observed ASV alpha diversity metrics

by ethnicity. Data underlying this figure can be found in S1 Data.

(TIF)

S25 Fig. Box plots showing Shannon diversity and observed ASV alpha diversity metrics

by sex. Data underlying this figure can be found in S1 Data.

(TIF)

S26 Fig. Box plots showing Shannon diversity and observed ASV alpha diversity metrics

by infant diet. Data underlying this figure can be found in S1 Data.

(TIF)

S27 Fig. Box plots showing Shannon diversity and observed ASV alpha diversity metrics

by delivery mode. Data underlying this figure can be found in S1 Data.

(TIF)

S1 Table. Characteristics of studies included in the analysis.

(XLSX)
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S2 Table. Permutational multivariate analysis of variance (PERMANOVA) and homoge-

neity of variance (Beta dispersion) test statistics.

(XLSX)

S3 Table. Pairwise PERMANOVAs statistics for race, ethnicity, and study in the full data-

set, as well as race, ethnicity, age, sex, delivery mode, and infant diet for samples where all

variables were available.

(XLSX)

S4 Table. Linear mixed effects model statistics for alpha diversity comparisons. Model sta-

tistics are reported on the table on the left, and pairwise comparison statistics are presented in

the table on the right for variables that were significant.

(XLSX)

S5 Table. Observed vs. expected numbers of samples for each metadata variable of interest

between race and ethnicity categories.

(XLSX)

S6 Table. Test statistics for differential abundance analyses at the phyla level.

(XLSX)

S7 Table. Test statistics for differential abundance analyses at the family level.

(XLSX)

S8 Table. Test statistics for differential abundance analyses at the genus level.

(XLSX)

S9 Table. Test statistics for differential abundance analyses at the species level.

(XLSX)

S10 Table. Genera identified as differentially abundant between self-identified racial cate-

gories across studies.

(XLSX)

S11 Table. Important features identified with the random forest classifiers. Both child–

child and child–adult models are listed.

(XLSX)

S1 Data. Alpha diversity values (Faith’s PD, Observed features, Shannon diversity, Pielou’s

evenness, Chao1) for all samples along with metadata shown in Figs 1A and S22–S27.

(XLSX)

S2 Data. MDS1 and MDS2 values for weighted UniFrac distances along with metadata

shown in Figs 1B, 2B, S1–S9, and S12.

(XLSX)

S3 Data. MDS1 and MDS2 values for weighted UniFrac distances along with metadata

shown in Figs S1–S9 and S13.

(XLSX)

S4 Data. Confidence intervals for Tukey contrasts from linear mixed effects models of the

effect of race and ethnicity on alpha diversity for the 0–2.9 month, 3–11.9 month, and 12–

35.9 month age categories. Tukey contrasts were performed using the multcomp package in

R after running linear mixed effects models using the lme4 package in R. The values below are

from the summary output of those contrasts.

(XLSX)
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S5 Data. Relative abundance of taxa plotted in Fig 3A along with race.

(XLSX)

S6 Data. Taxa that are differentially abundant in children (this study) and adultsAU : Pleasenotethatcitation}Lietal:; 2022}hasbeenchangedandlinkedtoreferencenumber3fromthereferenceslist:Pleaseconfirmthatthisiscorrect:[3].

(XLSX)

S7 Data. Sensitivity, specificity, and false positive rates output from the child-only random

forest model. These data were used to construct the ROC curve in Fig 3C.

(XLSX)

S8 Data. Relative abundance of taxa in S14 Fig along with race and age metadata.

(XLSX)

S9 Data. Relative abundance of taxa in S14 Fig along with ethnicity and age metadata.

(XLSX)

S10 Data. Feature importance values for the child-only random forest model.

(XLSX)

S11 Data. Relative abundance of taxa plotted in S17 Fig along with race.

(XLSX)

S12 Data. Sensitivity, specificity, and false positive rates output from the child-only ran-

dom forest model. These data were used to construct the ROC curve in S18 Fig.

