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Abstract

The cis-regulatory data that help in transcriptional regulation is arranged into modular pieces

of a few hundred base pairs called CRMs (cis-regulatory modules) and numerous binding

sites for multiple transcription factors are prominent characteristics of these cis-regulatory

modules. The present study was designed to localize transcription factor binding site

(TFBS) clusters on twelve Anterior-posterior (A-P) genes in Tribolium castaneum and com-

pare them to their orthologous gene enhancers in Drosophila melanogaster. Out of the

twelve A-P patterning genes, six were gap genes (Kruppel, Knirps, Tailless, Hunchback,

Giant, and Caudal) and six were pair rule genes (Hairy, Runt, Even-skipped, Fushi-tarazu,

Paired, and Odd-skipped). The genes along with 20 kb upstream and downstream regions

were scanned for TFBS clusters using the Motif Cluster Alignment Search Tool (MCAST), a

bioinformatics tool that looks for set of nucleotide sequences for statistically significant clus-

ters of non-overlapping occurrence of a given set of motifs. The motifs used in the current

study were Hunchback, Caudal, Giant, Kruppel, Knirps, and Even-skipped. The results of

the MCAST analysis revealed the maximum number of TFBS for Hunchback, Knirps, Cau-

dal, and Kruppel in both D. melanogaster and T. castaneum, while Bicoid TFBS clusters

were found only in D. melanogaster. The size of all the predicted TFBS clusters was less

than 1kb in both insect species. These sequences revealed more transversional sites (Tv)

than transitional sites (Ti) and the average Ti/Tv ratio was 0.75.

Introduction

To know the development processes occurring in metazoans, it is vital to comprehend the reg-

ulatory mechanics of the underlying transcriptional network. The genomic sequence of an

organism contains a significant amount of information that specifies how and when genes will

be expressed. Despite the availability of genome sequences for many metazoans, very little is

known about how this biological data is encoded [1, 2]. Previous research on the early
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development of Drosophila melanogaster, a model organism for more than three decades, pro-

vides an excellent context for studying the cis-regulatory modules (CRMs). CRMs are certain

areas of non-protein-coding DNA, that play a significant role in controlling the expression

patterns of genes to build an embryo’s tissue [3]. The CRMs are composed of groups of short

DNA sequences that are acknowledged and bound by certain transcription factors [4]. The

enhancers, promoters, and silencers consist of cis-regulatory sequences, recognized as CRMs

[5]. Enhancers and silencers are usually found upstream (50), downstream (30), or in the intron

(or introns) of the gene they control, although they can also be found far away while promoter

sequences are always present upstream to the target gene [6]. During the early stages of embry-

onic development, a quick cascade of gene regulation determines the segmented body pattern

of D. melanogaster [7]. The process of Anterior-Posterior (A-P) segmentation is initiated by

the maternal gene products that are present in the gradient. The bicoid protein gradient exhib-

iting morphogenetic features is the best-known example. A spatial-differential, concentration-

dependent expression (or repression), of certain zygotic genes, is regarded to establish the

bicoid protein gradient [8, 9]. The first zygotic gene to be expressed belongs to the gap genes

cascade which is a well-studied system in D. melanogaster [10]. The gap genes control the pair-

rule genes which further regulate the segment polarity genes and the Homeotic gene complex

in succession [10–13]. In addition to this, the maternal genes, gap genes, pair-rule genes, and

Homeotic gene complex also self-regulate themselves as shown in Fig 1. An ideal framework

for researching the cis-regulatory sequences is provided by all research on the early stages of

Drosophila development. A variety of interactions between different transcription factors (TF)

and their target regulatory areas have been thoroughly defined [11, 14], and comparative

investigations have demonstrated that cis-regulatory regions are often functionally conserved

throughout the genus [15–17]. Previous research characterized transcription factor binding

Fig 1. Schematic representation of the regulatory relationship between the anterior-posterior patterning gene

cascade in Drosophila melanogaster.

https://doi.org/10.1371/journal.pone.0290035.g001

PLOS ONE A-P patterning gene enhancers in Drosophila and Tribolium

PLOS ONE | https://doi.org/10.1371/journal.pone.0290035 August 17, 2023 2 / 20

https://doi.org/10.1371/journal.pone.0290035.g001
https://doi.org/10.1371/journal.pone.0290035


site (TFBS) locations in the early Drosophila embryo and estimated the binding affinity of each

factor using Position weight matrices (PWMs) [1, 18]. PWMs are a valuable method for ana-

lysing the location of potential binding sites and estimating their binding strength [19, 20]. All

the research about the cis-regulatory modules is mainly focused on the Drosophila genus. Not

much has been done on other insect species. Over the last two decades, T. castaneum has

emerged as a potent organism to study short germ segmentation, embryonic head and leg

development, metamorphosis, and in insect biology. The anterior-posterior patterning in Tri-
bolium follows an ancestral route i.e. short germ embryogenesis, which is different from D.

melanogaster which follows the latest route i.e. long germ embryogenesis [21, 22]. In this

paper, we investigate the Transcription factor binding sites cluster i.e. Cis-regulatory modules

in the gap genes and pair-rule genes of D. melanogaster, and compare them with their ortho-

logs present in T. castaneum.

