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Abstract
Neuroimaging studies suggest involvement of frontal, striatal, limbic and cerebellar regions in trichotillomania, an obsessive-
compulsive related disorder. However, findings regarding the underlying neural circuitry remains limited and inconsistent. 
Graph theoretical analysis offers a way to identify structural brain networks in trichotillomania. T1-weighted MRI scans 
were acquired in adult females with trichotillomania (n = 23) and healthy controls (n = 16). Graph theoretical analysis was 
used to investigate structural networks as derived from cortical thickness and volumetric FreeSurfer output. Hubs, brain 
regions with highest connectivity in the global network, were identified, and group differences were determined. Regions 
with highest connectivity on a regional level were also determined. There were no differences in small-worldness or other 
network measures between groups. Hubs in the global network of trichotillomania patients included temporal, parietal, and 
occipital regions (at 2SD above mean network connectivity), as well as frontal and striatal regions (at 1SD above mean net-
work connectivity). In contrast, in healthy controls hubs at 2SD represented different frontal, parietal and temporal regions, 
while at 1SD hubs were widespread. The inferior temporal gyrus, involved in object recognition as part of the ventral visual 
pathway, had significantly higher connectivity on a global and regional level in trichotillomania. The study included women 
only and sample size was limited. This study adds to the trichotillomania literature on structural brain network connectivity. 
Our study findings are consistent with previous studies that have implicated somatosensory, sensorimotor and frontal-striatal 
circuitry in trichotillomania, and partially overlap with structural connectivity findings in obsessive-compulsive disorder.

Keywords Structural network connectivity · Graph theoretical analysis · Trichotillomania · Obsessive-compulsive related 
disorders

Introduction

Trichotillomania (TTM, or hair-pulling disorder), one of 
the obsessive-compulsive and related disorders (OCRDs) 
in DSM-5, is associated with repetitive hair-pulling resulting 
in hair loss and repeated attempts to decrease or stop the 

behaviour. The condition is associated with significant 
distress and impairment in several life domains (American 
Psychiatric Association, 2013). In a large recent study, point 
prevalence of trichotillomania in the US was reported to be 
1.7% with a lifetime prevalence estimate of 2.5%. Common 
comorbidities in TTM include obsessive-compulsive 
disorder (OCD) (Grant et al., 2020). Neuropsychological 
deficits in TTM include those in response inhibition, 
working memory, visual memory, and divided attention 
(Slikboer et al., 2018).

Neuroimaging studies suggest involvement of frontal, 
striatal, limbic, and cerebellar regions in TTM (Chamberlain 
et al., 2009; Stein et al., 1997; van den Heuvel et al., 2010). 
Yet, evidence about underlying neural networks remains 
limited (Grant, 2019). To our knowledge, there is only one 
published brain network connectivity study in TTM to date. 
This study assessed functional connectivity of reward cir-
cuitry using resting state MRI, suggesting lower connectivity 
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in frontal, striatal, and limbic regions involved in reward 
processing (White et al., 2013). The microstructural integ-
rity of white matter tracts has been investigated in TTM 
in two studies that used diffusion tensor imaging. The one 
study suggested altered white matter integrity in the anterior 
cingulate, temporal, and pre-supplementary motor regions 
(Chamberlain et al., 2010). The other study reported no dif-
ferences in white matter integrity between TTM patients and 
controls, but found that white matter integrity in the frontal-
striatal-thalamic pathway was associated with illness dura-
tion and severity (Roos et al., 2013). Findings from these few 
studies have thus not always been consistent, emphasizing 
the need for further study to investigate underlying neural 
circuitry in TTM.

The global arrangement of a brain network represents 
a “small-world” organization that optimizes local and 
global information processing. The changes in structural 
(and functional) connectivity that have been reported in 
several neuropsychiatric disorders may be associated with 
altered topology including in small-world organization, 
and in the balance between the integration and segrega-
tion of information (Bassett & Bullmore, 2009; Fornito 
et al., 2015; Lord et al., 2017; Menon, 2011). The aim 
of this study was to derive structural brain networks and 
investigate its topology in TTM using graph theoretical 
analysis.

