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THE BIGGER PICTURE Cellular response to chemical perturbation is highly heterogeneous and dose
dependent. It would be impossible to experimentally characterize the risks of chemical or drug exposure
across all relevant combinations of cell types, chemicals, and doses.We introduce scVIDR, a computational
method that utilizes recent advances in generative deep learning to address this challenge. Across a range
of chemical exposure scenarios, we show that after training on available single-cell gene expression data,
scVIDR can predict perturbations across untested cell types and doses. We envision that scVIDR will help
reduce the need for repeated animal testing across tissues, chemicals, and doses.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Single-cell sequencing reveals the heterogeneity of cellular response to chemical perturbations. However,
testing all relevant combinations of cell types, chemicals, and doses is a daunting task. A deep generative
learning formalism called variational autoencoders (VAEs) has been effective in predicting single-cell gene
expression perturbations for single doses. Here, we introduce single-cell variational inference of dose-
response (scVIDR), a VAE-based model that predicts both single-dose and multiple-dose cellular responses
better than existing models. We show that scVIDR can predict dose-dependent gene expression across
mouse hepatocytes, human blood cells, and cancer cell lines. We biologically interpret the latent space of
scVIDR using a regression model and use scVIDR to order individual cells based on their sensitivity to chem-
ical perturbation by assigning each cell a ‘‘pseudo-dose’’ value. We envision that scVIDR can help reduce the
need for repeated animal testing across tissues, chemicals, and doses.
INTRODUCTION

In 2010, Sydney Brenner suggested that it is possible to deduce

the physiology of biological systems by understanding the inter-

actions and behaviors of their constituent units.1 The appropriate

unit, in his opinion, was the cell. Single-cell sequencing (scSeq)

has revolutionized the study of cell biology. With the ability to

capture the transcriptomic state of thousands of cells at once,

a fine-grained picture of the organization of cell physiology has

begun to emerge.2 Much of the effort in scSeq has been made
This is an open access article under the CC BY-N
in the realm of cell-type/-state discovery,3,4 cellular develop-

ment,5–8 and disease progression.9,10 These represent natural

applications of scSeq, especially regarding the spatial and

temporal dynamics of cellular systems and their interactions.

However, relatively little attention has been given to how cells

respond to environmental signals like chemical exposures,

which in addition to being spatial and temporal are also chemical

and dose dependent.

Broadly, cells exhibit the ability to recognize and respond to

external stimuli. This process is mediated by a coordinated set
Patterns 4, 100817, August 11, 2023 ª 2023 The Author(s). 1
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Figure 1. Schematic of scVIDR for prediction of response to single

and multiple doses for some unknown cell type
(A) Outline of the scVIDR model for expression prediction for unknown single-

dose response in cell type 3. Training is done using cell types 1 and 2 as input

to a variational autoencoder model. The difference between the centroids of

latent representations of the control and treated groups, d1 and d2, are used as

input into a linear regressionmodel. The linear regressionmodel is then used to

predict the d3 of the test cell type 3. We then use the decoder portion of the

model to convert the latent space predictions back into gene expres-

sion space.

(B) Use of scVIDR for prediction of the unknown response of multiple doses for

cell type 3. Log-linear interpolation on d3 is used to predict dose-dependent

changes in gene expression in the latent space. The latent space represen-

tations are then projected back into gene expression space using the decoder.
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of extracellular and intracellular interactions that transduce re-

sulting signals into cellular responses.11 These responses, as a

function of dose, define dose-response curves.12 The dose-

response curve is heavily dependent on the type of cell and its

internal state.13,14 Thus, even cells of the same type can respond

to the same exposure in a heterogeneous manner.15 scSeq pro-

vides a comprehensive measure of the transcriptome of a cell

and captures the inherent variation among cells of the same

type. This makes scSeq a useful tool in the study of chemical

perturbations of biological systems.

However, a comprehensive cell atlas of chemical perturbations

is impossible to assemble given the vast number of combinations

of dose, exposure duration, and cell types.16 Recently developed

resources like scPerturb17 and the multiplexed interrogation of

gene expression through single-cell RNA sequencing (MIX-seq)

protocol18 cover a meaningful but relatively small portion of this

space. Algorithms that generalize chemical perturbations across

cell state and dose can provide better estimates of the cartog-

raphy of the chemical perturbation space. In this work, we use

deep generative modeling to computationally predict cellular
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response across dose and cell types.We use a class of deep neu-

ral networks for dimensionality reduction called autoencoders.

