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ABSTRACT
Objective: To train and test a model predicting chronic kidney disease (CKD) using the Generalized Additive2 Model (GA2M), and compare it with
other models being obtained with traditional or machine learning approaches.

Materials: We adopted the Health Search Database (HSD) which is a representative longitudinal database containing electronic healthcare
records of approximately 2 million adults.

Methods: We selected all patients aged 15 years or older being active in HSD between January 1, 2018 and December 31, 2020 with no prior
diagnosis of CKD. The following models were trained and tested using 20 candidate determinants for incident CKD: logistic regression, Random
Forest, Gradient Boosting Machines (GBMs), GAM, and GA2M. Their prediction performances were compared by calculating Area Under Curve
(AUC) and Average Precision (AP).

Results: Comparing the predictive performances of the 7 models, the AUC and AP for GBM and GA2M showed the highest values which were
equal to 88.9%, 88.8% and 21.8%, 21.1%, respectively. These 2 models outperformed the others including logistic regression. In contrast to
GBMs, GA2M kept the interpretability of variable combinations, including interactions and nonlinearities assessment.

Discussion: Although GA2M is slightly less performant than light GBM, it is not “black-box” algorithm, so being simply interpretable using shape
and heatmap functions. This evidence supports the fact machine learning techniques should be adopted in case of complex algorithms such as
those predicting the risk of CKD.

Conclusion: The GA2M was reliably performant in predicting CKD in primary care. A related decision support system might be therefore
implemented.
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BACKGROUND

Chronic kidney disease (CKD) is a global public health issue
leading to several adverse events such as kidney failure, cere-
bro/cardiovascular disease, and death. In the last decades, the
burden of CKD showed an increase moving from 3% to 18%
in the general population globally. In 2030, CKD is expected
to become the fifth leading cause of death worldwide.1,2 In
Italy, the prevalence of CKD has been estimated of about 7%,
with 8.1% and 7.8% in men and women, respectively.1–3

Nonetheless, CKD is still largely underrecognized across
Western countries, especially in the primary care setting. In
this respect, there is a well-documented “awareness gap”
among GPs to recognize CKD in several countries including
Italy.3 Along this line, it was recently reported that 77% of
patients with proven Stage G3 CKD were undiagnosed by
their GPs in Italy.4

The fact that CKD is underdiagnosed depends on several
reasons: first, CKD is asymptomatic in the first stage as well
as coexistent with other major conditions, mainly cardiovas-
cular diseases, which capture greater attention. As such, a
consensus emerged on “Early Identification and Intervention
in CKD” in which the need for implementation of effective
screening coupled with risk stratification, and appropriate
treatment, was underlined for primary or community care
settings.5,6

To tackle this issue a lot of country-specific models predict-
ing the risk of CKD have been provided.7 They comprise algo-
rithms gathered through several techniques, such as
traditional score development and validation7–9 as well as
supervised machine learning approaches.10–12 For the latter,
Random Forest (RF), J48 algorithm, gradient boost, support
vector machine, and neural network and others have been
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proposed for CKD prediction, but they were developed using
small and/or local datasets, and suffer from poor quality
reporting and high risk of bias.13 Furthermore, some authors
demonstrated that, with moderate sample size, limited num-
bers of CKD events and predictors, machine learning do not
improve the predictive accuracy of traditional models, such as
logistic regression.14,15

CKD is a complex clinical entity featured by multifaceted
aspects. That being said, a model predicting the risk of CKD
is not easily developable for several reasons. First, some deter-
minants do not necessarily show a linear relationship with the
occurrence of CKD (eg, serum creatinine, age); second, several
interaction terms (eg, age�some co-morbidities) need to be
systematically evaluated; third, every determinant-outcome
association should be interpretable and not “black-boxed” as
those typically found using machine learning methods; fourth,
the contribute of each determinant should be simply quanti-
fied to be translated into a patient-specific decision support
system (DSS).

