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THE BIGGER PICTURE Limited data availability, outliers, and confounding variables are ubiquitous in bio-
logical and clinical datasets and present challenges for evaluation and comparison of machine-learning
models. We present a method that uses simple pairing of data samples to overcome those challenges
and reveal how individual outliers and confounders impact performance estimates without the need to train
multiple models. We also propose an efficient implementation of the method, allowing it to be applied
at scale.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
The true accuracy of a machine-learning model is a population-level statistic that cannot be observed
directly. In practice, predictor performance is estimated against one or more test datasets, and the accuracy
of this estimate strongly depends on how well the test sets represent all possible unseen datasets. Here we
describe paired evaluation as a simple, robust approach for evaluating performance of machine-learning
models in small-sample biological and clinical studies. We use the method to evaluate predictors of drug
response in breast cancer cell lines and of disease severity in patients with Alzheimer’s disease, demon-
strating that the choice of test data can cause estimates of performance to vary by as much as 20%. We
show that paired evaluation makes it possible to identify outliers, improve the accuracy of performance es-
timates in the presence of known confounders, and assign statistical significance when comparing machine-
learning models.
INTRODUCTION

Effectively evaluating the performance of predictive computa-

tional models is a crucial aspect of machine learning. Knowing

when a model is accurate allows for reliable predictions on

new data and provides valuable insights about which features

in the training data carry predictive information. However, the

true accuracy of a model is a population-level statistic that is

generally unknown, because it is impossible to consider all—

potentially infinitely many—datasets to which a model will be

applied. Model performance must therefore be estimated by

appropriately sampling available data, and reliable estimates

require a sufficient number of points to be adequately represen-

tative of the population. The presence of systematic biases and

confounding variables can lead to incorrect accuracy estimates
This is an open access article und
and inflated confidence in machine-learning models that are

subsequently found to perform poorly in deployment.1 This is

closely related to the well-known issue of overfitting,2 whereby

a model trained on one set of data points fails to generalize to

a new set of data. Conventional methods for performance eval-

uation can fail to detect overfittingwhen the same biases are pre-

sent in training and test data. Robust performance estimates

must therefore detect and account for these biases to accurately

represent how the model would behave in the larger space of all

possible data points.

When data are limited (as they commonly are in biomedicine),

model performance is routinely evaluated using cross-validation,

which involves withholding a portion of the available data

and using the remainder to train amodel, which is then evaluated

against the withheld portion.3,4 Widely used variants of
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cross-validation include k-fold; leave-one-out; Monte Carlo

methods, in which a fixed proportion of data are repeatedly

sampled and withheld for evaluation; and bootstrap methods,

where the withheld portion is automatically defined by the data

not sampled for training.5 In their standard formulations, none

of these methods explicitly account for the presence of system-

atic biases and confounders in the data, andmodel accuracy es-

timates obtained by these methods may not always reflect true

predictor performance, particularly when dataset sizes are small.

The limitation of data availability is particularly prominent

in -omics datasets, which commonly contain many molecular

measurements (ca. 104 for genome-scale data) from a relatively

small number of samples (10–100). While conducting more ex-

periments to increase sample size is sometimes possible, the

small-sample issue is insurmountable in other cases due to the

limited availability of biological material (number of available

patient specimens, for example) and the significant cost associ-

ated with molecular profiling. For example, cell culture studies

focused on breast cancer are generally limited to the �75

commercially available breast cancer cell lines. While deriving

new cell lines is possible, it is time consuming and expensive.6

Moreover, new lines potentially suffer from the same limitations

as existing lines with respect to confounders. The discrepancy

between the low number of samples and the large number of

molecular features available for any one sample introduces

low-signal scenarios. For example, the availability of deep

gene expression data that cover thousands of expressed genes

in a small number of samples makes it difficult to detect relevant

transcriptional changes in the overall expression variance.7 A low

number of samples can also lead to stratification bias, because it

is not always possible to partition a small but discrete number of

data instances into cross-validation folds in a way that preserves

the statistical properties of the entire dataset in each fold.8

Together, these issues represent a substantial challenge in mak-

ing accurate estimates of performance for models trained

on -omics and similar datasets.