Specifically, we use a variational autoencoder19 (VAE), which re-

lies on Bayesian priors to encode single-cell data into a latent dis-

tribution.VAEshavebeenused tomodelseveral technical aspects

unique to single-cell data, including statistical confounders such

as library size and batch effects20 and zero inflation.21

In perturbational single-cell biology, autoencoder models

such as scGen22 have been able to predict the response of inter-

feron b (IFN-b)-treated peripheral blood mononuclear cells

(PBMCs). However, for considering more complicated in vivo

perturbations, existingmodels do not consider cell-type-specific

effects in predicting the mean expression of differentially ex-

pressed genes (DEGs). Advances in other autoencoder frame-

works such as the compositional perturbational autoencoder

(CPA)16 aim to deal with these issues by trying to infer basal state

from the data by modeling covariates with different autoen-

coders and then iteratively composing them when performing

predictions for a particular set of conditions. While promising,

CPA can only work with vary large data samples (relative to other

perturbational autoencoders), as the model needs to learn a

latent space for each covariate. Thus, for confident prediction,

CPA will need datasets that already have a great deal of the

perturbational space mapped. Additionally, most perturbational

autoencoder frameworks are uninterpretable in terms of the

quantitative relationship between latent space and expression

prediction. Thus, it is difficult to ascertain which specific genes

themodel uses to predict differential gene expression after treat-

ment. Thus, there is a need for simpler models that better ac-

count for the complexity of in vivo experiments, that predict

high doses from less data, and that provide more informative in-

terpretations at the level of individual genes.

Here, we propose single-cell variational inference of dose-

response (scVIDR), which builds on latent space vector arithmetic

when using VAEs to study single-cell perturbations (Figure 1).

scVIDR predicts cell-type-specific DEG expression and approxi-

mates high-dose experiments better than other state-of-the-art

algorithms.Wealso use scVIDR to interpret the latent space using

linear models to assess the pathways involved in the single-cell

dose-response. We accomplish this across several datasets

including the dose-response of liver cells to 2,3,7,8 tetrachlorodi-

benzo-p-dioxin (TCDD) in vivo,22,23 PBMCs treated with IFN-b,24

and a multiplexed dataset of 188 different drug combinations

applied to three prominent cancer cell lines (sci-Plex25).

We use data from a single-nucleus dose-response experiment

in livers frommice gavaged with TCDD as a case study for in vivo

dose-response prediction.22,23 Hepatic responses to TCDD

represent an interesting case study, as its canonical receptor,

the aryl hydrocarbon receptor (AhR), is unevenly expressed

along the hepatic lobule, the functional unit of the liver. AhR is

more highly expressed in the centrilobular region compared

with the portal region (Figure S1).26 Thus, not only does response

to TCDD vary across different cell types in the liver, but it also

varies within cell types (such as hepatocytes) along the portal

to the central axis of the liver lobule.22,27 Tomodel response vari-

ation between cell types, the latent space of the VAE is used to

order hepatocytes with respect to their transcriptomic response

to TCDD and thus align all hepatocytes along a ‘‘pseudo-

dose’’ axis.
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RESULTS

scVIDR predicts single-dose, single-cell perturbation
expression better than other state-of-the-art algorithms
According to the manifold hypothesis, high-dimensional data

often lay on a lower-dimensional, latent manifold.28 For single-

cell data, this is a reasonable assumption given that the expres-

sion of one gene is often highly dependent on the expression of

other genes encoding transcription factors and is functionally

constrained by the process of evolution.29 Further evidence of

this can be seen in the extensive use and success of dimension-

ality reduction algorithms in the analysis of scSeq data.30 Lower-

dimensional representations of single-cell data are at the heart of

many single-cell gene expression analysis methods such as tra-

jectory inference.31 One method of interest is modeling of the

latent manifold using neural networks. These latent manifolds

have been shown to simplify complex relationships in single-

cell gene expression data.32–34 Specifically, simple vector arith-

metic on such spaces can predict in vitro chemical perturbations

with high accuracy.16,35 However, the accuracy of such models

when predicting in vivo dose-responses is inconsistent.

We begin by considering a single-cell gene expression dataset

X = fxigNi = 1 consisting ofN cells, where xi represents the expres-

sion profile of cell i. We assume that gene expression is gener-

ated by some continuous random process involving a lower-

dimensional random variable z. The generative process that

describes the mapping from z to X is given by the probability dis-

tribution, pqðXjzÞ. Thus, given that we know X and not z, we

would like to approximate the probability distribution that

maps X to z, pqðzjXÞ. Since calculating pqðzjXÞ is usually intrac-

table, we use a neural network, the encoder, to approximate it

using a different Gaussian distribution, q4ðzjXÞ. To map values

back from z to X, we use a second neural network, the decoder,

to approximate pqðXjzÞ. In practice, both the encoder and

decoder are trained together tominimize the reconstruction error

of the decoder and the difference between the prior distribution

and the encoder distribution.

We initially developedmodels for a single-dose chemical pertur-

bationwhere we characterize whether a cell has been treatedwith

a set concentration of the chemical of interest with the indicator

variable t (Figure 1A). We set t = 1 for cells that have been treated

with the chemical (treatment) and t = 0 for cells that have not been

treated (control). Our dataset contains c cell types within both the

t = 0 and t = 1 groups. Each time a model is evaluated, one

treated cell type is withheld from training and used in evaluation.

In standard VAE vector arithmetic (scGen), the latent space repre-

sentation of the perturbation of some cell type A is approximated

by bzi;A;t = 1 = zi;A;t = 0 + d. zi;A;t is the latent gene expression repre-

sentationsof cell typeA,35 and d is the differencebetween the cen-

troids of the treated and control traininggroups in the latent space.

