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Abstract: An increasing number of studies have suggested that oxidative stress and inflammation play momentous 
roles in acute pulmonary embolism (APE). Honokiol, a bioactive biphenolic phytochemical substance, is known for 
its strong anti-oxidative and anti-inflammatory effects, and it served as an activator of sirtuin3 (SIRT3) in the present 
study. The purposes of the study were to explore the effects of honokiol on APE rats and investigate whether the 
function of honokiol is mediated by SIRT3 activation. In the study, the rats received a right femoral vein injection 
of dextran gel G-50 particles (12 mg/kg) to establish the APE model and were subsequently administered honokiol 
and/or a selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP; 5 mg/kg) intraperitoneally. The results 
showed that SIRT3 activation by honokiol attenuated the loss in lung function, ameliorated the inflammatory 
response and oxidative damage, and inhibited apoptosis in lung tissues of the rats with APE but that this was 
reversed by 3-TYP. In addition, we found that the AMP-activated protein kinase (AMPK)/mammalian target of 
rapamycin (mTOR) pathway might be activated by honokiol but restrained by 3-TYP. These results indicated that 
honokiol was capable of suppressing the adverse effects of APE and that this was diminished by SIRT3 suppression, 
implying that activation of SIRT3 might serve as a therapeutic method for APE.
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Introduction

Acute pulmonary embolism (APE) is the third most 
common acute cardiovascular disease [1]. In the clinical 
setting, deep vein thrombosis (DVT) is the most common 
risk factor for APE [2]. APE normally causes chest pain, 
breathlessness, and cough [3, 4]. Inflammation and oxi-
dative stress play significant roles in APE progression. 
On the one hand, APE is capable of inciting inflammation 

induced by multiple stimuli [5, 6], including pulmonary 
artery hypertension [7–9], hypoxia [10], and ischemia 
[11]. On the other hand, APE causes perturbations in the 
redox balance, thereby inducing oxidative stress [12–14]. 
Here, we attempted to explore a molecule associated 
with inflammation and oxidative stress, so as to further 
study the mechanism related to APE, which has an im-
portant guiding significance for treatment of this disease.

Mammalian sirtuins (SIRTs), NAD+-dependent pro-
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tein deacetylases, comprise seven isoforms (SIRT1 to 
SIRT7) based on distinct differences in subcellular lo-
calization and substrate specificity [15–18]. Numerous 
studies have shown that SIRTs possess protective effects 
against aging, apoptosis, inflammation, and oxidative 
stress [19, 20]. SIRTs, especially SIRT3, are linked to 
several pathologies, including cancer, heart disease, fi-
brosis, acute kidney injury, and neurodegeneration dis-
eases [21–25].

SIRT3 mostly controls mitochondrial acetylation [26, 
27], which plays important roles in regulating systemic 
inflammation, cellular energy metabolism, oxidative 
stress, and apoptosis [28–30]. Previous studies have 
indicated that mitochondrial SIRT3 is highly expressed 
in a variety of metabolic tissues, such as the heart, kid-
ney, and liver [26, 31–33]. SIRT3 is associated with 
cardiovascular disease and aging [34–36]. Global SIRT3 
depletion (Sirt3−/−) induces oxidative stress, increases 
vascular inflammation, and accelerates vascular senes-
cence and age-dependent hypertension in mice. Never-
theless, genetic SIRT3 overexpression prevents these 
deleterious effects [37]. Similarly, SIRT3 serves as a 
novel therapeutic molecule in endotoxin-induced acute 
lung injury (ALI) by repressing macrophage metabolic 
reprogramming and its pro-inflammatory phenotype 
[38]. Besides, a study has pointed out that melatonin 
treatment protects the heart from myocardial ischemia/
reperfusion injury by reducing oxidative stress and apop-
tosis via activation of the SIRT3 signaling pathway [39]. 
SIRT3 deficiency also promotes pulmonary fibrosis by 
augmenting mitochondrial DNA damage and apoptosis 
in alveolar epithelial cells (AEC) [40]. These studies 
provide hints about the anti-inflammatory, anti-oxidative, 
and anti-apoptotic properties of SIRT3 in diseases. How-
ever, there is a lack of evidence demonstrating the effects 
of SIRT3 on APE.

