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Abstract 

Purpose:  This study aimed to characterize the gut microbiota in obese adolescents from Shenzhen (China), and 
evaluate influence of gender on BMI-related differences in the gut microbiome.

Methods:  Evaluation of physical examination, blood pressure measurement, serological assay and body composition 
were conducted in 205 adolescent subjects at Shenzhen. Fecal microbiome composition was profiled via high-
throughput sequencing of the V3–V4 regions of the 16S rRNA gene. A Random Forest (RF) classifier model was built to 
distinguish the BMI categories based on the gut bacterial composition.

Results:  Fifty-six taxa consisting mainly of Firmicutes were identified that having significant associations with BMI; 2 
OTUs belonging to Ruminococcaceae and 1 belonging to Lachnospiraceae had relatively strong positive correlations 
with body fate rate, waistline and most of serum biochemical properties. Based on the 56 BMI-associated OTUs, the 
RF model showed a robust classification accuracy (AUC 0.96) for predicting the obese phenotype. Gender-specific 
differences in the gut microbiome composition was obtained, and a lower relative abundance of Odoribacter genus 
was particularly found in obese boys. Functional analysis revealed a deficiency in bacterial gene contents related to 
peroxisome and PPAR signaling pathway in the obese subjects for both genders.

Conclusions:  This study reveals unique features of gut microbiome in terms of microbial composition and metabolic 
functions in obese adolescents, and provides a baseline for reference and comparison studies.
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Introduction
Obesity during childhood and adolescence is associ-
ated with cardiovascular disease and metabolic syn-
drome later in life, and has become a significant public 

health concern worldwide [1]. Human gut microbiome, 
highly involved in the host calorie harvest and energy 
homeostasis [2], has increasingly been recognized as an 
important factor in the development of obesity [3, 4]. For 
example, alterations in the gut microbiota, such as anti-
biotic exposure, are linked with a variety of metabolic 
diseases including obesity, type 1 and type 2 diabetes 
[5]. Both animal and human studies showed divergences 
in the gut microbiome composition resulted in differ-
ent post-dieting weight gain [6, 7]. Gut microbes also 
showed to stimulate chronic low-grade inflammation by 
producing lipopolysaccharides and contributed to obe-
sity and insulin resistance [8]. On the other hand, mod-
ulation of gut microbiota by fiber supplementation or 
fecal microbiota transplantation suppressed inflamma-
tion and improved insulin sensitivity, demonstrating gut 
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microbiota played key role in etiology of the metabolic 
syndrome [9].

Investigations of gut microbiota markers of obesity 
were performed in different previous studies, but no con-
sistent pattern has not been obtained. For example, both 
Bäckhed et  al. [10] and Turnbaugh et  al. [11] identified 
lower ratio of Bacteroidetes to Firmicutes in people with 
obesity than in those with normal body weight, but this 
characteristic was not supported by other studies [12, 
13]. Gut microbiome composition appears to be affected 
by host genetics, age, gender, geographical locations, 
and other environmental factors [14]. By characterizing 
the gut microbiota of 7009 individuals from 14 districts 
within the Guangdong province of China, host location 
is shown to be the strongest explanatory factor of the 
microbiota variations [15]. Upon analyzing gut microbi-
ota sequencing data collected from 516 Chinese adults, 
our previous study showed that BMI differences in the 
gut microbiome composition are gender specific [16]. 
Since age has also been reported as a confounding factor 
influencing the gut microbiome, it is uncertain whether 
the gender-dependent differences identified in adult 
also present in adolescents. Therefore, factors, including 
region, age and gender, seem to be import considerations 
for investigating gut microbiome, and identification of 
gut microbial signatures responsible for obesity has great 
potential in prevention and treatment of obesity related 
diseases.

Taking geographical location and age into account as 
confounding factors, this study characterizes the com-
position and functions of the gut microbiota in obese 
adolescents in Shenzhen city, and evaluated the influ-
ence of gender on the BMI-related differences in the gut 
microbiome.