(XLSX)

S13 Data. Feature importance values for the child-adult random forest model.

(XLSX)

S14 Data. Relative abundance of taxa plotted in S21 Fig along with race and age group

(adults or children).

(XLSX)

S15 Data. Sequencing depth for all samples included in the analysis along with study.

(XLSX)
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59. Olivares M, Walker AW, Capilla A, Benı́tez-Páez A, Palau F, Parkhill J, et al. Gut microbiota trajectory

in early life may predict development of celiac disease. Microbiome. 2018; 6:36. https://doi.org/10.

1186/s40168-018-0415-6 PMID: 29458413

60. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et.al, The human gut micro-

biome of early onset type 1 diabetes in the TEDDY study. Nature. 2018; 562(7728):589–594.

61. Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, et al. Structure and

function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015 Aug 26; 3(1):36.

https://doi.org/10.1186/s40168-015-0101-x PMID: 26306392

62. Sordillo JE, Zhou Y, McGeachie MJ, Ziniti J, Lange N, Laranjo N, et al. Factors influencing the infant

gut microbiome at age 3–6 months: Findings from the ethnically diverse Vitamin D Antenatal Asthma

Reduction Trial (VDAART). J Allergy Clin Immunol. 2017 Feb 1; 139(2):482–491.e14.

63. Stearns JC, Zulyniak MA, de Souza RJ, Campbell NC, Fontes M, Shaikh M, et al. Ethnic and diet-

related differences in the healthy infant microbiome. Genome Med. 2017 Mar 29; 9(1):32. https://doi.

org/10.1186/s13073-017-0421-5 PMID: 28356137

64. Balakrishnan B, Selvaraju V, Chen J, Ayine P, Yang L, Ramesh Babu J, et al. Ethnic variability associ-

ating gut and oral microbiome with obesity in children. Gut Microbes. 2021 Jan 1; 13(1):1882926.

https://doi.org/10.1080/19490976.2021.1882926 PMID: 33596768

65. Baumann-Dudenhoeffer AM, D’Souza AW, Tarr PI, Warner BB, Dantas G. Infant diet and maternal

gestational weight gain predict early metabolic maturation of gut microbiomes. Nat Med. 2018;

24:1822–1829. https://doi.org/10.1038/s41591-018-0216-2 PMID: 30374198

66. Chu DM, Antony KM, Ma J, Prince AL, Showalter L, Moller M, et al. The early infant gut microbiome

varies in association with a maternal high-fat diet. Genome Med. 2016; 8(1):77. https://doi.org/10.

1186/s13073-016-0330-z PMID: 27503374

67. Cioffi CC, Tavalire HF, Neiderhiser JM, Bohannan B, Leve LD. History of breastfeeding but not mode

of delivery shapes the gut microbiome in childhood. PLoS ONE. 2020 Jul 2; 15(7):e0235223. https://

doi.org/10.1371/journal.pone.0235223 PMID: 32614839

68. Galley JD, Bailey M, Dush CK, Schoppe-Sullivan S, Christian LM. Maternal Obesity Is Associated with

Alterations in the Gut Microbiome in Toddlers. PLoS ONE. 2014 Nov 19; 9(11):e113026. https://doi.

org/10.1371/journal.pone.0113026 PMID: 25409177

69. Grier A, McDavid A, Wang B, Qui X, Java J, Bandyopadhyay S, et al. Neonate gut and respiratory

microbiota: coordinated development through time and space. Microbiome. 2018; 6(1):193.