Material and methods

Data collection

The Translated gene sequences for the A-P patterning genes of D. melanogaster were down-

loaded from Flybase (FB2021_03) [23]. The NCBI database (pBlast) was then used to collect

the A-P patterning protein sequences of T. castaneum orthologous to those of D. melanogaster
[24]. The orthologous sequences with a high query-covered value and a low error value were

selected. The genomic data viewer was used to access these sequences. Following that, 20 kb

flanking sequences were added both upstream (-) and downstream (+) to each target gene’s

sequence. The gene sequences along with the additional flanking sequences were then down-

loaded in the FASTA format. The sequence location of genes alongwith the flanking regions

are given in Tables 1 and 2 for D. melanogaster and T. castaneum respectively.

Motif collection

The JASPAR database, which is open to the public, contains position weight matrices

(PWMs), of various species in six taxonomic groupings. The PWM motifs used for the present

study were Bicoid, Hunchback, Caudal, Giant, Kruppel, Knirps, and Even-skipped of D. mela-
nogaster. These were downloaded in meme format from JASPAR software [25].

Table 1. List of genes used for enhancer localization along with their chromosomal locations, accession numbers, gene locations, and gene sequence location with

the flanking regions in Drosophila melanogaster.

S.No. Gene Name Gene chromosomal location and Accession number Gene Location Gene sequences along with their 20 kb flanking regions

1 Hunchback Chr. 3R (NT_033777.3) 8691649–8694381 8671649–8714381

2 Knirps Chr. 3L (NT_037436.4) 20692673–20694617 20672673–20714617

3 Caudal Chr. 2L (NT_033779.5) 20769990–20783396 20749990–20803396

4 Kruppel Chr. 2R (NT_033778.4) 25226133–25231872 25206133–25251872

5 Giant Chr. X (NC_004354.4) 24272888–2428993 2407288–2448993

6 Tailless Chr. 3R(NT_033777.3) 30852398–30854173 30832398–30874173

7 Even-skipped Chr. 2R (NT_033778.4) 9979170–9980942 9959170–10000942

8 Odd-skipped Chr. 2L (NT_033779.5) 3604856–3606494 3584856–3626494

9 Runt Chr. X (NC_004354.4) 20690004–20697985 20670004–20717985

10 Hairy Chr. 3L (NT_037436.4) 8676032–8678639 8656032–8698639

11 Fushi-tarazu Chr. 3 (NT_033777.3) 6864,255–6865910 6844,255–6885,910

12 Paired Chr. 2L (NT_033779.5) 12083091–12085750 12063091–12105750

https://doi.org/10.1371/journal.pone.0290035.t001
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Meme suite analysis

For the discovery of transcription factor binding site (TFBS) clusters, MCAST, an application

of MEME Suite was run [26]. MCAST scans for clusters of matches to one or more nucleotide

motifs in sequences [27]. The input of sequence was given in text file in FASTA format while

the motifs were given in Meme format. ARR1 of Saccharomyces cerevisiae was used as an out-

group. For the identification of TFBS, the parameters which were used in the present study

were: p-value should be less than 0.005, the error value less than 5 and the gap between two

TFBS should be less than 30 base pairs. The result was displayed in the HTML format and a

cluster with greater motif score, and low error value was selected as pCRM.

Annotation of transcription start site (TSS)

Transcription start sites (TSS) for the A-P genes were predicted using the genome data viewer

tool of NCBI in the case of D. melanogaster and T. castaneum [28].

Annotation of promotor region, exon, intron region of the gene

Putative promoter regions, exon, and intronic regions were identified using two databases

Ensemble and NCBI [28, 29].

The NCBI database’s genome data viewer was used to get the necessary sequence, which

featured intron, exon, and promoter sequences. The intron and exon of the given sequence

were represented by different colours. Exons were represented by light pink, introns by green,

and the following gene by blue colour. The promotor sequence area was recovered up to 1000

bp upstream of the TSS region, including the AT-rich region and the TATA box.

The searched-for sequence, which contained the 5’ flanking area, the promotor, the exon,

the intron, and the 3’ flanking region, was retrieved from the Ensemble website.

Sequence alignment and variation of predicted cis-regulatory modules

All the predicted pCRM were aligned using the ClustalW [30] tool in Bioedit software [31] and

these aligned sequences were subjected to calculate the conserved sites, transition pairs (Ti),

transversional pairs (Tv), and transition/transversion (Ti/Tv) ratio in MEGA XI software [32].

Table 2. List of genes used for enhancer localization along with their chromosomal locations, accession numbers, gene locations, and gene sequence location with

the flanking regions in Tribolium castaneum.