Therefore, we used the SIRT3 activator honokiol and 
inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP) to 
appraise the effects of SIRT3 on inflammation, oxidative 
stress, and apoptosis induced by APE in lung tissues of 
rats and explore the underlying molecular mechanisms.

Materials and Methods

Animals
This study used male Sprague-Dawley (SD) rats, 

which were housed under a 12-h light/dark cycle at 22 
± 1°C with 45–55% humidity and free access to food 
and water. SD rats were treated with a dextran gel G-50 
particles (diameter 300 µm; Macklin, Shanghai, China) 
suspension (12 mg/kg) via the right femoral vein to es-
tablish the APE model. Some of the APE rats were also 

administered an intraperitoneal injection of 5 mg/kg 
honokiol (MedChemExpress, Shanghai, China) as de-
scribed in the previous studies [41, 42]. Furthermore, 
some of the APE rats administered honokiol were also 
injected with 5 mg/kg 3-TYP (MedChemExpress) intra-
peritoneally [39, 43, 44]. Subsequently, arterial blood 
was drawn from the common carotid artery of the rats 
under oxygen inhalation. The blood samples were im-
mediately analyzed using a blood gas analyzer. The 
levels of arterial partial pressure of oxygen (PaO2), frac-
tion of inspiration O2 (FiO2), oxygenation index (PaO2/
FiO2), and arterial partial pressure of carbon dioxide 
(PaCO2) were recorded. The lung tissues were obtained 
from the euthanized rats for subsequent experiments. All 
animal experiments were carried out in strict adherence 
with the Guidelines of Laboratory Animals Center of 
Soochow University.

Real-time PCR
Total RNA was extracted by TRIpure Reagent 

(BioTeke Corp., Beijing, China) according to manufac-
turer’s instructions. The corresponding cDNA was ob-
tained by reverse transcription using BeyoRT II M-MLV 
Reverse Transcriptase (Beyotime Biotechnology, Shang-
hai, China). Real-time quantitative PCR was performed 
using SYBR Green (Solarbio Science & Technology, 
Beijing, China) to measure the Sirt3 levels of the control 
and APE groups with specific primer (SIRT3 forward 
primer, 5′-GCCCAATGTCGCTCACTA-3′; SIRT3 re-
verse primer, 5′-CGTCAGCCCGTATGTCTT-3′). β-actin 
was used as the endogenous control (β-actin forward 
primer, 5′-GGAGATTACTGCCCTGGCTCCTAGC-3′; 
β-actin reverse primer, 5′-GGCCGGACTCATCG-
TACTCCTGCTT-3′). The relative expression levels of 
Sirt3 were calculated using the 2-ΔΔCt method.

Immunohistochemistry (IHC)
Pulmonary tissues from the rats were embedded in 

paraffin, and the paraffin-embedded blocks of pulmonary 
tissues from the control and APE rats were processed to 
obtain 5-µm-thick histologic sections. The samples were 
incubated with anti-SIRT3 (1:100; Abclonal Technology, 
Hubei, China) overnight at 4°C, followed by incubation 
with HRP-linked goat anti-rabbit IgG (1:500; Thermo 
Fisher Scientific, Waltham, MA, USA) at 37°C for 1 h. 
Eventually, 3,3-diaminobenzidine (DAB; Maixin Bio-
tech, Fujian, China) and hematoxylin (Solarbio Science 
& Technology) were used for staining and counterstain-
ing, respectively. The results were observed under a 
microscope (×400 magnification; Olympus, Tokyo, Ja-
pan).
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Immunofluorescence (IF) staining
Lung tissues obtained from the rats were processed 

into 5-µm-thick sections and incubated with anti-SIRT3 
overnight at 4°C, as in the case of the IHC. Next, the 
tissues were kept in Cy3-labeled goat anti-rabbit IgG 
(1:200; Invitrogen, Thermo Fisher Scientific) for 1 h. 
Finally, all samples were stained with 2-(4-amidinophenyl)-
6-indolecarbamidine dihydrochloride (DAPI; Aladdin, 
Shanghai, China) and visualized with a fluorescence 
microscope (×400 magnification; Olympus).