Materials and methods
Study cohort
The study started after we received approval from the 
Institutional Review Board of the Shenzhen Institutes 
of Advanced Technology, Chinese Academy of Sciences 
(SIAT-IRB-131115-H0032), and was registered at Clini-
calTrials.gov (number NCT02539836). All individu-
als participating in the study received informed consent 
from their guardians. Two hundred and five Chinese ado-
lescents were recruited at Shenzhen Children’s Hospital, 
between September and December 2015 (Fig. 1). Written 
informed consent was obtained from the guardians of the 
subjects before participation. The subjects with any of the 
criteria below were excluded from the present study:

1.	 Type 1 or type 2 diabetes.
2.	 Antibiotic use in the 2 months prior to sampling.

3.	 Long-term use of medication (e.g. antihypertensive 
drugs).

4.	 Diarrhea: had three or more loose or liquid stools a 
day in the past week.

5.	 Chronic constipation: have infrequent (no bowel 
movement in 3  days) or difficult evacuation of the 
bowels.

According to the WHO BMI-for-age percentile growth 
charts (growth reference 5–19  years; https://​www.​who.​
int/​growt​href/​who20​07_​bmi_​for_​age/​en/), we classi-
fied each participant into normal-weight (N), overweight 
(OW) or obese (OB). General characteristics of the sub-
jects, body composition, and serological test results for 
each BMI group are shown in Table 1.

Sample collection, DNA extraction, and 16S rRNA gene 
sequencing
Body compositions of the participants were measured 
by using GAIA KIKO body composition analyzer (Jawon 
Medical, Korea). Venous blood samples were collected 
at Shenzhen Children’s Hospital during annual physi-
cal examination organized by the Bureau of Education 
of Shenzhen Municipality. Serological assays were per-
formed to determine white blood cell (WBC), red blood 
cell (RBC), Hemoglobin (Hb), proinsulin-like component 
(PLC), alanine aminotransferase (ALT), total bilirubin 
(TBIL), total protein (TP), albumin (ALB), Cerutoplas-
min (CER/CP), ceruloplasmin (CRP), blood urea nitro-
gen (BUN), creatinine (Cr), urine acid (UA), creatine 
kinase (CK), creatine kinase- myoglobin (CK-MB), insu-
lin (INS), C-peptide, triglycerides (TG), total choles-
terol (TC), high-density lipoprotein (HDL), low-density 

Fig. 1  The diagram of subjects’ recruitment

https://www.who.int/growthref/who2007_bmi_for_age/en/
https://www.who.int/growthref/who2007_bmi_for_age/en/
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Table 1  Characteristics of the studied adolescent population

Characteristics Normal weight Overweight Obesity p-Value CRV

Number (F/M) 65 (30/35) 53(19/34) 87 (19/68) –

Age (year) 13.91 ± 1.61 13.26 ± 1.50 12.90 ± 1.41 2.75E−04 –

Age Range (year) 11–16 11–16 11–16 –

Anthropometric data

 Weight (kg) 50.60 ± 9.67 62.88 ± 8.85 74.62 ± 11.50 2.99E−31 –

 Height (cm) 163.03 ± 9.31 162.81 ± 8.94 163.92 ± 8.79 7.34E−01 –

 BMI 18.87 ± 1.96 23.60 ± 1.42 27.65 ± 2.53 1.78E−63 –

 Waistline (cm) 66.91 ± 6.84 78.19 ± 6.81 88.36 ± 7.16 9.40E−45 –

Blood pressure

 Systolic blood pres‑
sure (mm Hg)

114.28 ± 14.48 121.87 ± 11.93 125.76 ± 12.48 1.20E−06 90–120

 Diastolic blood pres‑
sure (mm Hg)