S.No. Gene Name Gene chromosomal location and Accession number Gene Location Gene sequences along with their 20 kb flanking regions

1 Hunchback Chr. LG5 (NC_007420.3) 8101789–8103523 8081615–8123697

2 Knirps Chr. LG3 (NC_007418.3) 4699064–4709975 4679064–4729975

3 Caudal Chr. LG4 (NM_007419.2) 2828167–2845622 2808167–2865622

4 Kruppel Chr. LG10 (NC_007425.3) 6495006–6502111 6475006–6522111

5 Giant Chr. LG4 (NC_007419.2) 3765785–3766872 3745785–3786872

6 Tailless Chr. LG2 (NC_007417.3) 11221687–11225898 11201687–11245898

7 Even-skipped Chr. LG7 (NC_007422.5) 624611–628174 604611–648174

8 Odd-skipped Chr. LG8 (NC_007423.3) 7672873–7679594 7652873–7699594

9 Runt Chr. LG8 (NC_007423.3) 11253714–11257683 11233714–11277683

10 Hairy Chr. LG9(NC_007424.3) 15627964–15629572 15607964–15649572

11 Fushi-tarazu Chr. LG2 (NC_007417.3) 8414592–8415698 8394592–8435698

12 Paired Chr. LG6 (NC_007421.3) 8595852–8650582 8575852–8650582

https://doi.org/10.1371/journal.pone.0290035.t002
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Interaction between the TFs

In the present study, the STRING database was used to predict the protein-protein interactions

between the different transcription factors searched for their binding sites on the A-P pattern-

ing genes [33].

Results

TFBS clusters in gap genes of D. melanogaster and T. castaneum
The results of the MCAST analysis for identifying TFBS clusters in the gap genes (Hunchback,

Knirps, and Caudal) are depicted in Fig 2. The results reveal that the location of transcription

factor binding sites (TFBS) on the Hunchback gene is upstream to the transcription start site

(TSS) in both D. melanogaster and T. castaneum (Fig 2.1). However, the results are variable in

D. melanogaster and T. castaneum for another gap gene called Knirps, on which, the TFBS

cluster is located within intron 2 of the gene in the dipteran insect and upstream in the coleop-

teron (Fig 2.2). As far as the Caudal gene is concerned, the cluster of TFBS is located down-

stream to the TSS in both the insect species (Fig 2.3). The cluster was found to be present

within exon 1 of the gene in D. melanogaster and exon 3 of the gene in T. castaneum.

Fig 3 illustrates the results of MCAST analysis for predicting TFBS clusters on Kruppel,
Giant, and Tailless genes. The TFBS cluster in the Kruppel gene is present upstream to the TSS

in D. melanogaster and downstream to TSS in T. castaneum (Fig 3.1). In case of the Giant
gene, the cluster of TFBS is present upstream to TSS in both D. melanogaster and T. castaneum
as depicted in Fig 3.2. The location of the TFBS cluster in the gene Tailless is upstream in D.

melanogaster while downstream to the TSS in T. castaneum.

TFBS clusters in Pair rule genes of D. melanogaster and T. castaneum
Fig 4 shows the results for the TFBS clusters as predicted by the MCAST software for the Even-
skipped, Hairy, and Runt pair-rule genes in D. melanogaster and T. castaneum. The cluster of

TFBS in both Even-skipped and Runt genes are present upstream of the TSS in both D. melano-
gaster and T. castaneum (Fig 4.1 and 4.3). Fig 4.2, shows the cluster of TFBS on the Hairy gene.

The cluster is present upstream to the TSS in D. melanogaster and downstream to the TSS in T.

castaneum.

The CRMs for Odd-skipped, Fushi-tarazu, and Paired genes as predicted by the MCAST

software are depicted in Fig 5. Fig 5.1 exhibits the cluster of TFBS on the Odd-skipped gene.

The cluster of is present downstream to the TSS in D. melanogaster and upstream in T. casta-
neum. The clusters of TFBS in both Fushi-tarazu and Paired genes are present upstream to the

TSS in both the insect species (Fig 5.2 and 5.3).

The results depicted by the MCAST software, that is, location of the TSS, TFBS cluster, and

size of the putative cluster in base pairs are summarized in Table 3 for D. melanogaster and

Table 4 for T. castaneum. Table 5 depicts the number of transcription factor binding sites in all

genes predicted by the software in both the insect species.

Multiple sequence alignment, conserved sites, transitional pairs,

transversional pairs, and transition/transversion rate

All the predicted pCRMs were subjected to multiple sequence alignment using the CLUS-

TALW [30] tool in Bioedit software [31]. These were further analysed for the presence of con-

served sites, transition pairs, transversional pairs, and transition/transversion rate using

MEGA XI software [32]. The results for the analysis are depicted in Table 6.
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Interaction between the TFs

Figs 6 and 7 depict the interactions between Bicoid, Hunchback, Caudal, Knirps, Kruppel,

Giant, and Even-skipped transcription factors of D. melanogaster and T. castaneum respectively.

Fig 2. Figure showing the pCRM details of Drosophila melanogaster and Tribolium castaneum for different transcription factors in Hunchback,

Knirps, and Caudal. 2.1 shows the predicted transcription factor binding site clusters in Hunchback for D. melanogaster and T. castaneum.A) Locations

of the gene, transcription start site (TSS) and the transcription factor binding site (TFBS) cluster as predicted by the MCAST software for the

Hunchback gene in D. melanogaster, B) Binding sites for different transcription factors on the predicted TFBS cluster in the gene Hunchback for D.

melanogaster, C) Locations of the gene, TSS and the TFBS cluster as predicted by the MCAST software for the Hunchback gene in T. castaneum, D)