Whenwecompare the differenceof centroids between the treated

and control groups, dc, of individual cell types with d, we see that

cell-type-specific differences vary greatly in a principal-compo-

nent analysis (PCA) projection (Figure S2A). Examination of the

magnitudes (Figure S2B) and the directions of each cell’s dc (Fig-

ure S2C) in high-dimensional space show that dc diverges greatly

from d. Hence, we calculate bdc = A, a function of the mean latent

representation of the control group of cell typeA. We approximate

this functionby training a linear regressionmodelwith theother cell
typeson the latent space (experimental procedures) andshow that
bdc = A better matches the ground truth dc = A (Figure S2). It should

be noted thatwhen there is only one cell type available for training,

for all practical purposes, scVIDR is equivalent to scGen

(Figure S7).

We applied this model to the case of a single dose of TCDD

administered to mice. Gene expression was measured with sin-

gle-nucleus RNA-seq (snRNA-seq) originating from the mouse

liver. We set t = 0 for unperturbed gene expression and t = 1

for gene expression perturbed by 30 mg/kg TCDD. The dataset

covered 6 different liver cell types: cholangiocytes, endothelial

cells, stellate cells, central hepatocytes, portal hepatocytes,

and portal fibroblasts (Figure 2). Our training set (Figure 2A)

consisted of all control and TCDD-treated cell types except

for TCDD-treated portal hepatocytes, which were used for

model evaluation. We compared the performance of scGen,

scPreGAN,36 CellOT,37 and scVIDR (our method) on the top

5,000 highly variable genes (HVGs) and the top 100 DEGs.

When predicting the gene expression of portal hepatocytes,

each method generated a set of virtual portal hepatocytes (Fig-

ure 2B). We then computed the average expression of each

gene across all cells and compared the average gene expression

in predicted cells versus cells derived from snRNA-seq experi-

ments. Across HVGs, the scVIDR model yielded an average R2

of 0.92 (Figure 2C). Across DEGs, scVIDR produced an average

R2 of 0.81 (Figure 2C). Continuing the evaluation across all cell

types (Figure 2D), leaving out one cell-type perturbation at a

time as described above for portal hepatocytes, our model out-

performed all other models (with p < 0.001, one sided Mann-

Whitney U test) when evaluated on both HVGs and DEGs.

We had similar results for IFN-b-treated PBMCs (Figure S3).24

Here, t = 1 for PBMCs treated with IFN-b, and t = 0 for untreated

PBMCs (Figure S3A). Across HVGs, the models yielded R2

values of 0.97, 0.92, 0.77, and 0.66, and across DEGs, they

yielded R2s of 0.96, 0.86, 0.80, and 0.84 for scVIDR, scGen,

scPreGAN, and CellOT, respectively (Figure S3C). When accu-

racy was assessed for all cell types, scVIDR significantly outper-

formed all other models (Figure S3D).

To test if scVIDR can perform out-of-distribution predictions

robust to experimental batch effects and diverse genetic back-

grounds, we test scVIDR on two additional experiments. In the

first experiment, we recapitulate results from Lotfollahi et al.,35

in which we predict perturbations across studies (in this case,

we look at IFN-b perturbation of PBMCs from Kang et al.24 and

try to predict it in PBMCs from Zheng et al.38). We show that

scVIDR can predict biologically plausible perturbations across

studies (Figure S8). In the second experiment, we show that

scVIDR can better predict LPS6 perturbation in rats (R2 = 0:92

for HVGs) using perturbations from other species (pig, rabbit,

and mouse)39 than scGen (R2 = 0:91 for HVGs), scPreGAN

(R2 = 0:63 for HVGs), and CellOT (R2 = 0:23 for HVGs) (Fig-

ure S9). In both experiments, we show that scVIDR can be

used to predict perturbations not only across cell types but

also across multiple perturbation studies and models.

scVIDR accurately predicts the transcriptomic response
for multiple doses across cell types
Next, we predicted the response for multiple doses of TCDD

(Figure 1B). Here, p is equal to themagnitude of the perturbation,
Patterns 4, 100817, August 11, 2023 3



Figure 2. Prediction of in vivo single-cell gene expression of portal hepatocytes from mice treated with 30 mg/kg TCDD

(A) Uniform manifold approximation and projection (UMAP) of the latent space representation of control and treated single-cell gene expression. Each cell type

and dose in mg/kg combination and by the train-test split for model training is represented by different colors. In the example in the figure, TCDD-treated portal

hepatocytes were used as a test set.

(B) PCA plots of predicted portal hepatocyte responses following treatment with 30 mg/kg TCDD using scGen, scVIDR, scPreGAN, and CellOT.

(C) Regression plots of each model. Each point represents the mean expression of a particular gene. Red points represent the top ten differentially expressed

genes. Shaded region around regression line represents the 95% confidence interval.

(D) Boxplot of R2 values for predictions across all liver cell types treated with 30 mg/kg TCDD. Calculation of the mean R2 across all highly variable genes (blue).

Calculation of the mean R2 across the top 100 differentially expressed highly variable genes (orange). Prediction performance distributions were compared using

a one-sided Mann-Whitney U test. ****p % 0.0001.
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Figure 3. Prediction of in vivo single-cell TCDD dose-response across cell types from mouse liver

(A) UMAP of the latent space representation of single-cell gene expression across TCDD dose-response. Cells are colored by dose ðmg/kg), cell type, and test-

training split. Arrows on UMAP represent a d calculated on UMAP space, with each arrowhead representing a specific dose denoted by its color.