Hematoxylin-eosin (HE) staining
Briefly, 5-µm-thick sections of lung tissues from the 

rats were stained with hematoxylin (Solarbio Science & 
Technology) and eosin (Sangon Biotech, Shanghai, 
China) and then photographed (40× and 200× magnifica-
tion). Severity of lung injury was evaluated by referring 
to the criteria of previous reports [45–47].

Inflammatory cell count
Bronchoalveolar lavage was performed, and the col-

lected bronchoalveolar lavage fluid was stained with 
Giemsa stain (Nanjing Jiancheng Bioengineering Insti-
tute, Jiangsu, China). Then, inflammatory cells, includ-
ing eosinophils, neutrophils, lymphocytes, and monocyte 
macrophages, were counted under a microscope (400× 
magnification; Olympus).

Reactive oxygen species (ROS) determination
Lung tissues were embedded using optimal cutting 

temperature (OCT) compound. The embedded lung tis-
sues were cut into 10-µm-thick slices. ROS levels were 
detected with an ROS Assay Kit (BestBio, Shanghai, 
China). Images were captured with a microscope (400× 
magnification; Olympus).

Terminal deoxynucleotidyl transferase dUTP nick-
end labeling (TUNEL) staining

Apoptotic cells in lung tissues were analyzed by TU-
NEL staining. In short, 5-µm-thick sections of lung tis-
sues were permeabilized with 0.1% Triton X-100 (Bey-
otime Biotechnology) for 8 min. The sections were then 
placed in a TUNEL solution mixture for 1 h. An In Situ 
Cell Death Detection Kit (Roche, Basel, Switzerland) 
was used following the manufacturer’s instructions. The 
results were observed under a fluorescence microscope 
(400× magnification; Olympus).

Assessment of pulmonary injury markers
The dry and wet weights of lung tissues were deter-

mined, and then the wet/dry weight ratios (W/D) were 
calculated. Moreover, a Rat TNF-α ELISA Kit (Multi-

sciences Lianke Biotech, Zhejiang, China) and IL-6 
ELISA Kit (Multisciences Lianke Biotech, Zhejiang, 
China) were utilized to measure the levels of tumor ne-
crosis factor-α (TNF-α) and IL-6. Myeloperoxidase 
(MPO) was quantified in accordance with the instruc-
tions of an MPO Assay Kit (Nanjing Jiancheng Bioen-
gineering Institute, Jiangsu, China). The above biomark-
ers were used to evaluate the effect of SIRT3 on lung 
injury in the rats.

Assessment of pulmonary oxidative stress markers
The influence of SIRT3 on oxidative stress in the APE 

rats was assessed by measuring the content of malondi-
aldehyde (MDA) in lung tissues as well as the activity 
of serum lactic dehydrogenase (LDH) and superoxide 
dismutase (SOD) with assay kits from Nanjing Jiancheng 
Bioengineering Institute (Jiangsu, China).

Western blot
Total proteins were collected from lung tissues and 

separated on sodium dodecyl sulphate polyacrylamide 
gel electrophoresis (SDS-PAGE) gels (Beyotime Bio-
technology). After being blocked by 5% skim milk, the 
proteins were transferred onto polyvinylidene difluoride 
(PVDF) membranes (MilliporeSigma, St. Louis, USA). 
Then the membranes were incubated overnight at 4°C 
with anti-cleaved caspase-3 (1:1,000), B-cell lymphoma 
2 (Bcl-2; 1:1,000), Bcl-2-associated X (Bax; 1:500), 
p-AMPK (1:1,000), AMPK (1:1,000), p-mTOR (1:500), 
and mTOR (1:500) from Affinity Biosciences (Jiangsu, 
China) as well as β-actin (1:50,000) from Abclonal Tech-
nology (Hubei, China). Subsequently, the membranes 
were exposed to secondary antibodies, horseradish per-
oxidase (HRP)-conjugated goat anti-rabbit IgG 
(1:10,000, Abclonal Technology, Hubei, China), at 37°C 
for 40 min. Protein signals were observed with an en-
hanced chemiluminescence (ECL; Beyotime Biotechnol-
ogy) system.