Binding sites for different transcription factors on the predicted TFBS cluster in the gene Hunchback for T. castaneum. 2.2 shows the predicted

transcription factor binding site clusters in Knirps for D. melanogaster and T. castaneum. A) Locations of the gene, TSS and the TFBS cluster as

predicted by the MCAST software for the Knirps gene in D. melanogaster, B) Binding sites for different transcription factors on the predicted TFBS

cluster in the gene Knirps for D. melanogaster, C) Locations of the gene, TSS and the TFBS cluster as predicted by the MCAST software for the Knirps
gene in T. castaneum, D) Binding sites for different transcription factors on the predicted TFBS cluster in the gene Knirps for T. castaneum, 2.3 shows

the predicted transcription factor binding site clusters in Caudal for D. melanogaster and T. castaneum. A) Locations of the gene, TSS and the TFBS

cluster as predicted by the MCAST software for the Caudal gene in D. melanogaster, B) Binding sites for different transcription factors on the predicted

TFBS cluster in the gene Caudal for D. melanogaster, C) Locations of the gene, TSS and the TFBS cluster as predicted by the MCAST software for the

Caudal gene in T. castaneum, D) Binding sites for different transcription factors on the predicted TFBS cluster in the gene Caudal for T. castaneum.

https://doi.org/10.1371/journal.pone.0290035.g002
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Fig 3. Figure showing the pCRM details of Drosophila melanogaster and Tribolium castaneum for different transcription factors in Kruppel,
Giant, and tailless. 3.1 shows the predicted transcription factor binding site clusters in Kruppel for D. melanogaster and T. castaneum. A) Locations of

the gene, TSS and the TFBS cluster as predicted by the MCAST software for the Kruppel gene in D. melanogaster, B) Binding sites for different

transcription factors on the predicted TFBS cluster in the gene Kruppel for D. melanogaster, C) Locations of the gene, TSS and the TFBS cluster as

predicted by the MCAST software for the Kruppel gene in T. castaneum, D) Binding sites for different transcription factors on the predicted TFBS

cluster in the gene Kruppel for T. castaneum, 3.2 shows the predicted transcription factor binding site clusters in Giant for D. melanogaster and T.

castaneum. A) Locations of the gene, TSS and the TFBS cluster as predicted by the MCAST software for the Giant gene in D. melanogaster, B) Binding

sites for different transcription factors on the predicted TFBS cluster in the gene Giant for D. melanogaster, C) Locations of the gene, TSS and the TFBS

cluster as predicted by the MCAST software for the Giant gene in T. castaneum, D) Binding sites for different transcription factors on the predicted

TFBS cluster in the gene Giant for T. castaneum 3.3 shows the predicted transcription factor binding site clusters in Tailless for D. melanogaster and T.

castaneum. A) Locations of the gene, TSS and the TFBS cluster as predicted by the MCAST software for the Tailless gene in D. melanogaster, B) Binding

sites for different transcription factors on the predicted TFBS cluster in the gene Tailless for D. melanogaster, C) Locations of the gene, TSS and the

TFBS cluster as predicted by the MCAST software for the Tailless gene in T. castaneum, D) Binding sites for different transcription factors on the

predicted TFBS cluster in the gene Tailless for T. castaneum.

https://doi.org/10.1371/journal.pone.0290035.g003

PLOS ONE A-P patterning gene enhancers in Drosophila and Tribolium

PLOS ONE | https://doi.org/10.1371/journal.pone.0290035 August 17, 2023 7 / 20

https://doi.org/10.1371/journal.pone.0290035.g003
https://doi.org/10.1371/journal.pone.0290035


Fig 4. Figure showing the pCRM for Drosophila melanogaster and Tribolium castaneum for different transcription factors in Even-skipped,

Hairy, and Runt. 4.1 shows the predicted transcription factor binding site clusters in Even-skipped for D. melanogaster and T. castaneum, A) Locations

of the gene, TSS and the TFBS cluster as predicted by the MCAST software for the Even-skipped gene in D. melanogaster, B) Binding sites for different

transcription factors on the predicted TFBS cluster in the gene Even-skipped for D. melanogaster, C) Locations of the gene, TSS and the TFBS cluster as

predicted by the MCAST software for the Even-skipped gene in T. castaneum, D) Binding sites for different transcription factors on the predicted TFBS

cluster in the gene Even-skipped for T. castaneum. 4.2 shows the predicted transcription factor binding site clusters in Hairy for D. melanogaster and T.

castaneum. A) Locations of the gene, TSS and the TFBS cluster as predicted by the MCAST software for the Hairy gene in D. melanogaster, B) Binding

sites for different transcription factors on the predicted TFBS cluster in the gene Hairy for D. melanogaster, C) Locations of the gene, TSS and the TFBS

cluster as predicted by the MCAST software for the Hairy gene in T. castaneum, D) Binding sites for different transcription factors on the predicted

TFBS cluster in the gene Hairy for T. castaneum. 4.3 shows the predicted transcription factor binding site clusters in Runt for D. melanogaster and T.

castaneum. A) Locations of the gene, TSS and the TFBS cluster as predicted by the MCAST software for the Runt gene in D. melanogaster, B) Binding

sites for different transcription factors on the predicted TFBS cluster in the gene Runt for D. melanogaster, C) Locations of the gene, TSS and the TFBS

cluster as predicted by the MCAST software for the Runt gene in T. castaneum, D) Binding sites for different transcription factors on the predicted

TFBS cluster in the gene Runt for T. castaneum.