70.78 ± 8.17 72.79 ± 10.24 76.59 ± 8.74 3.84E−04 60–80

Body composition

 Body fat (kg) 7.67 ± 3.63 14.91 ± 3.70 21.81 ± 5.37 8.69E−40

 Body fat rate 0.15 ± 0.06 0.23 ± 0.05 0.29 ± 0.41 6.94E−34

 Body muscle (kg) 40.67 ± 7.50 45.08 ± 6.77 49.55 ± 7.83 2.95E−09

 Body muscle rate 0.8 ± 0.06 0.71 ± 0.04 0.66 ± 0.04 8.19E−34

 Body mineral salt (kg) 3.04 ± 0.60 3.66 ± 0.50 4.32 ± 0.71 8.49E−22

 Body mineral salt rate 0.06 ± 0.01 0.06 ± 0.00 0.06 ± 0.00 1.62E−03

 Body water (L) 31.86 ± 5.92 35.10 ± 5.21 38.78 ± 6.16 4.09E−09

 Body water rate 0.62 ± 0.06 0.55 ± 0.03 0.51 ± 0.03 1.69E−27

 Body protein (kg) 9.28 ± 1.73 9.98 ± 1.56 10.76 ± 1.74 1.62E−05

 Body protein rate 0.18 ± 0.02 0.16 ± 0.01 0.14 ± 0.01 2.01E−31

Serological investiga‑
tion

 ALB (g/L) 47.62 ± 4.33 46.86 ± 3.99 47.69 ± 4.46 5.06E−01 35–55

 ALT (U/L) 13.55 ± 8.60 17.06 ± 12.79 27.66 ± 22.58 1.26E−06 0–40

 ApoA1 (g/L) 1.38 ± 0.17 1.31 ± 0.17 1.33 ± 0.17 9.49E−02 1.05–1.75

 ApoB (g/L) 0.60 ± 0.15 0.64 ± 0.16 0.70 ± 0.16 4.18E−04 0.60–1.40

 BUN (mmol/L) 3.85 ± 1.07 3.95 ± 0.86 4.08 ± 0.83 3.03E−01 2.5–6.0

 CER/CP (mg/L) 24.35 ± 4.64 28.07 ± 5.60 29.06 ± 6.39 3.39E−06 21–65

 CK (U/L) 123.83 ± 59.79 133.43 ± 68.69 179.41 ± 184.45 2.00E−02 24–229

 CK-MB (U/L) 1.52 ± 0.67 1.60 ± 0.80 1.90 ± 1.12 3.35E−02 0–6.8

 C-peptide (ng/mL) 1.88 ± 1.13 2.48 ± 1.80 2.82 ± 1.93 3.47E−03 0.78–5.19

 Cr (μmol/L) 55.93 ± 13.71 54.46 ± 11.00 54.08 ± 11.47 6.32E−01 21–65

 CRP (mg/L) 0.46 ± 0.55 1.39 ± 1.91 2.23 ± 3.16 2.94E−05 0–10

 Hb (g/L) 134.95 ± 18.06 137.30 ± 11.03 136.94 ± 14.66 6.35E−01 110–160

 HDL (mmol/L) 1.22 ± 0.23 1.12 ± 0.23 1.09 ± 0.21 1.18E−03  > 1.04

 INS (pmol/mL) 10.35 ± 8.00 16.28 ± 15.91 22.04 ± 17.61 1.56E−05 1.9–23

 LDL (mmol/L) 2.34 ± 0.56 2.55 ± 0.68 2.69 ± 0.55 2.15E−03  < 3.37

 PLC (109/L) 291.12 ± 64.73 312.93 ± 57.37 329.56 ± 63.03 1.04E−03 100–300

 PUFA (μg/mL) 0.45 ± 0.20 0.50 ± 0.21 0.57 ± 0.27 6.06E−03 0.1–0.9

 RBC (1012/L) 4.91 ± 0.53 4.90 ± 0.36 5.02 ± 0.42 1.94E−01 3.5–5.5

 TBIL (μmol/L) 9.85 ± 4.52 8.72 ± 4.92 7.23 ± 3.11 5.64E−04 0.9–17.1

 TC (mmol/L) 3.93 ± 0.83 4.07 ± 0.85 4.37 ± 0.77 3.47E−03  < 5.18

 TG (mmol/L) 1.19 ± 0.60 1.59 ± 1.17 1.76 ± 0.94 1.02E−03  < 1.7

 TP (g/L) 76.90 ± 7.98 75.70 ± 6.00 76.41 ± 5.50 6.11E−01 46–80

 UA (μmol/L) 337.71 ± 87.60 398.79 ± 120.42 425.78 ± 102.84 2.55E−06 90–420

 WBC (109/L) 7.61 ± 1.76 8.60 ± 2.05 8.70 ± 1.67 6.79E−04 5–12
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lipoprotein (LDL), apolipoprotein A1 (Apo-A1), apoli-
poprotein B (Apo-B), and polyunsaturated fatty acid 
(PUFA).