In this respect, the Generalized Additive2 Model (GA2M), a
further extension of GAM being implemented in the Explain-
able Boosting Machines (EBM),16–18 could represent an
adequate response for CKD prediction, given their feasibility
in learning several complex associations among several deter-
minants through combinations of interpretable functions. As
such, GA2M might systematically uncover interactions and
nonlinearities among covariates to improve the predictive per-
formance. Thus, we trained and tested a prediction model for
CKD using GA2M and compared it with other algorithms
stemming from traditional and machine learning approaches.

MATERIALS AND METHODS
Data source

The Health Search Database (HSD) is a representative longi-
tudinal database containing electronic medical records of
approximately 2 million adults. Demographic and clinical
data are available in the HSD, and they are linked through a
unique encrypted code which also tracks drug prescriptions,
lifestyle-related features, clinical investigations, hospitaliza-
tions, and deaths. Diagnoses and prescribed medications are
coded according to the International Classification of Dis-
eases, 9th Revision, Clinical Modification (ICD-9-CM) and
Anatomical Therapeutic Chemical (ATC) systems, respec-
tively. The other variables are registered according to regional
coding systems. Currently, a total of 1220 GPs serving
2 331 524 patients met the standard quality criteria and were
included in this study. The HSD has been adopted for various
research topics, including prediction models.19–22

Study design

We adopted a cohort study design by selecting all patients
aged 15 years or older being active in HSD between January
1, 2018 and December 31, 2020. We defined patients as eligi-
ble whenever they were aged 95 years or younger, those with
no diagnosis of CKD (ie, using the same operational defini-
tion adopted for the outcome) before the entry date, and at
least 1 year of look-back period. The date of the first contact
(ie, any reason) with GP occurred in the eligibility period was
the study entry date. From this date, patients were followed
up until the occurrence of these events whichever came first:
diagnosis of CKD (ie, event date), death, end of registration

data registration with their GP, end of the study period (ie,
December 31, 2020). Those with less than 6-month follow-up
were excluded. Then, the cohort was randomly divided into 2
samples in a 4:1 ratio; these subcohorts are henceforth
referred to as “training” and “testing” dataset, respectively.

Outcome definition

Every diagnosis of CKD being captured during follow-up was
operationally defined via ICD9CM/free-text, and/or the pres-
ence of Glomerular Filtration Rate (GFR) of less than 60 mL/
min per 1.73 m2 as reported in Supplementary Appendix S1.
The free-text search was conducted by means of keywords
searching to increase the sensitivity of the outcome definition,
in particular for most severe cases of CKD which could be
poorly coded by GPs given that these patients are mainly
treated in hospital. Each record identified via free-text was
manually inspected and validated by an expert clinician.

This outcome definition was successfully adopted in several
previous investigations.23–25

Candidate determinants

All candidate determinants for CKD were selected according
to our previous work,23,25 current medical literature7,10,26

and clinical rationale. They were operationally defined in the
period preceding or on the index date. Namely, besides age
and sex, we included presence of hypertension, diabetes, car-
dio/cerebrovascular diseases, family history for CKD, glomer-
ulonephritis, presence of albuminuria/proteinuria, urinary
tract infections, calculosis, single kidney, autoimmune disor-
ders, other urinary disorders, use of medications with known
renal adverse effects (ie, NSAIDs and other antirheumatic
medications), smoking, and alcohol abuse as dichotomous
covariates. Levels of creatinine (mg/dL), body mass index
(BMI) values (kg/m2), systolic, and diastolic blood pressure
(mmHg) were included as continuous covariates as well.