https://doi.org/10.1371/journal.pone.0290035.g004
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Fig 5. Figure showing the pCRM in Drosophila melanogaster and Tribolium castaneum for different transcription factors in Odd-skipped, Fushi-
tarazu, and Paired genes. 5.1 shows the predicted transcription factor binding site clusters in Odd-skipped for D. melanogaster and T. castaneum, A)

Locations of the gene, TSS and the TFBS cluster as predicted by the MCAST software for the Odd-skipped gene in D. melanogaster, B) Binding sites for

different transcription factors on the predicted TFBS cluster in the gene Odd-skipped for D. melanogaster, C) Locations of the gene, TSS and the TFBS

cluster as predicted by the MCAST software for the Odd-skipped gene in T. castaneum, D) Binding sites for different transcription factors on the

predicted TFBS cluster in the gene Odd-skipped for T. castaneum. 5.2 shows the predicted transcription factor binding site clusters in Fushi-Tarazu for

D. melanogaster and T. castaneum. A) Locations of the gene, TSS and the TFBS cluster as predicted by the MCAST software for the Fushi-Tarazu gene

in D. melanogaster, B) Binding sites for different transcription factors on the predicted TFBS cluster in the gene Fushi-Tarazu for D. melanogaster, C)

Locations of the gene, TSS and the TFBS cluster as predicted by the MCAST software for the Fushi-Tarazu gene in T. castaneum, D) Binding sites for

different transcription factors on the predicted TFBS cluster in the gene Fushi-Tarazu for T. castaneum. 5.3 shows the predicted transcription factor

binding site clusters in Paired for D. melanogaster and T. castaneum. A) Locations of the gene, TSS and the TFBS cluster as predicted by the MCAST

software for the Paired gene in D. melanogaster, B) Binding sites for different transcription factors on the predicted TFBS cluster in the gene Paired for

D. melanogaster, C) Locations of the gene, TSS and the TFBS cluster as predicted by the MCAST software for the Paired gene in T. castaneum, D)

Binding sites for different transcription factors on the predicted TFBS cluster in the gene Paired for T. castaneum.

https://doi.org/10.1371/journal.pone.0290035.g005
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These interactions were evaluated using the STRING database. As predicted by the software, the

average local clustering coefficient is 0.857 for D. melanogaster and 0.837 for T. castaneum. The

PPI enrichment p-value is< 1.0e-16 for D. melanogaster and 3.28e-12 for T. castaneum. The

interaction between the TFs in both D. melanogaster and T. castaneum shows more enrichment,

which suggested that these TFs proteins are biologically connected as a group.

In D. melanogaster, the software predicted that the transcription factor bicoid shows co-

expression with Hunchback. Hunchback shows protein homology with Kruppel. There was no

co-expression of proteins detected in the T. castaneum and protein homology was identified

between Hunchback and Kruppel as in D. melanogaster. The software depicted known experi-

mentally determined interactions between all proteins except for Caudal, Knirps, and Even-

skipped in both D. melanogaster and T. castaneum. No interaction between Caudal and Even-

skipped proteins were predicted in both insects.

Discussion

The determination of the early body design in D. melanogaster is done by the action of cis-reg-

ulatory elements in the genome that regulate gene expression during development.

Table 3. Location of the transcription start sites and putative cis-regulatory modules and CRM’s size as predicted by the MCAST software on the A-P patterning

genes of Drosophila melanogaster. Here–and + represents the upstream and downstream location of predicted CRM respectively.

S. No. Gene Name Transcription Start Site Predicted CRM’s location (motif score of pCRM) Predicted CRM’s size +,- location of pCRM

1 Hunchback 8690979 8684092–8684568 (64.46) 476 bp -

2 Knirps 20692326 20694580–20695169 (84.08) 589 bp -

3 Caudal 20770700 20777,675–20778,195 (28.18) 520 bp +

4 Kruppel 25226609 25222746–25223355 (59.56) 609 bp +

5 Giant 2427112 2412138–2412768 (44.80) 630 bp -

6 Tailless 30852314 30842160–30842579 (44.68) 419 bp -

7 Even-skipped 9979430 9974834–9975399 (42.35) 565 bp -

8 Odd-skipped 3604995 3609367–3609952 (59.35) 585 bp +

9 Runt 20694432 20685463–20686280 (73.21) 817 bp -

10 Hairy 8675953 8665577–8666104 (85.88) 527 bp -

11 Fushi-tarazu 6864324 6858324–6858811 (45.67) 487 bp -

12 Paired 12082992 12067972–12068189 (18.52) 217 bp -

https://doi.org/10.1371/journal.pone.0290035.t003

Table 4. Location of the transcription start sites and putative cis-regulatory modules and predicted CRM’s size as predicted by the MCAST software on the A-P pat-

terning genes of Tribolium castaneum.

S.No. Gene Name Transcription Start Site Predicted CRM’S location (motif score of pCRM) Predicted CRM’S size +,- location of pCRM

1 Hunchback 8102130 8092849–8093278 (11.55) 429 bp -

2 Knirps 4721907 4697483–4698242 (23.50) 759 bp -

3 Caudal 2828217 2832700–2833237 (12.13) 537 bp +

4 Kruppel 6495152 6502223–6502912 (23.50) 689 bp +

5 Giant 3766076 3765042–3765574 (19.20) 532 bp -

6 Tailless 11221703 11230486–11230843 (15.45) 357 bp +

7 Even-skipped 624731 617466–617724 (19.58) 258 bp -

8 Odd-skipped 7673308 7667718–7668180 (46.94) 462 bp -

9 Runt 11253714 11243118–11243747 (18.58) 629 bp -

10 Hairy 15627964 15635988–15636522 (26.15) 534 bp +

11 Fushi-tarazu 8414663 8404780–8405724 (20.87) 944 bp -

12 Paired 8598708 8580847–8581470 (28.38) 623 bp -

https://doi.org/10.1371/journal.pone.0290035.t004
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Transcription factors (TFs) bind to these regions and regulate target gene expression [34].