Each participant donated about 10 g of fresh stool and 
placed inside a sterile plastic bag with ice pack. These 
samples were homogenized to a uniform consistency, and 
DNA was routinely extracted from 0.3  g fecal material 
using TIANamp Stool DNA Kit (TIANGEN BIOTECH, 
cat. #DP328-02, Beijing, China), following the manufac-
turer’s instructions. DNA was quantified using a dsDNA 
HS assay on a Qubit 3.0 (Thermo Fisher Scientific, USA). 
Universal primers (forward: 5′-AYT​GGG​YDTAAA-
GNG-3′, reverse: 5′-TACNVGGG​TAT​CTA​ATC​C-3′) 
were used to PCR amplify the isolated genomic DNA for 
the V3–V4 16S rDNA hypervariable regions. The PCR 
products were sequenced by an Illumina MiSeq (Illu-
mina, Inc, San Diego, CA) using the 2 × 300  bp paired-
end protocol.

16S rRNA gene sequencing analysis
The raw sequencing data was quality-filtered and demul-
tiplexed using QIIME 2 [16]. Chimeric sequences were 
identified and removed using UCHIME [17]. A total of 
205 samples that passed the quality control were incor-
porated into the analysis. Operational taxonomic units 
(OTUs) were clustered using a closed-reference pick-
ing protocol with the UCLUST algorithm based on 97% 
nucleotide similarity. Microbial OTUs were annotated 
with the GreenGenes reference database (version 13.8). 
OTU counts were processed with total sum normaliza-
tion (TSS) followed by cumulative-sum scaling (CSS) by 
using Calypso [18]. The relative abundances were log2 
transformed to account for the non-normality of taxo-
nomic counts data.

The biodiversity was measured by the number of 
OTUs, Chao1 index, Shannon index, and Inverse Simp-
son index. Richness is the number of different species 
present in the gut microbial communities, which are 
measured with the number of observed OTUs and Chao1 
index. We performed Principal Coordinate Analysis 
(PCoA) to determine whether the samples could be sepa-
rated on the basis of BMI and gender. The significance of 
composition difference among groups was determined 
using Kruskal–Wallis nonparametric test followed by 
post-hoc Tukey’s HSD (honestly significant difference) 
test. We used Spearman correlations to identify the 

BMI-associated taxa, which appeared in more than 25% 
of the samples that had a significant correlation (P < 0.01) 
with BMI. PICRUSt2 (Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States) 
[19] was applied to obtain the KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) pathways by predicting 
metagenome content from 16S rRNA gene surveys.

A random forest (RF) model was constructed by using 
R-package randomForest [20] to perform supervised 
classification of the three BMI categories. Half of the 
dataset was used for building and training the RF model, 
and the other half for testing. The optimal number of 
variables (mtry) randomly sampled as candidates at each 
split was accessed by tuneRF function. We calculated the 
interpolated area under the receiver operating charac-
teristic (ROC) curve (area under the receiver operating 
characteristic curve, AUC) for each classifier based on 
the cross-validation testing results.

Results
BMI is associated with compositional changes in the gut 
microbiome of adolescent
After quality filtering, a total of 17,323,193 sequencing 
reads were obtained from the 205 fecal samples. Taxa 
with less than 0.01% relative abundance across all the 
samples were excluded. A total of 518 OTUs were iden-
tified and grouped in 9 phyla and 69 genera. The gut 
microbiota richness and diversity were estimated at the 
OTU level with samples rarefied to the depth of 37,027 
reads (the lowest number of sequences). Richness was 
higher in the overweight subjects than those with normal 
weight (Supplementary Fig. S1A, S1B). No significance 
in alpha diversity was detected among the three BMI 
groups (Supplementary Fig. S1C, S1D). With respect to 
beta diversity, the result of PCoA of the Bray–Curtis dis-
similarity index revealed that the overall gut microbiome 
composition was not able to be stratified by BMI (Sup-
plementary Fig. S2).