(B) Dose-response prediction for the Ahrr gene using scVIDR and scGen. The differences between the predicted and true distributions of Ahrr at each dose are

measured via the Sinkhorn distance. Bars represent standard error of expression.

(C) Bar plots of the R2 scores of the gene expression means in portal hepatocytes for all highly variable genes and the top 100 differentially expressed genes.

Significance was determined by the one-sided Mann-Whitney U test. *p between 0.05 and 0.01; ****p % 0.0001.

(D) Boxplot of the distribution of R2 scores across all cell types in liver tissue. **p between 0.01 and 0.001.
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which in our case is equivalent to the dose. Thus, p = 0 repre-

sents expression at dose 0, and p = 30 represents expression

at dose 30, where the dose is in units of mg/kg in Figure 3 and

of nM in Figure S4. As with the single-dose case, we train the
model on the dose-response data for all cell types except one,

for which only the p = 0 condition is kept. We calculate the bdc
(experimental procedures; Figure 3A), which is the estimated dif-

ference of means between the highest dose and the untreated
Patterns 4, 100817, August 11, 2023 5
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groups. For scVIDR, intermediate doses are then calculated on

the latent space by interpolating log linearly on the bdc. For scGen,

we log linearly interpolate on d (experimental procedures).

Finally, those latent space representations are decoded back

into gene expression space using the decoder portion of each

of the models.

We analyzed amouse liver snRNA-seq dataset that included 8

doses (p = [0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10, 30]) of TCDD and a

control (p = 0) in mg/kg (Figure 3). scVIDR outperforms scGen in

approximating expression across the dose-response of TCDD in

mouse liver. We used the mean R2 score across all evaluated

genes as our performance metric (Figure 3B). scVIDR signifi-

cantly outperformed scGen at predicting HVGs and DEGs for

doses >0.3 mg/kg (Mann-Whitney one-sided U test p < 0.001).

scVIDR predicts the important TCDD receptor repressor gene,

Ahrr, at doses 1, 3, and 10 mg/kg in portal hepatocytes better

than scGen (Figure 3C). When predicting all other cell types

(cholangiocytes, endothelial cells, stellate cells, central hepato-

cytes, portal hepatocytes, and portal fibroblasts), scVIDR signif-

icantly outperformed scGen only at the highest doses of 10 and

30 mg/kg on prediction of all HVGs (Figure 3D). When predicting

on just the DEGs, scVIDR significantly outperformed scGen for

doses >0.3 mg/kg (Figure 3E).

We used scVIDR to predict the effects of a test set of 37 drugs

out of 188 treatments in the sci-Plex dose-response data25 at

24 h for A549 cells (Figure S4A). scVIDR was trained on all

data (all drugs and doses) in K562 and MCF7 cells. The model

was also trained on the remaining 151 drugs in A549 cells not

used in validation, as well as the vehicle data for the 37 drugs

in the test set (Figure S4A). The dose-response for the 37 drugs

was predicted as above by first calculating the bdA549 between the

control and the highest dose for a particular drug and log linearly

interpolating along the bdA549 in order to predict the intermediate

doses. We evaluated predictions made by scVIDR at the gene,

drug, and drug pathway levels. For the drug belinostat, a histone

deacetylase inhibitor, scVIDR improves on predictions of DEGs

such asMALAT1 relative to scGen (Figure S4B).When predicting

gene expression of the DEGs in belinostat-treated A549 cells,

scVIDR also significantly outperformed scGen on all doses (Fig-

ure S4C). On predicting the DEGs of all drugs with the same

mode of action as belinostat (epigenetics), scVIDR similarly out-

performed scGen on all doses (Figure S4D). Finally, when looking

across all 37 drugs in the test dataset, we were able to predict

the expression of DEGs significantly better than scGen on

average for the 3 highest doses of 100, 1,000, and 10,000 nM

(Figure S4E).

Regression on the latent space infers the relationship
between predicted gene expression and bdc
Insight into model decisions can provide information regarding

proper model usage and pitfalls. It would be useful to identify

which genes and pathways are associatedwith scVIDR’s predic-

tion; however, standard VAEs do not have a linear map from the

latent space to the gene expression and thus are hard to inter-

pret. To interpret the predictions of scVIDR, we approximate

the function of the decoder with linear regression (experimental

procedures). We take inspiration from the use of PCA in scSeq40

and the development of linearly decoded VAEs (LDVAEs).41 PCA

is a linear transformation that projects the data onto a lower-
6 Patterns 4, 100817, August 11, 2023
dimensional (latent) space while retaining as much variance as

possible. This transformation is represented by a linear weight

matrix, Wpca, with dimensions m3g where m is the number of

latent variables and g is the number of genes. We can under-

stand each principal component as a linear combination of

genes. This allows us to assess the relationship between genes

and a direction in latent space.

In a VAE, the mapping from the latent space to the gene space

is done by the decoder that, unlike the inverse of PCA, is non-

linear. In LDVAEs, however, the decoder portion of the VAE is

a linear regression layer, and thus the weight matrix of this layer,

Wldvae, describes a linear relationship between direction in the

latent space and gene prediction.41

However, interpretability comes at the expense of model ac-

curacy. LDVAEs have higher reconstruction error than standard

VAEs on single-cell data.41 Similarly, using PCA and vector

arithmetic to predict scSeq perturbations performed poorly

compared to scGen.35 As a result, one would like to try to inter-

pret the latent space of a standard VAE. We present an

approach to interpret the VAE’s latent space using sparse

regression.