Statistical analysis
All experiments were repeated at least six times. The 

data are presented as the mean ± SD. Statistical signifi-
cance was determined by Student’s t-test for comparisons 
between two groups and by one-way ANOVA followed 
by Tukey’s test for comparisons among multiple groups. 
The data were analyzed using the GraphPad Prism 8.0 
software. A P-value <0.05 indicated statistical signifi-
cance.
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Results

SIRT3 was decreased in the pulmonary tissues
As shown in Figs. 1A and B, the levels of SIRT3 ex-

pression were downregulated in the pulmonary tissues 
of APE rats (P<0.001). Furthermore, IF staining assays 
demonstrated that honokiol elevated the expression of 
SIRT3 (Fig. 1C).

SIRT3 alleviated pulmonary function loss and lung 
injury

Honokiol enhanced the PaO2/FiO2 ratio and reduced 
the PaCO2 of the APE rats. These results were reversed 
by 3-TYP (Figs. 2A–D, P<0.01). Measurement of pul-
monary injury revealed that the W/D ratio was reduced 
by honokiol but was restored by 3-TYP (Fig. 2E, 
P<0.001). We performed HE staining to estimate the 
degrees of inflammation, and the results were consistent 
with the above (Figs. 2F and G, P<0.001). These results 
suggested that SIRT3 preserved pulmonary function and 
reduced the lung injury induced by APE.

SIRT3 reduced inflammation
The increases in inflammatory cells, including eo-

sinophils, neutrophils, lymphocytes, and monocyte mac-
rophages, caused by APE were suppressed by honokiol 
in the APE rats (Figs. 3A–E, P<0.05). TNF-α, IL-6, and 
MPO, known as pro-inflammatory cytokines, were aug-
mented in the rats with APE compared with the controls. 

The levels of these markers were reduced after honoki-
ol treatment in the rats with G-50 particle-induced APE 
(Figs. 3F–H, P<0.01). On the other hand, 3-TYP reversed 
the changes (Fig. 3). Our results proved that SIRT3 might 
play an anti-inflammatory role in the rats suffering from 
APE.

SIRT3 decreased oxidative stress and apoptosis
The results shown in Fig. 4A revealed that honokiol 

prevented elevation of ROS. Similarly, the growth of 
MDA was inhibited by honokiol (Fig. 4B, P<0.001). In 
addition, the activities of LDH and SOD were lower in 
the APE rats than in the controls. Honokiol was able to 
recover their activities (Figs. 4C and D, P<0.05). How-
ever, 3-TYP reversed these effects (Figs. 4A–D). Be-
sides, honokiol restrained cell apoptosis, and 3-TYP 
mitigated this effect (Fig. 4E). Moreover, honokiol-in-
duced decreases of pro-apoptosis genes, including 
cleaved caspase-3 and Bax, and elevation of the anti-
apoptotic gene Bcl-2 were reversed by 3-TYP treatment 
(Figs. 4F–I, P<0.001). Taking into consideration all the 
above results, SIRT3 might protect the rats from oxida-
tive stress and apoptosis induced by APE.

SIRT3 enhanced the AMPK/mTOR signaling 
pathway

The results of the western blot assay revealed that the 
p-AMPK/AMPK ratios, which were reduced by APE, 
were augmented by honokiol, whereas 3-TYP removed 

Fig. 1.	 Sirtuin3 (SIRT3) expression in the lung tissues of rats with acute pulmonary embolism (APE). 
(A) The levels of SIRT3 were assessed by real-time quantitative PCR and (B) immunohis-
tochemistry. (C) Immunofluorescence (IF) staining showed the expression of SIRT3 (red) in 
the lung tissues of APE rats after honokiol and/or 3-TYP treatment. Scale bar=50 µm. Data 
are presented as the mean ± SD (n=6 in each group). ***P<0.001 versus the control group.