The gut microbiota composition in the adolescent 
population was dominated by Actinobacteria, Bacteroi-
detes, Firmicutes, and Proteobacteria phyla, account-
ing for > 97% of the community (Supplementary Fig. S3). 
The relative abundance of Verrucomicrobia phylum was 
found to be reduced in the obese subjects (Fig.  2A). At 
the family level (Fig. 2B), the obese subjects had greater 
abundance of Actinomycetaceae (including Actinomyces 

Table 1  (continued)
Values represent mean ± SD

CRV clinical reference value, ALB albumin, ALT alanine transaminase, Apo-A1 apolipoprotein A1, Apo-B apolipoprotein B, BUN blood urea nitrogen, CER/CP 
ceruloplasmin, CK creatine kinase, CK-MB creatine kinase isoenzyme-MB, Cr creatinine, CRP C-reactive protein, Hb hemoglobin, HDL high-density lipoprotein, INS 
insulin, LDL low-density lipoprotein, PLC platelet, PUFA polyunsaturated fatty acid, RBC red blood cell, TBIL total bilirubin, TC total cholesterol, TG triglyceride, TP total 
protein, UA blood uric acid, WBC white blood cell
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Fig. 2  Differences in fecal microbiota constituents of normal-weight, overweight, and obese Shenzhen adolescents. Bacterial taxa at the A phylum, 
B family, and C genus levels demonstrated significantly different abundances across the three BMI groups. Each bar plot indicates the mean propor‑
tion of sequences assigned to a feature in each group. Whiskers represent 1.5* inter-quartile range. Relative abundances were analyzed by Kruskal–
Wallis test followed by post-hoc Tukey HSD test (*P < 0.05, **P < 0.01, and ***P < 0.001). N, normal-weight; OW, overweight; OB, obese



Page 6 of 11Gao et al. Health Information Science and Systems (2023) 11:37

genus; Fig. 2C), Clostridiaceae, Cytophagaceae (including 
Rhodococcus genus; Fig.  2C), Lactobacillaceae, Strepto-
coccaceae (including Streptococcus genus; Fig.  2C), and 
Veillonellaceae (including Megasphaera genus; Fig.  2C), 
while had decreased abundance of Odoribacteraceae 
(including Odoribacter genus; Fig.  2C) and Rikenel-
laceae (including an unclassified genus of Rikenellaceae; 
Fig. 2C). The relative abundance of Nocardiaceae family 
was particularly higher in the overweight subjects.

Fifty-six taxa correlated significantly with the BMI, and 
most of the taxa members belonged to Firmicutes phy-
lum (48 OTUs), with 17 to Ruminococcaceae family and 
12 to Lachnospiraceae family (Supplementary Tables S1, 
S2, S3). As to the relationship between the 56 BMI-asso-
ciated taxa and serological or body composition proper-
ties, the result showed that 3 Firmicutes taxa (2 OTUs 
belonging to Ruminococcaceae, 1 OTU to Lachno-
spiraceae) strongly positively correlated with BMI, body 
fat rate, waistline, but negatively correlated with body 
water, protein, muscle, and mineral salts rates (Fig. 3A). 
Notably, these 3 taxa also positively correlated with most 
of the serum biochemical properties (except TBIL). Yet, a 
few of Ruminococcaceae bacteria, including Faecalibac-
terium prausnitzii, were inversely associated with BMI.

In order to identify the BMI-associated bacterial taxo-
nomic markers in the gut microbiota in adolescents, we 
built a RF model to classify the phenotypes based on the 
56 OTUs identified in the Spearman correlation analy-
ses. The RF model tuning resulted in mtry = 14 for the 
number of variables when setting the number of trees 
(ntree) to 500. The 30 most BMI-discriminatory taxa, fol-
lowing rank order of their contribution to the predictive 
accuracy, were shown in Fig. 3B, among which 5 Rumi-
nococcaceae and 8 Lachnospiraceae were included. We 
calculated the interpolated area under the ROC curves 
(AUC) for the classifier based on the cross-validation 
testing results, and successfully classified the obese ado-
lescents with a high classifiability (AUC = 0.976; Fig. 3C). 
The normal-weight and overweight adolescents were also 
well classified with high AUC values of 0.886 and 0.740, 
respectively.