In addition to challenges arising when sample number is low,

biological and clinical datasets often contain both known and un-

known confounding relationships among variables. For example,

a recent study found that the dominant signal in a prototypical

large multi-center drug-response screen aligned with the loca-

tion at which the data were collected and not the drug or cell

line.9 Knowing when a machine-learning model inadvertently

learns to recognize such a lurking variable can help prevent

spurious correlations and erroneous conclusions. A popular

approach for dealing with confounding and lurking variables is

to modify the input data in a way that removes or reduces their

effect, as implemented by ComBat,10 surrogate variable anal-

ysis,7 removal of unwanted variation,11 and linear models for mi-

croarray data.12 However, modification of the original data can

inadvertently introduce new artifacts that erroneously amplify

differences between data groups and inflate estimates of model

performance.13 Some batch-correcting methods also assume

an underlying statistical distribution for the data, making them

inappropriate for scenarios in which the data distribution is

unknown.

In this work, we use paired evaluation to systematically

examine how a predictive model scores pairs of test data sam-

ples to generate a detailed decomposition of performance es-
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timates. The evaluation method was originally proposed in

the context of regression problems,14 but its full potential re-

mained unexplored. Here, we generalize paired evaluation to

all machine-learning tasks and demonstrate how the method

can identify potential data outliers, assign statistical signifi-

cance when comparing machine-learning methods, and serve

as a non-parametric method to accurately estimate model per-

formance in the presence of known confounders without

requiring modification of the underlying data. We consider

two small-sample prediction tasks that leverage real-world da-

tasets with known confounders: prediction of drug sensitivity in

breast cancer cell lines, which is confounded by subtype (clin-

ical, i.e., hormone-receptor positive [HR+], HER2 amplified, tri-

ple negative; and molecular, i.e., luminal, basal); and prediction

of Alzheimer’s disease (AD) severity in postmortem brain spec-

imens, which is confounded by an individual’s chronological

age. We show that minor variations in how the test data are

paired for evaluation can reveal significant effects hidden by

traditional approaches to model evaluation, and that the exclu-

sion of outliers detected by paired evaluation can affect model

interpretation. Last, we show that paired evaluation can be

implemented efficiently using the ‘‘inversion counting’’ algo-

rithm, which enables its application to large-scale datasets,

such as those comprising single-cell RNA sequencing (RNA-

seq) measurements.

RESULTS

Throughout this work, we quantify model accuracy using a

popular metric, the area under the receiver operating charac-

teristic curve (AUC).15 In binary classification, the AUC can be

interpreted as the probability that a randomly chosen positive

sample is correctly ranked above a randomly chosen negative

sample.16 This interpretation integrates naturally with paired

evaluation, which considers one pair of samples at a time

and evaluates a predictor based on whether it ranks that pair

correctly. We define a pair of samples to be rankable if their la-

bels can be ordered—given experimental error and other un-

certainty—by the corresponding data representation (e.g., the

temporal arrangement of events [disease progression or death]

in a survival dataset). The fraction of pairs ranked correctly is a

direct estimate of AUC (Figure 1A). Paired evaluation is

agnostic to the underlying machine-learning method and can

be applied in any cross-validation setting that allows for pooling

and comparison of predictions from multiple test folds. A spe-

cial case of this is leave-pair-out cross-validation (LPOCV), in

which a separate model is trained for each test pair.17

LPOCV is particularly relevant for small-sample datasets with

low signal-to-noise ratios, because it has been shown to be

less susceptible to stratification bias than other popular

cross-validation schemes.16–18

Paired evaluation is not limited to regression (where the

method was originally proposed14) or binary classification and

can be applied to any machine-learning task that allows for an

ordering of sample labels, including information retrieval, recom-

mender systems, and survival analysis. To account for instru-

ment error and other sources of uncertainty in -omics datasets,

we introduce an optional meta-parameter, d, which sets a mini-

mum required distance of separation in the label space for a
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Figure 1. A schematic representation of paired evaluation

(A) Individual samples in a test dataset are represented by squares, colored according to their true labels in binary classification and linear regression settings. The

test dataset is broken up into rankable pairs, and a predictor is asked to score each pair separately. The scores are used to determine whether a given pair was

ranked correctly (U) or incorrectly (X), and the AUC is determined by the fraction of correctly ranked pairs.

(B) The criteria for a valid rankable test pair. In binary classification, two samples are considered rankable if they belong to the opposite classes; in linear

regression, a rankable pair of samples requires that the difference between their labels is greater than a predefined meta-parameter d.

(C) An example comparison of two models (A and B). A 2 3 2 contingency table tallies the correctly and incorrectly ranked pairs by each model. Statistical

significance of the difference in method performance is assessed by Fisher’s exact test and McNemar’s test.

See also Figure S1.
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pair of samples to be considered rankable (Figure 1B). In all set-

tings, AUC is estimated as the fraction of rankable pairs that are

ranked correctly by a model.

The primary advantage of paired evaluation is that it allows

models A and B to be compared against each other based

on their ability to correctly rank individual pairs of datapoints.