Methods

Study design

Participants were recruited by means of general media, e.g., 
newspaper and online advertisements, and referrals by psy-
chologists and psychiatrists. Individuals who showed inter-
est in the study were screened telephonically and invited to 
attend comprehensive clinical assessment and brain imag-
ing sessions as part of the study. Patients with a history of 
neurological illness, psychosis, substance or alcohol use 
disorder, head trauma, clinically significant depression, or a 
contraindication to MRI, were excluded from participation. 
Current daily psychotropic medication use within the last 
12 months was also an exclusion criterium. Healthy controls 
had no current or lifetime history of any DSM-IV disorder, 
and were without significant neurological conditions and 
current or lifetime daily use of psychotropic medication. The 
study was approved by the Health Research Ethics Commit-
tees of Stellenbosch University (HREC Ref. M07/05/019) 
and the University of Cape Town (HREC Ref. 261/2007). 
Participants provided written informed consent. The study 
was conducted according to the ethical guidelines of the 
Declaration of Helsinki.

Clinical assessments

The Structured Clinical Interview for Obsessive-Compul-
sive Spectrum Disorders (SCID-OCSD) (du Toit et al., 
2001) was updated to include DSM-5 criteria, and used 
to confirm a diagnosis of TTM. The Mini International 
Neuropsychiatric Interview Plus (MINI Plus v5) (Sheehan 
et al., 1998) was used to assess comorbidity. The sever-
ity of TTM symptoms was assessed using the Massachu-
setts General Hospital Hair-pulling Scale (MGH-HPS) 
(Keuthen et al., 1995). For inclusion in the study, TTM 
participants had to present with significant hair-pulling, 
i.e., both in terms of the frequency of hair-pulling, the 
inability to control the behavior, and the resulting distress. 
The Clinical Global Impressions Scale - Severity (CGI-
S) (Busner & Targum, 2007) was used to assess current 
global functioning in cases.

MRI procedures and analyses

Participants underwent structural MRI using a 3-T Siemens 
scanner to acquire high-resolution 3D-MPRAGE images. 
Scan parameters were: slab orientation, sagittal; TR/TE, 
2300/3.93 ms; flip angle, 12°; FOV, 256 × 240 × 160  mm3; 
and voxel size, 1.3 × 1.0 × 1.0  mm3. Cortical thickness and 
subcortical volume estimates of 86 bilateral brain regions 
as determined by FreeSurfer v6 (Desikan et al., 2006; Fis-
chl et al., 2004; Fischl & Dale, 2000), were used to con-
struct structural brain networks using graph theoretical 
analysis (Hosseini et al., 2012; Rubinov & Sporns, 2010). 
Volumetric data were corrected for individual intracra-
nial volume. The Graph Analyses Toolbox (Hosseini et al., 
2012) was used to construct brain networks and determine 
group differences in brain network organization, while the 
Brain Connectivity Toolbox (Rubinov & Sporns, 2010) 
was used to quantify network measures.

Structural networks were created following the steps 
as described by Hosseini and colleagues (Hosseini et al., 
2012, 2013). FreeSurfer morphometric data were cor-
rected for age using linear regression analysis given the 
range of 18 to 61 years. Residuals from this analysis 
were utilized to create structural correlation networks. 
An 84 × 84 association matrix R was made for each group, 
and every node for a participant denoted a Pearson cor-
relation between residuals of regions i and j (Bernhardt 
et al., 2011). A binary adjacency matrix A was then cre-
ated from each R matrix with values set at 1 or 0. Negative 
correlation values were replaced by zero (Bernhardt et al., 
2011; Fan et al., 2011). This provided a binary undirected 
graph with 86 nodes and a network density that is the 
fraction of connections to every potential connection.
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Metrics defining small-world properties including the 
clustering coefficient and characteristic path length were 
determined (Hosseini et al., 2013; Rubinov & Sporns, 
2010). The clustering coefficient denotes the mean num-
ber of connections of a region with nearby regions, while 
the mean clustering coefficient signifies network segre-
gation. The characteristic path length denotes the mean 
shortest path length among pairs of regions that signifies 
network integration. These metrics are compared to ran-
dom networks with similar connectivity and distribution 
of regions (nodes) and connections (edges), to quantify 
the brain network arrangement (Maslov & Sneppen, 2002; 
Milo et al., 2002). Such a network has a small-world index 
>1, including a clustering coefficient that has a ratio > 1 
compared to random networks, and a characteristic path 
length with a ratio close to 1 that is like that of random 
networks. Other metrics tested for group differences were 
modularity and transitivity assessing network segregation 
into communities of regions or clusters respectively, and 
global efficiency as an indicator of network integration 
(Fornito et al., 2016; Vertes & Bullmore, 2015).