Gut microbiota gene content associated with PPAR 
signaling is reduced in obese adolescents
We analyzed BMI-associated functional profile of micro-
bial community 16S rRNA sequence data using Spearman 
correlations via employing PICRUSt [21]. We selected 
seven KEGG pathways significantly correlated (P < 0.01) 
with BMI (Supplementary Tables S4–6), and their links 
with the serological properties and body composition 
were further examined using Spearman correlations 
(Fig.  4A). The predicted gene content related to path-
ways of peroxisome, PPAR signaling and adipocytokine 

signaling showed negative associations with BMI, body 
fat rate and waistline, but positively correlated with rates 
of body water, protein, muscle, and mineral salts. These 
three pathways also inversely correlated with CER/CP, 
blood sugar level, blood pressure (both systolic and dias-
tolic), CRP, WBC, PUFA and ALT. In particular, the two 
pathways of peroxisome and PPAR signaling were sig-
nificantly downregulated in the obese adolescents com-
pared to the normal-weight and overweight counterparts 
(Fig.  4B). The predicted gene content related to other 
pathways, including synthesis and degradation of ketone 
bodies, beta Alanine metabolism, glycosyltransferases 
and other ion coupled transporters, positively associated 
with BMI, body fat rate and waistline but negatively asso-
ciated with rates of body water, protein, muscle, and min-
eral salts.

BMI differences in the gut microbiota of adolescents are 
influenced by gender
Neither alpha nor beta diversities were found significantly 
different between the boys and girls (Supplementary Figs. 
S1, S2). At the family level, the relative abundances of 
Alcaligenes, Bacteroidaceae, Brucellaceae, Clostridiaceae, 
Lachnospiraceae, Planococcaceae, and Streptococcaceae 
were greater in boys than girls (Supplementary Fig. S4A). 
We then compared the relative abundances of the gut 
bacteria among the three BMI categories with gender 
stratification (Supplementary Fig. S4B, S4C). At the fam-
ily level, the highest abundance of Cytophagaceae was 
observed in obese subjects of both genders. Overweight 
boys had a lower abundance of Actinomycetaceae, and 
a higher abundance of Nocardiaceae than those of nor-
mal-weight and obesity. At the genus level, both genders 
had higher relative abundances of Hymenobacter and 
Megasphaera. A lower relative abundance of Odoribac-
ter was particularly detected in obese boys. In addition, 
overweight boys had significantly lower Actinomyces and 
higher Rhodococcus (Supplementary Fig. S4C).

PICRUSt analysis revealed a higher level of translation 
factor in girls and a higher level of bisphenol degradation 
in boys (Supplementary Fig. S5A, Table S7). A lower level 
of PPAR signaling pathway was detected in the obese 
subjects of both genders (Supplementary Fig. S5B, Tables 
S8, S9). A reduced biosynthesis level of tropane piperi-
dine and pyridine alkaloid was only observed in obese 
boys (Supplementary Fig. S5C, Table S9).

Discussion
Identification of gut microbial signatures responsible for 
obesity has great potential in prevention and treatment 
of overweight or obesity related diseases. In this study, 
we recognized several BMI-associated patterns in the 
adolescent gut microbiome composition and functions. 
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Fig. 3  Identifying BMI-associated bacterial taxonomic biomarkers Shenzhen adolescents. A Heatmap of Spearman correlations between 56 BMI-
associated bacterial taxa and serum biochemical parameters and body composition. Significance is given as **P < 0.01 and ***P < 0.001. B Thirty 
BMI-discriminatory bacterial taxa were identified by the RF model which were listed in rank order of their contribution to the classification accuracy 
(mean decrease accuracy). C ROC curve of the RF model
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Previously, we found Bacteroidetes was enriched in obese 
adults compared to the lean [22], and the imbalance of 
Bacteroidetes to Firmicutes ratio was also reported in 
other studies [13, 23, 24]. However, the pattern was not 
supported in this study for the adolescent subjects, that 
no difference was detected in the relative abundances of 
Bacteroidetes to Firmicutes upon comparing between 
obese and normal-weight subjects (data no shown). The 
present data agreed that the ratio of Bacteroidetes to 
Firmicutes was not a microbial marker associated with 
obesity [13, 20]. On the other hand, we identified 56 