This is both more informative than the AUC value alone and

more detailed than the standard evaluation measurements pro-

duced by the popular k-fold and leave-one-out cross-validation

methods, allowing for a deeper characterization of model per-

formance in small-sample studies. When comparing two

models in a paired evaluation setting, statistical significance

can be assessed by simple construction of a two-by-two con-

tingency table and application of standard statistical tests,19

such the Fisher’s exact test (Figure 1C). Other tests, such as

McNemar’s, make it possible to detect instances in which

two models perform differently even when their AUC values

are comparable, which often signals that the models are com-

plementary and suggests that aggregating their output with an

ensemble model may lead to improved accuracy.20 Last, the

AUC estimate derived by paired evaluation can be viewed as

the average number of successes in a series of Bernoulli trials.

While the trials are not independent and identically distributed

(i.i.d.), the type I and type II errors are nevertheless well

controlled (Figure S1), and the resulting AUC values will often

follow a binomial distribution in practice, allowing for a reason-

able approximation with a Gaussian distribution when the num-

ber of pairs is sufficiently large.
The choice of test data has a profound effect on
estimates of model performance
Breast cancer is a heterogeneous disease that is clinically sub-

typed based on the levels of expression of three receptors: tu-

mors expressing estrogen and/or progesterone receptors are

classified as HR+, tumors overexpressing and/or amplified for

the HER2 receptor tyrosine kinase are classified as HER2 posi-

tive, and those lacking expression of these three genes are clas-

sified as triple-negative breast cancer (TNBC). In practice, clin-

ical subtype determines how a cancer will be treated. Breast

cancers are also classified based on gene expression profiles

into four intrinsic molecular subtypes: luminal A, luminal B, basal,

and HER2 enriched.21,22 Molecular and clinical subtypes overlap

but are non-identical. Given the high concordance between clin-

ical and molecular subtypes in our cell line data (Figure S5), we

followed the common practice of separating lines into luminal

(HR+, HER2+) and basal (TNBC) molecular subtypes as a poten-

tial confounding variable.23–26

We considered a dataset recently collected in our laboratory

that characterizes the sensitivity of 63 breast cancer cell lines

of different subtypes to 72 small molecule drugs, with a focus

on kinase inhibitors. The dataset comprises growth rate-cor-

rected measures of drug sensitivity (GR values27), determined

using a microscopy-based assay of cell proliferation and

death,28 and pre-treatment transcriptional and proteomic29 pro-

files for each cell line. To demonstrate the effectiveness of paired

evaluation, we considered a simple machine-learning setup, in

which random forest regression models were trained to predict
Patterns 4, 100791, August 11, 2023 3
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Figure 2. The composition of the set of rank-

able pairs plays a crucial role in evaluating

predictive models of drug response in breast

cancer cell lines

(A) The parameter d defines the set of rankable cell

line pairs, which are then used to estimate AUC of

random forest models in LPOCV. Each model was

trained to predict drug sensitivity from baseline

mRNA expression. Shown are estimates of perfor-

mance for six select compounds.

(B) Additional performance estimates for the drug

palbociclib computed using 5-fold, 10-fold, and

leave-one-out (LOO) cross-validation, as well as

using Monte Carlo partitioning of the data into

random 80%–20% train/test splits. The LPOCV es-

timates from (A) are included for reference.

(C) The distribution of standard deviation in GRAOC

across technical triplicates for 3,400 drug-cell

combinations. Predictive models are not expected

to be able to distinguish two cell lines with GRAOC

values that lie within the corresponding standard

deviation since it represents measurement error.

See also Table S1.
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drug sensitivity—measured as area over the growth rate curve

(GRAOC)—from the baseline mRNA expression of a set of pre-

selected genes. Random forests were selected to model poten-

tial non-linear relationships in the data and because more com-

plex models, e.g., neural networks, are overparameterized for

the small number of data points (cell lines) in the dataset.

To account for possible measurement error, we considered a

pair of cell lines to be rankable if the difference in the correspond-

ing GRAOC labels was greater than a specified value of the meta-

parameter d (Figure 1B). We observed that the value of this

meta-parameter had a dramatic impact on the estimate of model

performance, with some estimates varying by as much as 20%.

The trend was consistent across drugs (Figure 2A) and underly-

ing cross-validation settings (Figure 2B). This finding reinforces

the importance of choosing a test set that accurately represents

potential future data that would be encountered by the predictor.

Here, a large value of d presents an "easy" prediction task, in

which it is necessary only to distinguish cell line pairs having

large differences in drug sensitivity. Such scenarios produce

higher perceived model performance, but these estimates are

artificially inflated relative to observed differences between cell

lines in general and may not represent the true accuracy of

the model.