Regional network connectivity was derived by nodal 
betweenness centrality, i.e. a measure of regions with high-
est local connectivity, that is determined as the fraction of 
all shortest path lengths crossing a specific region (Hosseini 
et al., 2013). This metric also detects global network con-
nectivity of regions, i.e., hubs that are most connected in the 
network. A region represents a hub when its nodal between-
ness centrality is 1 to 2 standard deviations (SDs) above that 
of the mean network connectivity (Bernhardt et al., 2011).

Nonparametric permutation tests with 1000 permuta-
tions were used to determine group differences in network 
measures (He et al., 2008). As described by Hosseini and 
colleagues (Hosseini et al., 2012) in this analysis, residu-
als of individual participants were randomly re-allocated to 
either the TTM or control group while retaining the initial 
sample size per group. An association matrix was derived 
for every newly randomized group, followed by creation of 
binary adjacency matrices and determination of network 
measures at minimum network density. Thereafter, differ-
ences between randomized groups in each network measure 
were determined, creating a permutation distribution of dif-
ference below the null hypothesis. The real difference in 
network measures between TTM and controls were mapped 
in the relevant permutation distribution and a two-tailed p 
value determined according to its percentile position. The 
permutation tests inherently apply correction for multiple 
comparisons in assessing global metrics using maximal 
statistics (Nichols & Holmes, 2002; NISOx: SnPM, n.d.). 
Regional group results were corrected using false discov-
ery rate (FDR) (Hosseini et al., 2012). Group differences in 
brain network parameters were identified at minimum net-
work density (Bernhardt et al., 2011; He et al., 2008) and 

presented across a range of densities. A brain network has a 
specific density interval where connections are least random, 
and every node is connected to at least one other node (Kai-
ser & Hilgetag, 2006). The minimum density of networks 
for TTM and controls was 0.24, thus representing the lower 
bound where networks were not fragmented. The maximum 
density was 0.44 (small-world index <1.5) above which net-
works became increasingly random, thus connections would 
probably not refer to biologically relevant networks above 
this density (Kaiser & Hilgetag, 2006).

Results

Demographic and clinical information of participants 
is shown in Table 1. The sample included adult partici-
pants with TTM (n = 23) and controls (n = 16). Our cohort 
included women only. Age, level of education, and type of 
employment were similar between groups. Illness severity 
was generally mild to moderate in the TTM group (mean 
CGI-S severity score [SD] = 3.76 [1.37]).

Overall, the brain networks of groups were similar in net-
work arrangement, thus adhering to specified small-world 
parameters (normalized small-world index p = 0.69) There 
were no group differences in network measures of segrega-
tion (normalized characteristic path length p = 0.37, modu-
larity p = 0.60) or integration (normalized clustering coef-
ficient p = 0.97, global efficiency p = 0.53).

Regarding global connectivity, in the TTM group hubs 
at 2SD were the left inferior temporal gyrus, parietal, and 
occipital regions, while hubs at 1SD additionally were in 
frontal and striatal regions (Table 2, Fig. 1). In contrast, 

Table 1  Demographic and clinical information of participants

TTM Control p
mean (SD) / n, %

Age (years) 36.09 (14.52) 30.69 (8.19) 0.188
Educational level (n) 0.612
 School 9, 40% 5, 31%
 Tertiary 14, 60% 11, 69%
Employment 0.194
 Employed (paid) 13, 56% 12, 75%
 Homemaker (unpaid) 5, 22% 0, 0%
 Student/Scholar 5, 22% 4, 25%
Ethnicity 0.561
 Caucasian 21, 91% 14, 88%
 Mixed Race/Black/Other 2, 9% 2, 12%
Age of illness onset (years) 13.83 (8.04) –
Illness duration (years) 22.26 (16.05) –
MGH-HPS total 14.52 (6.26) –
CGI-S total 3.76 (1.37) 1.00 (0.0)
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Table 2  Hubs of the TTM and control groups. Hubs are presented as regions with connectivity of 2 and 1 standard deviation (SD), respectively, 
above that of mean network connectivity. Hubs identified at both SD levels per group are indicated in italics, primarily representing parietal, tem-
poral and occipital regions in TTM. Frontal and striatal hubs were evident in the TTM group at 1 SD above that of mean network connectivity