microbial taxa at the OTU level significantly (P < 0.01) 
correlated with BMI, and a large proportion of which 
belonged to Firmicutes phylum, especially families Rumi-
nococcaceae and Lachnospiraceae. Further supervised 
learning algorithm constructed based on the 56 BMI-
associated OTUs resulted in the successful classification 
of the obese adolescents with a high accuracy exceeding 
90%.

The enrichment of Ruminococcaceae has been 
observed in animals fed by high-fat diet [24], but some 
Ruminococcaceae taxa were linked to a lower risk of 

Fig. 4  Functional divergence of gut microbiota across different BMI groups. A Predicted KEGG pathways that significantly correlated with BMI, 
and their associations with the boy composition and serum biochemical parameters. B KEGG pathways that are differentially expressed by the gut 
microbiome of the BMI categories. Each bar plot indicates the mean proportion of sequences assigned to a feature in each group. Whiskers repre‑
sent 1.5* inter-quartile range. Relative abundances of were analyzed by Kruskal–Wallis test followed by post-hoc Tukey HSD test (*P < 0.05; **P < 0.01, 
and ***P < 0.001). N, normal-weight; OW, overweight; OB, obese
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weight gain [25]. In human studies, higher abundances 
of Ruminococcus species (such as Ruminococcus bromii 
and Ruminococcus obeum) were also observed in obese 
subjects [26], but some Ruminococcaceae bacteria (e.g. 
Dialister, Methanobrevibacter and Oscillospira) were 
associated with lower BMI [23, 27]. In this study, we iden-
tified 17 OTUs assigned to Ruminococcaceae were sig-
nificantly correlated with BMI, and many of which were 
inversely correlated with BMI including the well-studied 
butyrate producer F. prausnitzii. The result is consistent 
with several previous studies [28, 29]. Butyrate has been 
known to exert a profound effect in regulating metabolic 
inflammation, and reduced level of butyrate may contrib-
ute to low-grade chronic inflammation that participating 
the development of obesity.

Previous evidence suggests that Lachnospiraceae may 
play a pivotal role in the development of obesity and type 
2 diabetes [29]. Animal studies demonstrated that the 
abundance of family Lachnospiraceae increased along 
with body weight of mice fed with high-fat diet [30]; col-
onization of Lachnospiraceae in germ-free mice induced 
significant increases in fasting blood glucose concentra-
tions as well liver and mesenteric adipose weights, and 
reductions in plasma insulin levels. A human study with 
190 Mexican children showed that the Lachnospiraceae 
family was significantly increased in overweight and 
obese children [31]. In this study, 12 taxa of Lachno-
spiraceae were identified to be significantly associated 
with BMI. Similar to the Ruminococcaceae family, both 
positive (8 OTUs) and negative (4 OTUs) correlations 
were detected between Lachnospiraceae taxa and BMI. 
Overall, investigations at higher phylogenetic level and 
animal experiments are needed to identify the specific 
bacteria species and their functions in influencing host 
body fat and blood glucose level.