We take an alternative approach to LDVAEs in which we

instead approximate the non-linear function of the decoder in a

standard VAE using sparse linear regression (Figure 4A). Sparse

regression methods like local interpretable model-agnostic ex-

planations (LIME) have been used to interpret complex

models.42 We specifically use sparse linear ridge regression,

given that each gene has a non-zero contribution to each latent

variable and that gene weights are distributed parsimoniously.

This gives us a linear transformation matrix, cWvae, that approxi-

mates the function of the decoder.

We use this weight matrix to interrogate the relationship be-

tween predicted gene expression and bdc. The span of bdc is sim-

ply a direction in scVIDR’s latent space. The importance of bdc to
each gene’s predicted expression is the sum of the latent dimen-

sional components of bdc multiplied by the gene’s corresponding

latent dimensional weight from cWvae. In matrix form,

gene scores = bdTc cWvae:

In practice, we found that normalizing the weight matrix by its L2

norm gives better insights when interpreting the model (experi-

mental procedures). Gene scores represent how significant

changes in latent space dimensions will impact the decoded

transcriptomic response when we interpolate on the span of bdc
on the latent space. Thus, genes with higher scores will be pre-

dicted to have bigger changes when we increase the dose of our

prediction by scVIDR.

We utilize a trained scVIDR model where portal hepatocytes

were left out of training and the bdc = portal hepatocytes was approxi-

mated (Figures 4B–4D). Gene scores for bdc = portal hepatocytes

were calculated as described above. The genes with the top

20 highest-magnitude genes scores included well-established

markers of TCDD-induced hepatotoxicity such as genes from

the cytochrome P450 family (Figure 4B).26 To see whether this

relationship extended to pathways involved in TCDD-induced

hepatotoxicity, we performed Enrichr analysis38 using the 2019

WikiPathways database43 on genes with the top 100 gene

scores (Figure 4C). Among the top enriched terms, we found



Figure 4. Interrogation of VAE using ridge regression in portal hepatocyte response prediction

(A) Schematic of calculation of latent dimension weights using ridge regression.

(B) Bar plot of top 20 genes with the highest scVIDR genes scores.

(C) Enrichr analysis of the top 100 genes with respect to the scVIDR gene scores. Bar plot of adjusted p values from statistically significant (adjusted p

value < 0.05) enriched pathways from the WikiPathways 2019 Mouse Database.

(D) PCA projection of single-cell expression data colored by log dose and fatty acid oxidation pathway score.

(E) Logistic fit of median pathway score for each dose value. MAE, mean absolute error.
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the hallmarks of hepatic response to TCDD in mice, such as

oxidation by cytochrome P450,44 fatty acid omega oxidation,45

and tryptophan metabolism.46 To derive the relationship be-

tween the actual doses and the gene pathways, the genes with

the top 100 gene scores that were in ‘‘fatty acid oxidation’’

from WikiPathways were used in calculating enrichment scores

for each cell using Scanpy.47 A sigmoid function was fit to the

median enrichment score in each dose (experimental proced-

ures). We observed a small mean absolute error in our model

and thus concluded that there was a sigmoidal dose-response
relationship for the gene set generated by Enrichr (Figures 4D

and 4E).

Pseudo-dose captures zonation in TCDD hepatocyte
response
In single-cell analysis of developmental trajectories, it is useful

to order cells with respect to a latent time course, termed

‘‘pseudo-time.’’ This is because cells develop at different rates

due to natural variations among themselves and their environ-

ment. This ordering is usually done using algorithms such as
Patterns 4, 100817, August 11, 2023 7



Figure 5. Pseudo-dose ordering of hepato-

cytes across TCDD dose-response

(A) Schematic diagram of assigning pseudo-dose

values to hepatocytes by orthogonally projecting

each cell in latent space to the span of the dc.

(B) PCA projection of hepatocytes colored by as-

signed pseudo-dose values. The arrow markers

represent thepseudo-doseaxis calculatedby the dc.

(C) Regression plot of pseudo-dose versus log

transformed real dose.

(D) Plot of pseudo-dose versus Fmo3 expression.

Associated logistic fit (solid blue line) and associ-

ated mean absolute error annotated as ‘‘MAE.’’

(E) PCA projection of hepatocytes colored by as-

signed hepatocyte zone in the liver lobule.

(F) Violin plot of the distribution of pseudo-dose

values in the central and portal zones of the liver

lobule. Central hepatocytes exhibit a higher

pseudo-dose on average than portal hepatocytes

Significance was determined by the Mann-Whitney

single-sided U test. ****p < 0.0001.
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Slingshot48 and Monocle.49 In pharmacology and toxicology, we

experience a similar problem, as cells of the same type have var-

iable sensitivities to the same toxicant. Hence, we propose to or-

der cells in terms of a latent dose. We call this ordering of cells a

‘‘pseudo-dose.’’