70. Herman DR, Rhoades N, Mercado J, Argueta P, Lopez U, Flores GE. Dietary Habits of 2- to 9-Year-

Old American Children Are Associated with Gut Microbiome Composition. J Acad Nutr Diet. 2019; 120

(4):517–534. https://doi.org/10.1016/j.jand.2019.07.024 PMID: 31668602

71. Gao W, Salzwedel AP, Carlson AL, Xia K, Azcarate-Peril MA, Styner MA, et al. Gut microbiome and

brain functional connectivity in infants-a preliminary study focusing on the amygdala. Psychopharma-

cology (Berl). 2019 May 1; 236(5):1641–1651. https://doi.org/10.1007/s00213-018-5161-8 PMID:

30604186

72. Robinson A, Fiechtner L, Roche B, Ajami NJ, Petrosino JF, Camargo CA, et al. Association of mater-

nal gestational weight gain with the infant fecal microbiota. J Pediatr Gastroenterol Nutr. 2017 Nov; 65

(5):509. https://doi.org/10.1097/MPG.0000000000001566 PMID: 28272161

73. Zhang M, Differding MK, Benjamin-Neelon SE,Østbye T, Hoyo C, Mueller NT. Association of prenatal

antibiotics with measures of infant adiposity and the gut microbiome. Ann Clin Microbiol Antimicrob.

2019 Jun 21; 18(1):18. https://doi.org/10.1186/s12941-019-0318-9 PMID: 31226994

PLOS BIOLOGY Gut microbiome variation appears after three months of age

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002230 August 17, 2023 18 / 20

https://doi.org/10.1038/s43705-021-00003-5
https://doi.org/10.1038/s43705-021-00003-5
http://www.ncbi.nlm.nih.gov/pubmed/36717704
https://doi.org/10.1038/s41591-020-1095-x
http://www.ncbi.nlm.nih.gov/pubmed/33139948
https://doi.org/10.1016/j.tem.2019.07.021
https://doi.org/10.1016/j.tem.2019.07.021
http://www.ncbi.nlm.nih.gov/pubmed/31493988
https://doi.org/10.1186/s12866-021-02129-x
https://doi.org/10.1186/s12866-021-02129-x
http://www.ncbi.nlm.nih.gov/pubmed/34215179
https://doi.org/10.1186/s40168-018-0415-6
https://doi.org/10.1186/s40168-018-0415-6
http://www.ncbi.nlm.nih.gov/pubmed/29458413
https://doi.org/10.1186/s40168-015-0101-x
http://www.ncbi.nlm.nih.gov/pubmed/26306392
https://doi.org/10.1186/s13073-017-0421-5
https://doi.org/10.1186/s13073-017-0421-5
http://www.ncbi.nlm.nih.gov/pubmed/28356137
https://doi.org/10.1080/19490976.2021.1882926
http://www.ncbi.nlm.nih.gov/pubmed/33596768
https://doi.org/10.1038/s41591-018-0216-2
http://www.ncbi.nlm.nih.gov/pubmed/30374198
https://doi.org/10.1186/s13073-016-0330-z
https://doi.org/10.1186/s13073-016-0330-z
http://www.ncbi.nlm.nih.gov/pubmed/27503374
https://doi.org/10.1371/journal.pone.0235223
https://doi.org/10.1371/journal.pone.0235223
http://www.ncbi.nlm.nih.gov/pubmed/32614839
https://doi.org/10.1371/journal.pone.0113026
https://doi.org/10.1371/journal.pone.0113026
http://www.ncbi.nlm.nih.gov/pubmed/25409177
https://doi.org/10.1016/j.jand.2019.07.024
http://www.ncbi.nlm.nih.gov/pubmed/31668602
https://doi.org/10.1007/s00213-018-5161-8
http://www.ncbi.nlm.nih.gov/pubmed/30604186
https://doi.org/10.1097/MPG.0000000000001566
http://www.ncbi.nlm.nih.gov/pubmed/28272161
https://doi.org/10.1186/s12941-019-0318-9
http://www.ncbi.nlm.nih.gov/pubmed/31226994
https://doi.org/10.1371/journal.pbio.3002230


74. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors Influencing the Compo-

sition of the Intestinal Microbiota in Early Infancy. Pediatrics. 2006 Aug 1; 118(2):511–521. https://doi.

org/10.1542/peds.2005-2824 PMID: 16882802
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