To establish a reasonable value for d, we required that a cor-

responding model correctly ranks pairs of cell lines for which

separation of GRAOC values (labels) was greater than experi-

mental error. For a given drug-cell line combination, the exper-

imental error was taken to be the standard deviation of GRAOC

across three or four technical replicates. For any pair of cell

lines, the larger of the two standard deviations was then used

as the value for d to determine if that pair was rankable. For

most rankable pairs, this corresponded to a difference in

GRAOC of d < 0.3 (the full range of GRAOC values in our data

was �0.7 to 1.9), with the total number of rankable pairs on

the order of hundreds for each drug (Figure 2C; Table S1). In

the remainder of breast cancer data analyses, we applied

paired evaluation in the context of LPOCV, where a separate
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model was trained for each test pair that was determined to

be rankable using the above d guidelines.

Effect of breast cancer subtype on model performance
In our dataset, the dominant variance in gene expression data

and drug sensitivity for multiple drugs was observed to align

with molecular subtype (Figure S5), consistent with previous

studies.23,30 Thus, subtype represents a known complication in

the analysis of breast cancer drug response, and we sought to

evaluate its impact on estimates of model performance. To

accomplish this, we broadly classified cells as either luminal or

basal and compared AUC estimates computed with all rankable

pairs against estimates derived using only those rankable pairs

for which both cell lines were of the same subtype. For many

drugs, we observed a decrease in estimated AUCwhen the eval-

uation was performed on subtype-matched pairs (Figure 3A),

suggesting that the corresponding predictors had learned to

recognize molecular subtype as a confounder. Next, we esti-

mated the correlation between drug sensitivity and subtype us-

ing one-way ANOVA and observed that the resulting F-statistic

was a good indicator of the difference between AUC estimates

(Figure 3B). Our results confirm that learned models place

more emphasis on the molecular subtype when it is indeed a

good predictive feature of drug sensitivity. However, when pre-

diction is limited to a single subtype, the models are frequently

less accurate. The balance between accuracy across subtypes

vs. within a subtype must therefore consider the way in which

a model will be used. For example, if a drug is approved only

for one subtype, then a subtype-specific model may be what is

required.

To get a better understanding of the effect breast cancer sub-

type has on performance estimation, we considered six clinically

relevant breast cancer drugs for closer examination (Table 1). Of

these, alpelisib is currently approved for the treatment of HR+/

HER2�metastatic breast cancers31 and is in clinical trials for

HER2+ patients. Palbociclib and abemaciclib are approved for

use in the same metastatic HR+ breast cancers with current
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Figure 3. Effect of breast cancer subtype on

the estimates of prediction accuracy

(A) AUC estimates calculated using subtype-

matched (y axis) and all (x axis) rankable pairs. The

dashed line represents all hypothetical scenarios

where the two AUC estimates agree. Each dot cor-

responds to one of 72 drugs. A subset of drugs is

highlighted for closer examination.

(B) The difference between AUC estimates in

(B), computed as DAUC = AUCall � AUCsubtype and

plotted againstmatching one-wayANOVA to contrast

GRAOCdistributionsacrossbreast cancersubtypesas

in (A). Each dot corresponds to one of 72 drugs.

See also Figure S7.
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attempts to expand the indication to TNBC and HER2+ dis-

ease.32 Consistent with these clinical indications, we found

that basal and luminal cell lines responded differently to alpelisib,

pictilisib, taselisib, and Torin2, while no significant difference in

response was observed for palbociclib and abemaciclib

(Figure S7).

In paired evaluation, the estimate of AUC was substantially

lower for subtype-matched pairs when predicting sensitivity to

alpelisib, pictilisib, taselisib, and Torin2 (Table 1 and Figure S6A),

suggesting that the corresponding predictors had at least

partially learned to recognize the molecular subtype. In contrast,

no statistically significant difference was observed when

comparing AUC estimates made using all pairs and subtype-

matched pairs for palbociclib or abemaciclib (Table 1; Fig-

ure S6B), two drugs whose sensitivity was more weakly corre-

lated with subtype (Figure S7).

An important aspect of paired evaluation is that it assesses the

impact of known confounders on the prediction accuracy without

modifying the original training data. This is in stark contrast to the

traditional approaches of dealing with confounding variables,

where the original measurements are perturbed to remove or

reduce the impact of the confounders.10,13,33 Taken together,

our findings suggest that, when drug sensitivity is correlated

with subtype, predictors implicitly learn features of the underlying

subtypes. This may represent a desirable property in a setting

where molecular subtype closely informs drug response.