Working off the assumption that dc (experimental procedures)

is the axis of perturbation in latent space, we orthogonally project

the latent representation of each cell to the spanðdcÞ to obtain a

scalar coefficient for each cell along dc (Figures 5A and 5B). We

use this scalar coefficient as the pseudo-dose value for each cell.

To test whether these pseudo-dose values capture the latent

response across cell types, we distinguished between the portal

and central regions of the liver lobule. Zonation of the lobule not

only defines differences in hepatocyte gene expression along the

portal to the central axis but also defines their metabolic charac-

teristics.50 Thus, we expect that the two zones will exhibit

different sensitivities to TCDD. The pseudo-dose correlated
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well with the actual dose administered to

the hepatocytes with an R2 = 0:76 (Fig-

ure 5C). We also found that the pseudo-

dose displayed a sigmoidal relationship

(experimental procedures) between the

expression of DEGs such as Fmo3 (Fig-

ure 5D). Finally, we found the pseudo-

dose to be statistically higher on average

in the central hepatocytes versus the portal

hepatocytes (Figures 5E and 5F). This is

consistent with liver biology, given that

central hepatocytes respond more st-

rongly to treatment due to TCDD seques-

tration51 and higher AhR expression levels

in the centrilobular zone.26

DISCUSSION

Mapping the combinatorial space of sin-

gle-cell perturbation is important to toxi-

cology and pharmacology to facilitate the
generalization of drug or toxicant effects across several do-

mains. Computational modeling allows researchers to use cur-

rent large-scale databases to predict new perturbations to

scSeq data. We have demonstrated an improvement to such

modeling using VAEs with regression. These improvements

include highly correlated prediction of cell-type-specific effects

inmouse liver, PBMCs, and A549 cells. We alsomodeled a latent

response for mouse hepatocytes using pseudo-dose and inter-

rogated the VAE to predict dose-dependent perturbations in

portal hepatocyte pathways. We show that deep generative

modeling can be used to model complex perturbations in sin-

gle-cell gene expression data from several different datasets.

Model limitations
When evaluating the model in the mouse liver, scVIDR per-

formed better on the cell types most sensitive to TCDD, e.g.,

hepatocytes and endothelial cells (Figures S5A, S5C, and
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S5D). For cell types less sensitive to TCDD, the model often

underestimated the expression of DEGs (Figure S5E). This is

likely a result of a combination of factors including the similarity

of the treatment to the control data (Figure S5A), the smaller

control cell populations (Figure S5B), and the overall low

expression of HVGs (Figure S5E). Thus, we believe that the

VAE has less information to predict differential gene expression

for these cell types. Our model improves on this problem with

respect to scGen for most cell types in the liver (except for stel-

late cells and cholangiocytes at higher doses). Results from sci-

Plex imply that incorporating scSeq data from livers treated

with other compounds could improve these predictions, as

the model would have more information on different liver

responses.

In the sci-Plex dataset, prediction of certain drugs with epige-

netic mode of actions produced the poorest prediction scores

(Figure S6). This is because scSeq data provide no information

regarding epigeneticmodifications (e.g., chromatin accessibility,

histone marks, and DNA-binding proteins). Integration with

epigenetic data such as single-cell assay for transposase-

accessible chromatin with sequencing (scATAC-seq) could

help to predict such responses with higher accuracy.

While scVIDR and its pseudo-dose metric work on standard

dose-response scenarios, it remains untested for use with

more complex cellular trajectories such as those found in devel-

opment and circadian rhythms.52 Such trajectories include

branching and cycling, which involve non-linear dynamics, and

may require more sophisticated models to properly capture their

topology. Algorithms such as CellOT37 can represent complex

distributional shifts along latent dimensions; however, they are

still only developed for single-perturbation measurements and

extrapolate poorly to larger perturbations.

Future directions
When looking to the future of generative modeling in chemical-

induced perturbation of gene expression, a problem domain of

interest is time-dependent drug effects. Chemical exposures

are not only a function of concentration but also of time.53

Dose-time-response analysis is central to risk assessment in

clinical settings.54 Predicting the response not only as a function

of amount of drug but also as a function of the time the drug is

within a patient’s system and the time of day at which the drug

was administered would allow for more effective and safer

dosing regimens.54,55

Developmental state can also be impacted by chemical

perturbation. An example of this is the inhibition of B cell lym-

phopoiesis by TCDD.56 The latent space could be useful for

analyzing a simplified model of the dynamics of develop-

mental systems and how they change with chemical

perturbation. PCA for dimensionality reduction has been

used in this area for successful cellular fate prediction during

hematopoiesis.57

Conclusions
Taken together, our tool facilitates dose-response predictions

for a particular drug in a specific cell type using the response

of other cell types. Dose-response modeling is important in the

realm of drug development and toxicity testing, as the physiolog-

ical response of chemical perturbation is dose dependent. We
envision the use of scVIDR in optimizing dose-response studies

during drug discovery and development. scVIDR enables pre-

diction of chemical response in a wide array of cell types and

doses using only the control and the highest doses of previous

experiments. As more data become available on single-cell

chemical perturbations, generative modeling can yield insights

into the underlying manifold of gene expression and how

different classes of chemicals act on that manifold. Discovery

of the properties of the manifold will allow for generalizations

to be made about the physiology of tissues and understudied

chemical perturbations.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for this work is Sudin Bhattacharya (sbhattac@msu.edu).