Although the exact mechanisms by which the gut 
microbiota contribute to obesity are unclear, it is well 
established that modification of the gut microbiota can 
increase energy production, trigger low-grade inflam-
mation, induce insulin resistance and affect fatty acid 
tissue composition [30]. Based on the predicted func-
tional profiles of the fecal microbiota, we found that 
genes associated peroxisome and PPAR signaling path-
ways were inversely correlated with CER/CP, blood 
sugar level, blood pressure (both systolic and diastolic), 
CRP, WBC, PUFA, and ALT, and their levels were sig-
nificantly upregulated in obese adolescents. Peroxisomes 
are important regulators of energy and their disruption 
influences the risk for obesity and associated metabolic 
disorders [31]. It was demonstrated that decreases in a 
set of peroxisomal genes in white adipose tissue of both 
humans and mice with obesity [32]. PPARs are a member 
of the nuclear receptor superfamily of ligand-dependent 

transcription factors, which regulate peroxisomal pro-
teins by binding to promoters of peroxisomal genes. 
Lower levels of PPARs have been observed in obese 
patients, and activation of PPARs could decrease fibro-
inflammation and ectopic fat accumulation in the adi-
pose tissue [33]. A decline in bacterial genes capable of 
altering PPAR signaling may reflect a reduction of PPARs 
expression in the host. In fact, some gut bacteria have 
capacities in regulating PPARs. For example, mice arti-
ficially infected with Trichinella spiralis could induce 
a decrease in the levels of PPARγ in the colon, which is 
accompanied by a decline in beneficial species (such as 
Akkermansia) and an increase in pathogenic bacteria 
(such as Escherichia/Shigella) [34]. Another pathway of 
importance significantly associated with BMI was adi-
pocytokine signaling. Adipocytokines derived from adi-
pose tissue, including various hormones (such as leptin, 
adiponectin, resistin, and visfatin) and cytokines (such 
as interleukin-6 and tumor necrosis factor α), are impor-
tant regulators of energy homeostasis and mediators of 
inflammation and immunity [35]. There is overwhelming 
evidence that deficiencies in adipocytokines contribute to 
the development of obesity and associated comorbidities 
[36]. Importantly, some adipocytokines are able to modu-
late gut microbial composition independently of dietary 
[37]. In addition, hydroxy fatty acids produced from gut 
microbiota affect host lipid metabolism by modulat-
ing peroxisomal β-oxidation activity [38]. Although the 
relationship between gut microbiota and adipose tissue 
remains unclear, our result implies that gut bacteria may 
contribute to the development of obesity via impairing 
the host peroxisomal fitness. Further investigations are 
needed to identify the exact bacterial products that affect 
these two pathways in order to determine their roles in 
adiposity.

In our previous study with the fecal microbiota profiles 
Chinese adults (527 adults aged 37.3 ± 16.3), enrichment 
of Fusobacteria and Actinobacteria were observed in the 
male and female obese subjects, respectively [22]. Bacte-
rial genes associated with butyrate-acetoacetate CoA-
transferase were also found to be enriched in the gut 
microbiome of obese Chinese adults [22]. However, these 
patterns were not obtained from the adolescent data (205 
adolescents aged 13.31 ± 1.55 years old ranging from 11 
to 15) in this study. The inconsistency may relate to dif-
ferences of age.

Moreover, the influence of gender on gut microbiota 
have been reported previously. For example, mem-
bers of Bacteroides were found at a lower level in adult 
females than males in surveys of European [39] and US 
populations [40]. The pattern was supported by the pre-
sent result of Shenzhen (China) adolescents, but was 
not in our previous study on Chinese adults [22]. We 
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believe geographical location exerted a strong effect 
on human gut microbiota variations, as previously 
reported [15]. Shenzhen is one of the most developed 
cities in China, and lifestyles of the residents (especially 
diet) are quite similar to those in western countries. 
Hence, some common patterns in the gut microbiota 
composition may share between Shenzhen citizens and 
westerners. Overall, the influence of geographical loca-
tion, age, and gender partly explained the inconsistent 
patterns across the studies.

In conclusion, the BMI-associated differences in gut 
microbiota profiles were able to be used as biomarkers 
for characterizing obese adolescents. The gene contents 
associated with the peroxisome signaling pathway are 
significantly reduced in the gut microbiome of obese 
adolescents, and determining the exact metabolites 
produced by specific species may provide invaluable 
microbial targets for the prevention, assessment, and 
treatment of obesity for adolescents. Our result rein-
forced a need to consider the influence of age, gender 
and geographical location when choosing controls for 
investigating gut microbiome and the association with 
human diseases.
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