Detection and removal of outliers affects model
interpretation
In the current setting, model interpretation primarily involves in-

specting feature importance scores to pinpoint genes that play

a crucial role in determining drug response and resistance. Since

the presence of outliers in the training data can skew feature

importance scores, we investigated the effects of outlier removal

on model interpretation. We asked if any rankable pair was more

likely to be ranked incorrectly by a model if it included specific

data samples. We were specifically concerned about outliers

that arose from measurement error or that were biologically

very different from the norm. When predicting the sensitivity of

breast cancer cell lines to Torin2, a polyselective mammalian

target of rapamycin (mTOR) inhibitor,34 we found that 526 out
of 673 rankable pairs were ranked correctly

by a random forest model (AUC estimate =

0.78). However, pairs containing the
ZR7530 cell line were consistently ranked incorrectly

(Figures 4A and 4B), suggesting that the cell line is an outlier.

ZR7530 is a luminal cell line, and its gene expression profile clus-

ters with profiles of other luminal cells (Figure S2). However, the

cell line was more resistant to Torin2 than other luminal cell lines

with aGRAOC value more similar to that of TNBC lines, explaining

the observed misranking of pairs containing ZR7530.

Removing ZR7530 from the dataset reduced the total number

of rankable pairs to 652, of which 524 were ranked correctly (Fig-

ure 4B), leading to a small improvement in estimated model ac-

curacy (AUC estimate = 524/652 = 0.8). When we compared

feature importance scores before and after the removal of

ZR7530, we observed that ERRB2 (HER2) increased in impor-

tance (Figures 4C and 4D), reconfirming that receptor status is

heavily correlated with Torin2 response (Table 1). Similarly, we

found that MTOR, which encodes a known target of Torin2,35

also gains importance. More generally, these findings show

that the feature importance of genes know to play an important

role in breast cancer biology change when outliers are detected

and removed in paired evaluation, and, at least in some cases,

this increases interpretability.

We repeated the outlier analysis for all other drugs in our da-

taset and identified two other cases, corresponding to drugs

E17 and palbociclib, for which sensitivity predictors consis-

tently misranked pairs containing a specific cell line. In both

cases, removing the outlier led to a higher estimate of AUC,

but the effect on feature importance varied. In the case of

E17, the removal of outlier cell line MGH312 led to a substantial

drop in the importance CDKN2C (Figure S3). However,

removing the outlier cell line HCC202 from a predictor of palbo-

ciclib sensitivity did not have any substantial impact on feature

importance (Figure S4). These results demonstrate that the

presence of outliers in a dataset can lead to a consistently

incorrect ranking of pairs, and the removal of these outliers

can increase, decrease, or have no effect on feature impor-

tance, making paired evaluation a useful tool for improving

model interpretation.

Disease severity in Alzheimer’s decedents
AD is a chronic neurodegenerative disorder that leads to

memory loss and dementia. The disease is characterized by
Patterns 4, 100791, August 11, 2023 5



Table 1. Effect of breast cancer subtype on model performance

Drug

All rankable

pairs

Subtype-

matched

pairs p value

Alpelisib U 337 80 7.67 ✕ 10�5

✕ 30 24

AUC 0.92 0.77

Pictilisib U 315 66 2.32 ✕ 10�4

✕ 43 26

AUC 0.88 0.72

Taselisib U 604 192 6.71 ✕ 10�9

✕ 110 91

AUC 0.85 0.68

Torin2 U 273 68 4.26 ✕ 10�8

✕ 116 84

AUC 0.70 0.45

Palbociclib U 367 176 0.5

✕ 61 30

AUC 0.86 0.85

Abemaciclib U 382 187 0.66

✕ 177 82

AUC 0.68 0.70

The p values were derived from one-sided Fisher’s exact tests with the

alternative hypothesis being that subtype-matched pairs weremore likely

to be misranked. See also Figure S6.
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extracellular aggregates of the b-amyloid peptide and intracel-

lular accumulation of hyperphosphorylated tau leading to neuro-

fibrillary tangles (NFTs). Several recent studies—those from the

Accelerating Medicines Partnership – Alzheimer’s Disease

(AMP-AD) program, for example36—have attempted to obtain

molecular insight into disease mechanism using diverse -omic

datasets obtained from patient specimens; these data include

whole-genome sequencing, DNA methylation, mRNA and pro-

tein expression, and detailed clinical annotation.