*Highly connected both at a global and regional level

Lobe TTM Control TTM Control
2 SD 2 SD 1 SD 1 SD

Frontal R Pars opercularis L Pars orbitalis R Pars opercularis
R Pars orbitalis L Pars triangularis
L Lateral orbitofrontal L Frontal pole
R Lateral orbitofrontal
R Caudal anterior cingulate

Parietal L Postcentral R Posterior cingulate L Postcentral R Posterior cingulate
R Supramarginal R Supramarginal L Supramarginal

L Postcentral
R Postcentral
R Paracentral

Temporal/lim-
bic/striatal

L Inferior temporal* R Superior temporal L Inferior temporal* R Superior temporal
R Inferior temporal R Entorhinal R Inferior temporal R Entorhinal
L Transverse temporal L Transverse temporal R Banks superior temporal sulcus

R Isthmus of cingulate gyrus
R Parahippocampal

L Caudate R Ventral diencephalon
Occipital R Cuneus R Cuneus R Precuneus

Fig. 1  Hub regions at 2 SD 
within the healthy control 
[top row] and the TTM group 
[bottom row]. The hubs in the 
TTM group were the right (R) 
supramarginal gyrus (SMG), 
bilateral inferior temporal 
gyrus (ITG), left (L) transverse 
temporal gyrus (TTG) and R 
cuneus (CUN). The hubs in the 
control group were the R pars 
opercularis part of the inferior 
frontal gyrus (IFG), R posterior 
cingulate gyrus (PoCG), R 
superior temporal gyrus (STG) 
and R entorhinal gyrus (EG). 
The size of the red circle indi-
cates the number of connections 
that a hub has in the network. 
The lobe is indicated at the 
bottom right by shape- and 
color-coded legends
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in healthy controls hubs at 2SD were in different frontal, 
parietal and temporal regions compared to TTM. In healthy 
controls at 1SD hubs were widespread and generally in dif-
ferent regions, for instance, in other segments of the inferior 
frontal gyrus and the striatum.

Regarding regional network connectivity, there were sig-
nificant differences between study groups in two regions. 
Local connectivity was significantly higher in TTM 
compared to controls in the left inferior temporal gyrus 
(p < 0.001). Local connectivity was significantly higher in 
controls compared to TTM in the right pericalcarine gyrus 
(p = 0.04), located below the cuneus in the occipital lobe.

Discussion

To our knowledge, this study is the first to use graph theoret-
ical analysis to investigate structural brain networks in TTM. 
The main findings suggest 1) similar small-world properties 
and network measures including segregation and integration 
between patients and controls, 2) involvement of different 
hubs in the global network of TTM patients compared to 
controls, including inferior temporal, parietal and occipital 
hubs (at 2SD above mean network connectivity) and frontal 
and striatal hubs (at 1SD above mean network connectivity), 
and 3) a role for the inferior temporal gyrus on a global and 
regional level in TTM, involved in object recognition as part 
of the ventral visual pathway.

Corresponding small-worldness and network measures in 
both TTM and controls suggest brain networks that gener-
ally have similar network arrangement. This is partly con-
sistent with some studies in OCD, the key example of the 
obsessive-compulsive and related disorders (OCRDs), that 
found similar small-world properties compared to controls 
(Kim et al., 2013; Reess et al., 2016). Earlier studies suggest 
involvement of cortical-striatal networks in both TTM and 
OCD (Chamberlain et al., 2009; de Wit et al., 2014; van den 
Heuvel et al., 2010). Potentially relevant is recent evidence 
in OCD that shows distributed involvement with altered con-
nectivity in cortical-striatal-thalamic-cortical networks, the 
default mode network, in specific frontal, parietal, tempo-
ral and limbic regions within networks, and the cerebellum 
(Hou et al., 2013; Kim et al., 2013; Reess et al., 2016; Zhong 
et al., 2014).

Our findings indeed suggest a distributed set of regions 
operating as hubs in the global network in TTM. These 
include temporal, parietal, and occipital regions, as well 
as frontal and striatal regions. Hubs found across lobes in 
the TTM group broadly coincide with regions implicated in 
TTM using other imaging modalities, e.g. diffusion tensor 
imaging and resting state functional imaging (Slikboer et al., 
2018). Notably, the inferior temporal gyrus had significantly 
high connectivity on a global and regional level. This gyrus 