Translation of localised maternal mRNAs during oogenesis constructs the initial TF gradients

in the embryo at the top of the A-P patterning cascade [35, 36]. These maternal TFs then bind

to gap gene specific embryonic regulatory regions, thereby regulating gap TF expression pat-

terns during early A-P specification [9, 37]. The interaction between the different TFs was pre-

dicted using the STRING database. Based on computational modelling, it seems that these TFs

are interconnected and have a role in coordinating the insect development. Previous studies

suggested that the self-regulation pathway and the activities of other maternal-effect genes and

gap genes control the expression of gap genes involved in the establishment of the A-P axis.

[21]. In addition to the regulation of gap genes, these genes act as TFs for the regulation of

genes involved in the A-P axis formation cascade which are pair-rule genes, segment polarity

genes, and Homeotic selector genes [21, 38]. Consistent with the interaction identified by

STRING software in the present study, previous studies on Bicoid and Hunchback have

Table 5. Number of Transcription Factor binding sites on different A-P patterning genes in Drosophila melanogaster and Tribolium castaneum as predicted by the

MCAST software. Here, Drosophila melanogaster and Tribolium castaneum are abbreviated as Dm and Tc respectively.

S.No. Name of the A-P patterning gene Transctription Factors

Bicoid Hunchback Caudal Giant Knirps Kruppel Even-skipped

Dm Tc Dm Tc Dm Tc Dm Tc Dm Tc Dm Tc Dm Tc
1 Hunchback 6 - 10 5 - 4 3 - 4 - 1 - - -

2 Knirps 4 - 17 9 - 1 - - 3 - 3 - - -

3 Caudal 8 - 9 8 6 3 - - - - - - - -

4 Kruppel 6 - 11 11 - 3 2 - 7 - 6 - - -

5 Giant 2 - 9 5 1 5 1 - 3 - 9 1 3 -

6 Tailless - - 6 6 6 3 - - 6 - - - - -

7 Even-skipped - - 9 10 - - - - 7 3 - - - -

8 Hairy - - 14 11 5 2 1 1 10 - 6 - - -

9 Runt - - 17 11 4 3 1 1 8 1 - - - -

10 Odd-skipped 2 - 17 8 - 7 - 1 4 3 - 6 3 -

11 Fushi-tarazu 4 - 8 13 11 6 2 - 2 - - - 2 3

12 Paired - - 8 13 - 1 - - 1 2 - - - -

https://doi.org/10.1371/journal.pone.0290035.t005

Table 6. Number of the conserved, transition and transversional sites along with the transition/transversion ratio in the predicted pCRMs as depicted by the

MEGA XI software.

S.NO. Name of Gene Number of conserved sites Number of transition sites Number of transversional sites Transition/Transversional ratio

1 Hunchback 216 71 79 0.9

2 Knirps 267 134 178 0.8

3 Caudal 214 125 168 0.7

4 Kruppel 276 160 167 1.0

5 Giant 234 133 162 0.8

6 Tailless 134 80 111 0.7

7 Even-skipped 128 53 74 0.7

8 Odd-skipped 221 102 131 0.8

9 Runt 268 153 200 0.8

10 Hairy 201 133 184 0.7

11 Fushi-tarazu 271 78 137 0.6

12 Paired 84 31 102 0.3

https://doi.org/10.1371/journal.pone.0290035.t006

PLOS ONE A-P patterning gene enhancers in Drosophila and Tribolium

PLOS ONE | https://doi.org/10.1371/journal.pone.0290035 August 17, 2023 11 / 20

https://doi.org/10.1371/journal.pone.0290035.t005
https://doi.org/10.1371/journal.pone.0290035.t006
https://doi.org/10.1371/journal.pone.0290035


revealed that these proteins have compatible binding with each other [39]. The Kruppel pro-

tein interacts with the Hunchback protein in order to repress the latter’s expression and simul-

taneously regulate its own expression, as evidenced by previous research [40]. The findings of

our study indicate that the proteins Hunchback and Kruppel exhibit homology, implying a

shared evolutionary ancestry between these proteins. Gap TFs also control the downstream

cascade of A-P Patterning genes [41, 42]. The binding of TFs to particular clusters of activator

and repressor binding sites inside embryonic CRMs tightly controls gene expression patterns

at each phase in the cascade. Individual CRMs have distinct molecular characteristics that

influence transcriptional output. When a TF attaches to a CRM, it might behave as an activator

or a repressor, depending on the situation [43, 44]. Hundreds of cis-regulatory motif

sequences have been identified across all model species using both experimental [45–48] and

bioinformatic [49–52] approaches, as well as the discovery of the related transcription factors

binding to them [53]. The cluster of these transcription factor binding sites can be recognized