Materials availability

The study did not generate new unique materials or reagents.

Data and code availability

All data used in the manuscript are publicly available and are referenced in the

manuscript. The code for the software and for reproducing the figures is avail-

able at https://github.com/BhattacharyaLab/scVIDR. Long-term archive of

code repository is made available via Zenodo at http://doi.org/10.5281/

zenodo.8025235.58

Single-cell expression datasets and preprocessing

Nault et al.23 performed all TCDD liver dose-response experiments, which

were deposited in the Gene Expression Omnibus (GEO)59 under the accession

number GSE184506. Kang et al.24 performed all IFN-b PBMC experiments,

which were deposited in GEO under the accession number GSE96583. Zheng

et al.38 performed all experiments relating to study B, which were deposited in

the Sequence Read Archive60 under accession number SRP073767. Hagai

et al.39 performed all LPS6 species experiments, which were deposited in

BioSciences under accession number E-MTAB-5919.61

The sci-Plex dataset25 and the TCDD dose-response dataset23 were

collected and processed uniformly from raw count expression matrices. The

cell expression vectors are normalized to the median total expression counts

for each cell. The cell counts are then log transformed with a pseudo-count of

1. Finally, we select the top 5,000 most HVGs on which to do our analysis.

The preprocessing was carried out using the scanpy.pp package using the

normalize_total, log1p, and highly_variable functions.47

The TCDD dose-response dataset comprised of snRNA-seq of C57BL6 of

flash frozen mouse livers. Mice in this dataset were administered, subchroni-

cally, a specified dose of TCDD via oral gavage every 4 days for 28 days. In our

analysis, all immune cell types were left out, as immune cells are known to

migrate from the lymph to the liver during TCDD administration.22 Thus, there

is a small size for the immune cell populations in the low-dose datasets versus

the higher doses. PBMC data from Kang et al.,24 study B data from Zheng

et al.,38 and species data from Hagai et al.39 were accessed as a processed

dataset from Lotfollahi et al.35

When training scGen and scVIDR, batch effects are accounted for with the

scvi.data package using the setup_anndata function. Differential abundances

of cells in different groups are accounted for by random samplingwith replace-

ment of the same number of cells for each dose and random sampling without

replacement of the same number of cells for each cell type.

Implementation and training of models

All code in this manuscript is implemented in the Python programming lan-

guage. The scVIDR model is built on the python package, scGen v.2.0.0,35

which in turn is built on the python package scVI v.0.13.0.20 Here, we modify

the model to accommodate predictions of the dose-response, linear regres-

sion on the latent space, pseudo-dose calculations, and approximations of

the gene importance in chemical perturbations

Hyperparameters for the model and training are the default values selected

by scGen v.2.0.0. Table 1 outlines the model hyperparameters used in
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Table 1. Hyperparameters for scVIDR’s and scGen’s variational

autoencoder model

Hyperparameter Value

Latent dimension 100

Number of layers 2

Layer width 800

Dropout rate 0.2

Kullback-Leibler weight 5e � 5

Table 2. Hyperparameters for scVIDR’s and scGen’s variational

autoencoder training

Hyperparameter Value

Training epochs 100

Learning rate 0.001

Learning rate decay 1e � 6

Optimizer Adam

Optimizer epsilon 0.01

Early stopping true

Early stopping patience 25
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deploying scVIDR and scGen. Table 2 outlines the training hyperparameters

when deploying scVIDR and scGen.

Our implementation of CellOT37 and scPreGAN36 uses default parameters

from both of their respective publications.

Calculation of the dc for single- and multiple-dose predictions

The d, as defined by Lotfollahi et al.,35 is the difference between the mean

latent representations of the treated (t = 1) and untreated (t = 0) conditions:

d = zt = 1 � zt = 0;

where zt is the mean latent representation for treatment t in the dataset.

We can calculate a cell-type-specific dc = A for some cell type, A, by taking

the difference between themean latent representations of the treated and con-

trol groups, or

dc = zc = A;t = 1 � zc = A;t = 0:

If we want to estimate a dc for some type of cell type B based on zc = B;p = 0

and where zc = B;p = 1 is unknown, we can approximate a function based on

zc = B;p = 0, or

bdc = B = fðzc = B;p = 0Þ;

where we approximate the above function using all other existing cell types in

the dataset as input to ordinary least-squares regression as implemented by

the LinearRegression function in the sklearn.linear_model package.62

Predictions of dose-response in the latent space in scVIDR

and scGen

To predict the latent representation for a response at some dose, d, we inter-

polate log linearly on bdc = B such that for each latent cell in our predic-

tion, zi;c;p = d :

bzi;c;p = d = zi;c;p = 0 + bdc � logðd+1Þ
log ðmaxðdÞ+1ÞÞ ;

where max ðdÞ is the highest dose in the dataset. To calculate the dose-

response values for scGen, we simply replace bdc with d calculated by scGen.