C. XU, ET AL.

350 | doi: 10.1538/expanim.22-0175

this effect in the APE rats (Figs. 5A and B, P<0.001). 
Similarly, Fig. 5C shows that the p-mTOR/mTOR ratios, 
which were increased by APE, were restored by ho-
nokiol in the rats with APE, and this was reversed by 
3-TYP (Figs. 5C and D, P<0.001). Based on the above 
results, honokiol might be capable of activating the 
AMPK/mTOR signaling pathway, whereas 3-TYP might 
inhibit this. In other words, SIRT3 might protect rats 
from APE-induced the deleterious effects by activating 
the AMPK/mTOR signaling pathway.

Discussion

APE is typically caused by a thrombus that travels 
from a vein in a lower limb [2], and most deaths from 
APE occur within the first several hours to days. There-
fore, early diagnosis and intervention are of vital impor-
tance [48–50]. In the present study, we investigated the 
effects of SIRT3 on rats with G-50 particle-induced APE 
via its modulators and explored the possible mecha-
nisms. Previous studies have found that the abnormal 

Fig. 2.	 Effect of honokiol or 3-TYP on pulmonary function and injury in the rats with acute pulmonary 
embolism (APE). (A) Arterial partial pressure of oxygen (PaO2). (B) Fraction of inspiration O2 
(FiO2). (C) Oxygenation index (PaO2/FiO2). (D) Arterial partial pressure of carbon dioxide (PaCO2). 
(E) Wet/dry weight ratio (W/D). (F, G) Hematoxylin-eosin (HE) staining was used to observe the 
pathological changes at 40× (Scale bar=500 µm) and 200× magnification (Scale bar=100 µm) and 
determine the inflammation grade. Data are presented as the mean ± SD (n=6 in each group). 
***P<0.001 versus the control group. **P<0.01 versus the control group. ###P<0.001 versus the 
APE group. ##P<0.01 versus the APE group.
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expression of SIRT3 is closely pertinent to cardiovascu-
lar diseases [28, 37, 51]. We provided the evidence that 
SIRT3 was downregulated in the rats suffering from 
APE. Our data showed that SIRT3 activation induced by 
honokiol alleviated the abnormality of lung function in 
the APE rats, while SIRT3 suppression induced by 
3-TYP exacerbated it. Furthermore, the increased anti-
inflammatory, anti-oxidative, and anti-apoptotic capaci-
ties induced by honokiol were inhibited by 3-TYP, indi-
cating that SIRT3 exhibited a protective effect in the APE 
rats. Notably, we suggested that this phenomenon might 
involve the AMPK/mTOR signaling pathway.

In our investigation of the anti-inflammatory effect of 
SIRT3 in APE rats, HE staining revealed that the lung 
tissues of APE rats suffered serious damage, including 
inflammatory cells infiltration and alveolar structure 
destruction. Significantly, SIRT3 activation diminished, 
but SIRT3 suppression aggravated these symptoms of 
APE. Besides, honokiol administration effectively de-
creased the levels of eosinophils, neutrophils, lympho-
cytes, and monocyte macrophages. This was sufficient 
evidence to suggest that SIRT3 had anti-inflammatory 
effects.

Oxidative stress, defined as a disturbance in the bal-

Fig. 3.	 Effect of honokiol or 3-TYP treatment on inflammation in the acute pulmonary embolism (APE) 
rats. (A) Total number of inflammatory cells. (B) Eosinophils. (C) Neutrophils. (D) Lymphocytes. 
(E) Monocyte macrophages. (F) Measurement of the inflammation-linked indices tumor necrosis 
factor-α (TNF-α), (G) IL-6, and (H) myeloperoxidase (MPO). Scale bar=50 µm. Data are pre-
sented as the mean ± SD (n=6 in each group). ***P<0.001 versus the control group. *P<0.05 
versus the control group. ###P<0.001 versus the APE group. ##P<0.01 versus the APE group.
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ance between oxidation and anti-oxidant defense, is able 
to cause excessive accumulation of ROS [52, 53]. SIRT3 
is reported to rapidly balance ROS levels via deacety-
lation and activation of superoxide dismutase 2 (SOD2) 
[31, 54, 55]. In addition to oxidative stress, SIRT3 plays 

a regulatory role in controlling the inflammatory re-
sponse to diseases [37, 38]. Honokiol (C18H18O2), a 
SIRT3 activator [56], possesses anti-oxidative, anti-in-
flammatory, and anti-apoptotic properties [57–59]. 
Zheng et al. [60] found that honokiol attenuates oxida-