Here, we consider the task of predicting disease severity from

mRNA expression. We make use of the data collected by two

joint longitudinal cohort studies, the Religious Orders Study

(ROS) and the Memory and Aging Project (MAP), that comprise

over 200 bulk RNA-seq profiles of postmortem brain specimens,

along with matching pathology annotations.37,38 We group data

points into three categories based on Braak staging39,40: mild

(Braak 1–2), moderate (Braak 3–4), and severe (Braak 5–6).

AD progression takes place on a timescale of years, and dis-

ease severity is strongly correlated with a patient’s age of death

(AOD) (Figure 5A). An important question is whether a predictor

trained to recognize disease severity has instead learned to pre-

dict age, a situation that can lead to an overinflated estimate of

performance and affect the interpretation of the genes and

weights that make up themodel. To address this, we used paired

evaluation as a non-parametric way of evaluating the effect of a

known confounder on performance estimates; this involved con-

trasting confounder-matched and confounder-mismatched

rankable pairs. As with breast cancer data above, we used

paired evaluation in an LPOCV setting because of the natural

integration between the two.
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In our breast cancer analysis, the labels were continuous

(varying from 0 to 1 GRAOC), and the confounder was repre-

sented by a discrete variable (basal or luminal subtype). The

opposite is true of ROSMAP data; the labels are discrete, result-

ing in a straightforward definition of rankable pairs: two brain

specimens are rankable if they have distinct Braak stage ranges.

Conversely, age is a continuous variable that is censored at 90

years old (y.o.). The censoring provides a natural inflection point

for determining whether two data points are matched in age, giv-

ing rise to two evaluation scenarios (Figure 5B). In a scenario

focused on mild disease (a mild-centric scenario), each individ-

ual who passed away before the age of 90 years with mild dis-

ease was paired with individuals who had severe disease and

was either closest in age (AOD matched) or was chosen at

random from the censored category of 90+ y.o. (AOD

confounded). Similarly, a severe-centric scenario pairs each

90+ y.o. patient who passed away with severe AD with a patient

who hadmild disease andwas either randomly selected from the

same 90+ y.o. category (AOD matched) or the youngest patient

in the cohort (AOD mismatched). As a reference point, we also

considered all possible rankable pairs.

In both mild-centric and severe-centric scenarios, each data

point was associated with two rankable pairs that represent

the minimal and maximal separation along the confounding var-

iable (Figure 5B). To demonstrate that paired evaluation is

agnostic to the underlying machine-learning algorithm, we

switched from random forests to logistic regression and trained

models to recognize disease severity from the corresponding

mRNA expression profiles, applying paired evaluation to esti-

mate model performance with each set of rankable pairs. We

found that the models performed similarly for AOD-matched

and AOD-confounded pairs (Figure 5C) and that both perfor-

mance estimates were consistent with the one derived on all

rankable pairs (mild-centric AUC = 0.87, severe-centric AUC =

0.85). Similar performance trends were also observed for other

classification tasks (Figure S8), with a single exception being a

mild-centric comparison of mild and moderate disease severity,

where predictors may have learned to recognize the AOD. This

trend is expected, given the relative difficulty of distinguishing

among the early stages of the disease in a younger population.41

The analysis reveals that the presence of confounders does

not necessitate that a predictor will learn to recognize them

instead of the variable of interest. Paired evaluation provides a

simple way to detect whether such situations occur and can

facilitate decisions about when it is necessary to correct for con-

founding variables.

DISCUSSION

In this work, we extend paired evaluation, a method for deriving

detailed landscapes of predictor performance for machine-

learned models based on the concept of rankable pairs of data-

points. We show how systematic pairing of data points can ac-

count for known confounders and identify outliers. We also

show that statistical significance of model comparison can be

maintained using standard tests based on contingency tables.

While we made use of LPOCV in the current work due to its nat-

ural integration with paired evaluation, the proposed methodol-

ogy can be applied in any cross-validation setting that allows



Figure 4. Paired evaluation detects outlier cell lines in the context of sensitivity to Torin2
(A) A performance landscape over all possible pairs of cell lines. A pair is colored blue if it was correctly ranked by the predictor and orange otherwise. Pairs that

were not considered rankable because the corresponding GRAOC values were not separated by the d threshold are shown in gray.

(B) A 23 2 contingency table tallying correctly and incorrectly ranked pairs with and without the cell line ZR7530. The corresponding p value was computed using

a one-sided Fisher’s exact test with the alternative hypothesis being that pairs including ZR7530 were more likely to be misranked.

(C) Feature importance scores associated with a predictor trained on all cell lines. Shown are the top 20 features.

(D) Feature importance scores computed after removing the outlier ZR7530 and retraining the predictor on the remaining cell lines.