Evaluating model performance

Performance of the model on the prediction task is the same as that in Lotfol-

lahi et al.35 We quantified performance using the R2 value for mean gene

expression for each gene across all cells. The R2 was calculated using the lin-

regress function from the scipy.stats package.63 We compared the DEGs that

are selected using the rank_gene_groups from the Scanpy package and taking

the top 100. Models were compared on the same prediction in which we re-

sample 80% of the cells in the cell type we are predicting 100 times. Resam-

pling is done using the choice function from the numpy.random package.64

Statistical significance was determined by the one-sided Mann-Whitney U

test as it is implemented by the mannwhitneyu function from the scipy.stats

package. We considered p values less than 0.001 as statistically significant.

Distances were used to establish relationships between distributions and

vectors. Cosine distance was calculated using the cosine function in the sci-

py.spatial.distance package. The Sinkhorn distance was calculated using

the SampleLoss class in the geomloss package.65
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Inferring feature-level contributions to perturbation prediction

In PCA, we perform an orthogonal linear transformation on the data such that

our projected data preserve as much variance as possible. It is known that the

solution to this maximization problem is to project the data onto the eigenvec-

tors of the covariance matrix, or

Zm = XWm;

where X is the mean-centered scRNA-seq expressionmatrix,Wm is the eigen-

vectors corresponding to the m highest eigenvalues of the covariance matrix

of X, and Zm represents them-dimensional projection of the data onto its prin-

cipal components. We can see from this formula that Zm is calculated as a

linear combination of weights and gene expression, and thus there is a linear

relationship between the genes and the principal components. We can exploit

this fact and calculate a loading for each gene with each corresponding eigen-

vector by taking the product of the eigenvector and the square root of the cor-

responding eigenvalue, or

loadingij = Wij �
ffiffiffiffi
li

p
;

whereWij is the j
th value (corresponding to gene j) of the ith eigenvector and li is

the eigenvalue for the ith eigenvector. These loadings represent a normalized

score of the relationship between a gene’s expression and a particular prin-

cipal component. These loadings are also directly proportional to the actual

correlation between the gene’s expression and the principal component of

interest.

It can be shown that PCA and autoencoders with a single hidden layer (with a

size less than the observations) and a strictly linear map are nearly equiva-

lent.66We can project principal components back into expression space using

the following function:

bX = ZmW
T
m = XWmW

T
m:

Additionally, we note that PCA is a solution to the minimization of the recon-

struction error:

kX � bXk22:

We find similarly that the loss function that we try to optimize in the autoen-

coder we described above is

kX � XW1W
T
2 k

2

2;

where W1 is the weights of the hidden layer and W2 is the weights of the final

layer of the autoencoder. In effect, we can see that the autoencoder described

above can approximate the loadings of a PCA using W2.

The reconstruction error for a standard VAEwith the assumption that the ob-

servations are a multivariate Gaussian is

1

N
kX � DecðZÞk2;

where N is the number of samples, DecðZÞ is the function of the decoder

neural network, and Z is the transformation by the encoder of the observa-

tions onto the latent space. In an LDVAE, the DecðZÞ is replaced with a single
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layer with linear transfer operators such that the reconstruction error is the

following:

1

N
kX � ZWT

Deck
2
;

in which WDec is the linear weights of the decoder. These weights give us an

approximation of the contributions of individual genes to the dimensions of

the latent space. We can interpret WDec as a loadings matrix by which we

can interpret the latent dimensions of the LDVAE.

To approximate feature contributions to predicting the perturbation in

scVIDR, we train a ridge regression model. We then take the decoder portion

of our model and sample 100,000 points from the latent space and generate

their corresponding expression vectors. This will be our training dataset for a

ridge regression. We then train the ridge regression using the Ridge class

from the sklearn.linear_model package. We can describe the loss of our ridge

regression as

kDecðZÞ � ZWTk2 + lkWk2;

where Z are the sampled points from the latent space, ZWT is the approxima-

tion of the predicted gene expression vectors, andW is an m3 nmatrix where

m is the number of genes and n is the number of latent dimensions. We divide

W using the jjWjj2 to normalize for the effect of overexpressed genes. We then

calculate the gene scores by taking the dot product of normalizedW and dc, or

gene scores =
W

jjWjj2
$dc:

Weuse these gene scores to order genes for Enrichr67 pathway analysis with

the gseapy package.68 Scores for each pathway were calculated using the

score_genes function from the scanpy.tl package with the genes sets derived

from the Enrichr results.

Calculating the pseudo-dose values

We can order each cell, xi, with respect to the variable response of xi to the

chemical by taking the latent representation, zi, and orthogonally projecting

it onto L = spanðdcÞ:

projL =
dc$zi
dc$dc

dc = pdc:

The scalar multiple of d, p, is the pseudo-dose value for xi.

Regression of sigmoid function for evaluating dose-response

relationships

To establish whether a standard dose-response relationship existed between

the top pathways inferred by Enrichr and the pseudo-dose and gene expres-

sion, a logistic function of the form

fðdÞ =
L

1+e� kðd�d0Þ +b;

was used, where d is the dose or pseudo-dose. The parameters of the function

above were fit to the output variables (median enrichment score and Fmo3

normalized expression) using the Levenberg-Marquardt algorithm implemen-

tation in the curve_fit function in the scipy.optimize package. The regression

was evaluated using the mean absolute error metric implementation in the

mean_absolute_error function in the sklearn.metrics package.
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