Fig. 4.	 Effect of honokiol or 3-TYP on oxidative stress and apoptosis in the acute pulmonary embolism (APE) 
rats. (A) Reactive oxygen species (ROS). (B) Measurement of the oxidative stress-linked indices malo-
ndialdehyde (MDA), (C) lactic dehydrogenase (LDH), and (D) superoxide dismutase (SOD). (E) 
Apoptotic cells were detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) 
(red), and nuclei were detected by 2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride (DAPI) 
(blue). (F-I) Apoptosis-linked indices (cleaved caspase-3, B-cell lymphoma 2 (Bcl-2)-associated X 
(Bax), Bcl2) were assessed by western blot. Scale bar=50 µm. Data are presented as the mean ± SD 
(n=6 in each group). ***P<0.001 versus the control group. **P<0.01 versus the control group. *P<0.05 
versus the control group. ###P<0.001 versus the APE group. ##P<0.01 versus the APE group.
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tive stress injury by deacetylating SOD2 and then scav-
enging excess ROS after intracerebral hemorrhage in 
diabetic rats. As shown in a study by Chiang et al. [42], 
honokiol effectively protects skeletal muscle from ec-
centric exercise-induced damage by repressing oxidative 
stress and inflammation in rats. Additionally, honokiol 
ameliorates the cognitive decline induced by laparotomy 
under sevoflurane anesthesia in mice through the inhibi-
tion of neuronal apoptosis, oxidative stress, and inflam-
mation in the hippocampus [44]. In contrast to honokiol, 
3-TYP (C7H6N4) is a selective SIRT3 inhibitor that re-
moves honokiol’s therapeutic effects. A previous study 
reported that 3-TYP increases hepatic damage caused by 
oxidative stress and endoplasmic reticulum stress and 
facilitates the hepatocyte apoptosis in mice with acute 
liver failure [61]. Interestingly, it has been reported that 
3-TYP administration abolishes the neuroprotective ef-
fects of honokiol [44]. In the present study, we found 
that the anti-oxidative, anti-inflammatory, and anti-
apoptotic capacities provided by honokiol were elimi-
nated by 3-TYP in the lung tissues of the APE rats, which 
was consistent with the previous studies.

AMPK, a regulator of cellular energy homeostasis [62], 
plays a crucial role in cellular physiology and the patho-

logical development of chronic diseases [63]. It is note-
worthy that high expression of SIRT3 ameliorates sepsis-
related cardiomyocyte injury by facilitating AMPK 
activity [64]. mTOR is one of the downstream targets of 
AMPK. It functions as an intracellular nutrient sensor to 
control protein synthesis, cell growth, and metabolism 
[65–67]. A stress-inducing protein, Sestrin2, serves as a 
guardian by activating AMPK, reducing mTOR, and 
maintaining the redox balance under the conditions of 
various stress environments [68]. A previous study clar-
ified that dapagliflozin activates AMPK and suppresses 
the phosphorylation of mTOR in Zucker diabetic fatty 
rats, thereby mitigating hepatic steatosis [69]. Given these 
studies, we conjectured that SIRT3 might exert a protec-
tive effect on the lung tissues of APE rats by inducing 
anti-inflammation, anti-oxidative stress, and anti-apop-
tosis effects through the AMPK/mTOR pathway.

Conclusions
Collectively, we demonstrated that SIRT3 was down-

regulated in the lung tissues of APE rats. We investi-
gated the effects of SIRT3 on the APE rats using the 
SIRT3 activator honokiol and inhibitor 3-TYP and 
showed that honokiol diminished APE’s negative influ-
ence by alleviating oxidative stress, inflammation, and 
apoptosis. However, 3-TYP treatment eradicated the 
rescuing effects (Fig. 6). Our study indicated that SIRT3 
might serve as a promising molecular target in APE 
therapy.
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