as putative enhancers or CRM which help in the process of transcription. Many key regulators

of early development have been identified courtesy of sophisticated genetic screening and the

molecular biology and biochemistry of these factors, as well as their target sequences, have

gained considerable interest in Drosophila [54, 55]. In-silico identification of CRM in early

development in D. melanogaster and D. pseudoobscura were predicted and in-vivo testing was

done on pCRMs [1, 56]. Tribolium is a good illustration of short germ embryogenesis in

insects since it represents the ancestral kind of embryogenesis. In comparison to Drosophila,

the blastoderm phase determines only the cephalic and thoracic segments, but not the abdomi-

nal segments. While the Bicoid gradient has been used to study pattern development in Dro-
sophila, it is considered that this is not the case in Tribolium as Bicoid is not present in the

insect. The alteration from Caudal activation of the Hunchback gap region to direct activation

by Bicoid was an evolutionary shift from short to long germ embryogenesis [38, 57]. The

Fig 6. Protein-protein interactions between the different TFs which bind to the enhancers in the A-P patterning

genes of D. melanogaster. Here in this figure, the pink colour represents the experimentally determined interactions,

Sky blue shows the interactions curated from databases between the proteins. The blue colour node represents the gene

co-occurrence. The black colour node depicts the co-expression of protein and the violet colour represents the protein

homology. The yellow colour node represents the interactions that are predicted through text mining.

https://doi.org/10.1371/journal.pone.0290035.g006
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previous studies on A-P patterning comparison have been done on different species of Dro-
sophila but there is no study which compares A-P patterning in different insect species belong-

ing to different insect order [58]. Hence, the present study was performed to check whether

the insects belonging to different orders, have different developmental patterns but have simi-

lar genes, and are controlled by similar cis-regulatory modules or not.

In D. melanogaster, the zygotic Hunchback gene is activated by the synergetic interaction

between the Hunchback and Bicoid transcription factors [59–61], the result predicted by the

present study also depicted a similar result. The cluster predicted by MCAST has the maxi-

mum number of Hunchback transcription factor sites in both D. melanogaster and T. casta-
neum. As mentioned above, in Tribolium the bicoid gene is absent therefore Tribolium has

additional caudal sites which help in Hunchback gene activation and expression. In the case of

Knirps, the maximum number of transcription factors binding sites again are of Hunchback in

Fig 7. Protein-protein interactions between the different TFs which bind to the enhancers in the A-P patterning

genes of T. castaneum. Here in this figure, the pink colour represents the experimentally determined interactions, Sky

blue shows the interactions curated from databases between the proteins. The blue colour node represents the gene co-

occurrence. The black colour node depicts the co-expression of protein and the violet colour represents the protein

homology. The yellow colour node represents the interactions that are predicted through text mining.

https://doi.org/10.1371/journal.pone.0290035.g007
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addition to other factors in both D. melanogaster and T. castaneum. Previous Drosophila stud-

ies suggest that the Hunchback acts as a repressor for Knirps, as binding of the Hunchback sup-

presses the Knirps in the anterior half of the embryo [62, 63] Caudal gene is one of the most

studied gap genes in D. melanogaster and T. castaneum, which help in the activation of gap

genes and pair-rule genes in insects. Caudal is known to be a downstream core promoter ele-

ment [39] and our results also depict the same. Both in D. melanogaster and T. castaneum the

cluster is found to be downstream to the transcription start site. Both clusters have TFBS for

Hunchback and Caudal, while Drosophila has additional sites for Bicoid also.

The previous studies of the Kruppel gene suggest that the Kruppel has TFBS for Hunchback,

Bicoid, Giant, and Knirps [62, 64]. Hunchback and Bicoid are known as activators of the Krup-
pel gene, while Knirps and Giant are known to be their repressors [62]. The present study result

has also predicted similar binding sites in D. melanogaster as in evident in previous studies

while T. castaneum has TFBS clusters for Hunchback and Caudal only. For the expression of

Giant gene in Drosophila, Hunchback functions as a concentration-dependent repressor of

Giant, suppressing its most anterior expression [65–67]. Giant will not be transcribed in the

anterior domain without the presence of Bicoid [65]. Activation in the posterior domain neces-

sitates the combined actions of the Caudal and Bicoid [65, 68]. Similar TFBS was found in D.

melanogaster and T. castaneum. In addition to these predicted pCRMs, binding sites for Krup-

pel and Knirps were predicted in D. melanogaster while only one Kruppel site was predicted in

T. castaneum. These results suggest that the gap genes transcription in D. melanogaster is

mainly controlled by Hunchback, Bicoid, and Caudal proteins while in T. castaneum, Hunch-

back and Caudal are majorly the transcription factors for the gap genes.