See also Figure S2.
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for a comparison of predictions across test folds. An efficientO(n

log n) implementation of paired evaluation using inversion count-

ing (see experimental procedures) allows the method to scale

easily to datasets with millions of samples (Figure S9).

The choice of test data can have a dramatic effect on esti-

mates of model performance.1 To get an accurate performance
estimate, a test set must be a faithful representation of future

data that a predictor might encounter in deployment. We there-

fore recommend that rankable pairs be defined using experi-

mental knowledge and domain expertise. For example, in

regression problems, the choice of a minimal difference (in a

continuous variable) for a pair to be rankable (d) could be based
Patterns 4, 100791, August 11, 2023 7



A

B

C Figure 5. Paired evaluation reveals that

models trained to recognize disease stage

are not confounded by age

(A) The distribution of age of death (AOD) for patients

who were diagnosed with mild, moderate, or severe

AD during postmortem pathology analysis.

(B) Schematic representation of rankable pairs,

selected to be either confounder matched (red) or

mismatched (black). Each patient is represented by

a square, colored according to the corresponding

pathology annotation. The value of AOD is censored

at 90 years of age in the dataset.

(C) 2 3 2 contingency tables showing the correctly

and incorrectly ranked test pairs for AOD-

confounded and AOD-matched scenarios. The p

value was computed using a one-sided Fisher’s

exact test with the alternative hypothesis being that

AOD-matched pairs were more likely to be mis-

ranked by the model.

See also Figure S8.
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on variance across biological or technical replicates (Figure 1B);

two data points that fall within this variance are deemed indistin-

guishable. Confounding and lurking variables are ubiquitous, but

their presence may not be a drawback if they are biologically

relevant and can assist in model interpretation. In the case of

breast cancer cell lines, the difference between HR+, HER2+,

and TNBC status confounds modeling of drug sensitivity but is

informative for drugs that inhibit HR and HER2.30 Conversely, a

predictor that unintentionally learns to recognize what institution

a subset of data was collected at in a multi-center study9 is un-

likely to produce meaningful biological insight. Because con-

founders can have either positive or adverse effects on model

interpretation, it is imperative to know when predictors have

learned to recognize confounders. We showed that paired eval-

uation is an effective, non-parametric method to detect this

through simple comparison of performance values computed

on confounder-matched vs. confounder-mismatched pairs.

Importantly, paired evaluation achieves this without modifying

the original data and without the need to train additional models

on subsets of data stratified by the confounders of interest.

Our study has several limitations. In its present formulation,

defining confounder-matched rankable pairs requires that the

confounder values are known; however, many datasets may

have unknown or unmeasured lurking variables that introduce

unwanted batch effects.7 To evaluate the effect of these hidden

variables on the estimate of performance using paired evalua-

tion, a user would first have to detect them using an external

method. We also expect that information about hidden batch ef-

fects may be encoded in pairwise comparison of data points.

Our future work will extend the outlier detection to identify

groups of samples that exhibit similar misranking patterns as a

method for approximating shared unobserved characteristics.

While paired evaluation can detect situations in which con-

founders affected model training, the method provides no

intrinsicmeans to correct for this effect, since the original training

data are not modified. Furthermore, it is not trivial to delineate

what aspect of model interpretation (e.g., feature importance)

aligns with a confounder versus the variable of interest, even

when paired evaluation signals that a predictor learned to recog-

nize that confounder. Thus, paired evaluation represents the
8 Patterns 4, 100791, August 11, 2023
initial step in identifying potentially problematic confounder vari-

ables and outlier samples, but resolution of these may require

other methods.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should

be directed to and will be fulfilled by the lead contact, Artem Sokolov

(artem_sokolov@hms.harvard.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The results published here are in part based on data obtained from the AD

Knowledge Portal.42 We used the data collected at our laboratory to train

and evaluate predictors of drug sensitivity in breast cancer cell lines.43 An effi-

cient O(n log n) implementation of paired evaluation, as well as a Python mod-

ule for executing paired evaluation in an LPOCV setting, is publicly available as

a GitHub repository.44

Estimation of AUC

We consider a pair of samples i and j to be rankable if their labels (yi and yj,

respectively) satisfy

f
�
yi ; yj

�
R di;j (Equation 1)

where f is a distance function and di,j is the minimum necessary threshold of

label separation. In classification, fwas set to be an indicator function returning

0 if the arguments are identical and 1 otherwise, while di,j was set to 0.5 for all

(i,j). In linear regression, f was the L1-norm distance |yi � yj| in the label space,

and di,j = max(si,sj) was taken to be the expected measurement error, esti-

mated by the standard deviations si and sj computed across technical

replicates.