has a role in object recognition as part of the ventral visual 
pathway (Conway, 2018; Kanwisher, 2010). Aberrant con-
nectivity of the temporal and parietal hubs located in soma-
tosensory and sensorimotor networks also likely underlie 
core symptomatology in TTM, including over-responsivity 
to external sensations in tactile and auditory domains (Falk-
enstein et al., 2018). This provides support for earlier find-
ings suggesting involvement of the inferior and superior 
parietal cortex and left somatosensory cortices (Chamberlain 
et al., 2009, 2010; Swedo et al., 1991), and the left temporal 
lobe (Chamberlain et al., 2010; Odlaug et al., 2014; Warrier 
et al., 2009) in TTM. Regarding the cuneus of the occipital 
lobe, this hub functionally forms part of the primary visual 
and somatosensory networks (Tomasi & Volkow, 2011). 
Cortical thickness of the right cuneus has been associated 
with impulsivity (Kubera et al., 2018) and sensation seek-
ing (Miglin et al., 2019) which, along with novelty-seeking, 
have been associated with TTM (Flessner et al., 2012). 
Higher volume of the right cuneus and superior occipital 
lobe where this region is located, has also previously been 
reported in TTM (Chamberlain et al., 2009; Grachev, 1997), 
and may suggest increased neural connections that affects its 
operation within networks. Altered structural connectivity 
of occipital lobe regions in visual and sensory networks may 
contribute to altered attention to and perception of spatial 
detail, and aberrant behavioral control in TTM.

The current study findings also suggest involvement of 
frontal-striatal circuitry in TTM. Consistent with aspects 
of earlier studies (Grachev, 1997; Odlaug et al., 2014), we 
found that anterior and inferior frontal regions were highly 
connected in the global network of the TTM group. Our hubs 
represented the lower segment of the inferior frontal gyrus, 
i.e. bilateral pars orbitalis, which is located adjacent to the 
lateral orbitofrontal cortex that was also a hub in our TTM 
group, and also structurally altered in OCD in previous stud-
ies (Fouche et al., 2017; Venkatasubramanian et al., 2012). 
Finally, our finding that the left caudate is a hub in TTM sup-
ports earlier work suggesting an association between symp-
tom severity of TTM and left caudate activity (Stein et al., 
2002). Of note is that structural abnormalities have also 
been reported in other parts of the dorsal striatum in TTM, 
including the right caudate (Isobe et al., 2018) and left puta-
men (Chamberlain et al., 2009; O’Sullivan et al., 1997). The 
dorsal striatum is involved in decision-making particularly 
about actions, reward, and habit formation resulting in auto-
mated behaviors based on sensorimotor, cognitive, affective 
and motivational determinants (Balleine et al., 2007; Lipton 
et al., 2019). Thus, although the evidence is limited, and 
somewhat mixed, it appears that the dorsal striatum may 
have altered structural connectivity and function in TTM.

Hubs in our controls represented principal regions typi-
cally found in structural networks of healthy adults, which 
include those of the default mode network (Hagmann et al. 
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2008; van den Heuvel & Sporns, 2013). On a regional 
level, the pericalcarine gyrus situated in the occipital lobe 
that operates within the greater sensorimotor network, had 
lower connectivity in TTM patients than controls. Interest-
ingly, lower pericalcarine cortical density has been associ-
ated with sensation seeking behavior (Miglin et al., 2019), 
a tendency that may be relevant to TTM (Lejoyeux et al., 
1998).

This study had limitations. First, the study included 
women only, in line with epidemiological data suggest-
ing that the majority of individuals with TTM are female 
(American Psychiatric Association, 2013; Lochner et al., 
2010; Woods et al., 2006). Second, sample size was limited. 
Nevertheless, with our whole brain explorative approach, 
this study of structural brain network connectivity in TTM 
using graph theoretical analysis, is novel. Third, structural 
networks were created using inter-regional correlations at 
group level and therefore do not reflect networks at indi-
vidual level. Therefore, other factors that may determine 
underlying structural covariance such as clinical measures 
could not be associated with network measures. Results 
may also be interpreted differently depending on parcella-
tion strategies, differences in network density, the strength of 
connections and whether a network is weighted or not (Fara-
hani et al., 2019). Although every network measure provides 
information on the topology of the brain, cortical thickness 
represents one of several types of parcellation schemes used 
to define structural connectivity or covariance.

Conclusions

Our findings largely coincide with previous studies impli-
cating somatosensory, sensorimotor and frontal-striatal 
circuitry in TTM. Our findings also partially overlap with 
structural connectivity findings in OCD, a key example 
of the OCRDs. Further study in larger samples is needed 
to differentiate structural and functional networks of this 
condition.
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