Gap genes with maternal gradients act across shorter distances and overlap at their borders,

resulting in the seven-stripe expression patterns of the pair-rule genes [69, 70] Even-skipped is

one of the most extensively studied pair-rule gene in D. melanogaster. Previous studies docu-

mented the individual Even-skipped stripe responds to the different gradients and combinations

of gap gene transcription factors [43, 71–73]. The present study predicts the gene has TFBS clus-

ters for Hunchback and Knirps only in both D. melanogaster and T. castaneum, this combina-

tion in previous studies was found to influence the stripe 3+7 enhancer in Drosophila
melanogaster [74]. In the earlier D. melanogaster study, it was found that the gap genes mainly

Hunchback, Giant, Kruppel, and Knirps act as a repressor for the Runt, which is a primary pair-

rule gene [75]. Similar TFBS were predicted in the present study, with the exception that no

Kruppel binding site was found in both D. melanogaster and T. castaneum. In addition to these

known TFs, additional binding sites for Caudal were also found in both D. melanogaster and T.

castaneum. The gap genes mainly, Hunchback, Knirps, and Kruppel are known to influence the

expression of pair-rule genes [76, 77]. The hairy gene also has similar TFBS, which is alike to the

cluster predicted in D. melanogaster. The cluster have TFBS for Hunchback, Knirps, and Krup-

pel in addition to these, binding sites for Caudal and one Giant transcription factor were also

predicted. In contrast to D. melanogaster, hairy gene in T. castaneum showed binding sites for

Hunchback, Caudal and Giant site. The Hairy functions in the trunk and head segmentation in

D. melanogaster. A previous study on Hairy gene in T. castaneum suggests that the gene func-

tions only during trunk segmentation in T. castaneum and is non-functional during the head

segmentation pathway [78]. The Fushi-tarazu, Odd-skipped, and Paired are regarded as second-

ary pair rule genes in D. melanogaster [3, 79]. These genes are known to have Hunchback Krup-

pel, Knirps and Giant as repressor factors in different combinations [80]. The MCAST analysis

revealed binding sites for Hunchback, Caudal and Even-skipped factors in the secondary pair

rule genes for both D. melanogaster and T. castaneum. In addition, Drosophila Fushi-tarazu
gene showed binding sites for bicoid and giant also. As far as the Odd skipped gene is concerned,

both D. melanogaster and T. castaneum have TFBS for Hunchback and Knirps. The gene in D.
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melanogaster also showed binding sites for Bicoid and Even-skipped. The Odd skipped gene in

T. castaneum showed binding sites for Kruppel and Caudal also. Paired being a secondary pair-

rule gene, is controlled by the primary pair-rule genes in D. melanogaster and T. castaneum [81].

Most of the Predicted Cis-regulatory elements of the pair rule genes have TFBS for the Hunch-

back, Bicoid, Caudal, Knirps, and Kruppel in D. melanogaster. However, in T. castaneum, most

pCRMs have TFBS for hunchback, knirps, caudal, and kruppel. The size of the predicted Cis-

regulatory elements is between 200 bp to 850 bp for D. melanogaster and 240 bp– 950 bp for T.

castaneum. The results of the MCAST analysis in the present study suggest that most of the tran-

scription factors which control the A-P patterning cascade are conserved in D. melanogaster and

T. castaneum with the exception that there are no binding sites for Bicoid in T. castaneum.

Transitions (Ti) are referred to as pyrimidine- or purine-based A-G or C-T switching. A

transversion (Tv) is the exchange of two-ring purine nucleobases for one-ring pyrimidine

bases. There are four conversion possibilities: A-C, A-T, C-G, and G-T. From the last decade,

the Ti/Tv ratio has been employed as a significant metric for the reconstruction of phylogenetic

trees and the calculation of divergence. Even the High-throughput sequencing studies employ

the Ti/Tv ratio as a quality control measure. Assuming that there are two potential transitions

and four possible transversions, the Ti/Tv ratio, which divides the number of transition SNPs

by the number of transversion SNPs, should equal 0.5 if replacement variations occur at ran-

dom. Nonetheless, a transversion is considered a more important change than a transition

since it requires more energy than replacement without affecting the ring structure. Hence, the

transition and transversion ratio is frequently more than 0.5 in actual sequencing data [82–85].

Studies also suggest that the Tv’s have more significant effects on regulatory DNA, such as TF

binding motif studies and allele-specific TF binding [86]. Keeping in mind, the importance of

Ttransitions and transversion, the present study also evaluated the number of Ti, Tv sites, and

Ti/Tv ratio in the predicted enhancers of A-P patterning genes. The Tv sites were found to be

more than the Ti sites and the average Ti/Tv ratio was 0.75 as given in Table 5. As the Tv is

most likely to affect the amino acid sequence than the Ti, the more Tv can be indicative of a

large number of variations, which will ultimately affect gene expression [81–85].

Conclusion

This study marks the first-ever attempt to conduct an integrated examination of the location,

size, and composition of clusters of transcription factor binding sites (TFBS) within the cis-

regulatory elements of multiple anterior-posterior (A-P) patterning genes that exhibit orthol-

ogy to gene sequences found in Drosophila. The present investigation has revealed that compa-

rable transcription factors (TFs) could regulate the expression of anterior-posterior (A-P)

patterning genes in Diptera and Coleoptera taxa of insects. The majority of transcription fac-

tors (TFs) were observed to be situated upstream of the transcription start site (TSS), although

a subset were also identified downstream of the TSS. In both Drosophila melanogaster and Tri-
bolium castaneum, the Hunchback transcription factor binding site (TFBS) exhibited the high-

est frequency among all identified TFBS. The present study contributes to the advancement of

our understanding regarding the evolutionary patterns of genes and cis-regulatory elements in

two distinct orders of insects. Subsequent validation of these findings may be achieved through

in-vitro and in-vivo experimentation.
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