Given the space of rankable pairs R, AUC is estimated by

AUC =
X

i;j˛R

pij

jRj (Equation 2)

where pij is an indicator variable that takes on the value of 1 when the pair of

samples i,j is correctly ranked by the predictor, and 0 otherwise.

Applying paired evaluation in cross-validation

To determine if a rankable pair is ranked correctly by a model, paired evalua-

tion requires that the corresponding predictor assigns scores to both samples

in the pair. The scores can be probabilities that the input sample belongs to the

mailto:artem_sokolov@hms.harvard.edu
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positive class in binary classification, ranks in a recommender system, or pre-

dictions of real-valued measurements. Since pairwise comparison of scores

by paired evaluation is a separate task, the scores frommultiple test partitions

can be pooled together. This allows paired evaluation to be applied in any

cross-validation setting, including leave-one-out cross-validation, as long as

pooled prediction scores can be ordered by their corresponding representa-

tion (e.g., predicted hazard ratio by a patient survival model). If cross-validation

produces multiple scores for a single sample, e.g., through repeated random

partitioning into 80% train/20% test splits, we use the score average for that

sample in paired evaluation. An exception to the above rule is LPOCV, where

each rankable pair can be evaluated directly, without the need for score

averaging.

Efficient implementation of paired evaluation using inversion

counting

Given a test dataset of n samples with the corresponding labels y1 % y2 % .

% yn that designate the desired ranking of samples, paired evaluation counts

the number of pairs that are actually ranked correctly when the samples are

sorted based on the scores produced by a given machine-learning model.

This is a well-known problem in computer science called inversion counting

and an O(n log n) implementation is given by the following modified merge

sort algorithm:

1. Sort the samples based on the scores produced by a model

2. Let zi designate the label of the sample in the ith position

3. We define a function count(l, r), where l and r are the left and right end-

points of an interval along the sorted list. Inside this function,
a. Initialize inv = 0

b. Terminate recursion if r < l

c. Compute the midpoint of the interval: m = floor((l + r) / 2)

d. Recurse on each half: inv = inv + count(l, m) + count(m + 1, r)

e. Count the inversions using the standard merge sort loop, by initial-

izing pointers i = l, j = m + 1 and traversing the two halves of the in-

terval, while i % m and j % r is satisfied

i. During the traversal, no inversions are counted whenever zi % zj
ii. Otherwise, everything in the left half of the interval between the

current pointer i and the midpoint is an inversion relative to j:

inv = inv + m � i +1

f. Return the overall tally inv from the function

4. The total number of correctly ranked pairs is the number of

rankable pairs minus the total number of inversions. Thus, AUC is given

by (|R| � count(1, n))/|R|, where R is the set of all rankable pairs as

before.
Outlier detection

We define the sample-specific AUC for the k-th sample as,

AUCk =
X

i;j˛Rk

pij

jRk j (Equation 3)

where Rk 3 R is the subset of all rankable pairs that include the sample k,

and pi,j has the same interpretation as in Equation 2. Samples with significantly

lower AUCk than the overall AUC were considered to be potential outliers and

inspected in more detail to decide whether they warrant an exclusion from the

study. As with method comparison (Figure 1C), statistical significance was as-

sessed by constructing a two-by-two contingency table cataloging whether a

given pair of samples is inRk and whether that pair was ranked correctly by the

corresponding model. Fisher’s exact test was used to determine whether pairs

in Rk were ranked correctly significantly more often than pairs not in Rk.

Robust evaluation of predictors in the presence of confounders

To measure the effect of known confounders on the estimate of model perfor-

mance, we considered a subset of rankable pairs where the difference in the

confounder values was minimal. For discrete confounding variables (e.g.,

breast cancer subtype), the values were matched exactly. For continuous vari-

ables, we selected a single rankable pair per sample, such that the difference

between the two values of the confounder was minimized. A possible unex-

plored alternative was to consider all samples that fell within a certain prede-
fined "match" window for a given index sample. In all cases, we refer to result-

ing subsets of rankable pairs as confounder matched and the remaining

rankable pairs as confounder mismatched.

If AUC estimated on confounder-matched pairs was significantly lower than

its equivalent derived from confounder-mismatched pairs, then this was inter-

preted as a strong indication that the corresponding predictor has learned to

recognize the confounder instead of the variable of interest. Statistical signif-

icance was again assessed with a Fisher’s exact test applied to a two-by-two

contingency table cataloging whether rankable pairs were more likely to be

ranked correctly if they are confounder matched or confounder mismatched.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100791.
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