Data analysis

All the analyses were carried out according to Transparent
Reporting of Multivariable Prediction Model for Individual
Prognosis and Diagnosis (TRIPOD).27,28

Descriptive statistics were reported as means with standard
deviations (SDs) and proportions (%) for continuous and cat-
egorical variables, respectively. Given the reduced numbers of
cases led to imbalanced datasets, the machine learning algo-
rithms might be biased in favor of the main class. To address
this issue, cases of CKD were weighted29 according to non-
cases (¼0)/cases (¼1) ratio in the training dataset. Namely, 1
misclassified case was weighted as equal to 31.5 misclassified
noncases.

The following models were therefore trained and tested in
the respective datasets: logistic regression, Random Forest
(RF), Gradient Boosting Machines (GBMs), GAM, and
GA2M. The latter have been implemented in the EBMs which
model each candidate determinant and their related interac-
tions according to a series of iterative decision trees.17 The
parameters used to train each model are detailed in Supple-
mentary Appendix S2.

Missing values being registered for BMI, creatinine, and
blood pressure were imputed according to Multiple Imputa-
tion by Chained Equation (MICE) methodology,30 which
accounts for the Missing At Random (MAR) assumption on
missing values.31 Along this line, given the expected unbal-
anced distributions of the covariates between CKD cases and
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noncases, we adopted an analytical strategy based on K-fold
Stratified Cross-Validation32 with 5 replications. The results
were therefore summarized according to Rubin’s rule.33 By
doing so, we were able to compare the different models.
Indeed, only GBM, GAM, and GA2M supported the training
and testing procedures using the incomplete dataset, in which
the covariates were codified including categories of missing
values.

The predictive performances of the models were evaluated
by calculating the respective Area Under the Curve (AUC34,35

with 95% CI), and Average Precision (AP).36 After examining
the Precision-Recall curve for the GA2M, a Recall point was
selected as threshold to identify the highest number of CKD
cases. This selection was based on the calculation of the slope
of Receiving Operating Characteristics (ROC) curve which
accounts for the observed prevalence of CKD in the study
population and Harm/Benefit (H/B) assessment, namely the
maximum number of false positives acceptable by the decision
maker to avoid a false negative (ie, 1/Odds(prevalence)�H/
B).37,38 Along this line, a consistent threshold was selected for
the other models in order to calculate Accuracy, Specificity,
Precision, F1 Score, and Youden’s J index39 for all models.

For what concerns the interpretation of nonlinearities and
interaction terms, it was evaluated by inspecting the related
shape and heatmap functions, respectively. The contribute of
each term forming the final GA2M was calculated as SD from
the overall prediction of CKD gathered in the training dataset
and proportionally reported to all terms.

The predicted risk of CKD being cumulated during follow-
up was gathered using the sigmoid function40 so accounting
for the application of case/noncase weighting to train the
models. In essence, the sigmoid function was trained to recali-
brate the GA2M on the ideal prediction between observed
and predicted risk of CKD.

We conducted 2 sensitivity analyses to test the robustness
of the results. First, GBM, GAM, and GA2M models, which
supported the analysis including missing data, were retrained
and tested using the incomplete (ie, with missing categories)
datasets as well. Second, the GA2M-based algorithm was
evaluated according to other risk thresholds: Accuracy, Spe-
cificity, Precision, F1 Score, and Youden’s J index were recal-
culated by varying the H\B ratio.

RESULTS

As a whole, within a cohort of 997 864 patients who fulfilled
the eligibility criteria (53% females, mean age: 53 [SD: 19]
years), 30 705 (1.2 cases per 100 person-years; 3.1% cumu-
lated cases) patients were newly diagnosed with CKD during
follow-up. In Tables 1 and 2 are reported the patients’ fea-
tures among CKD cases and noncases.

As expected, CKD cases reported a 2- to 5-fold higher bur-
den of co-morbidities than noncases. For instance, the pres-
ence of hypertension, diabetes, and cardiovascular diseases
were sensibly higher in cases than noncases (69% vs 29%,
28% vs 8%, 10.1% vs 2.0%, respectively). Other covariates,
although with a slighter difference, still reported higher pro-
portions in cases than noncases. Only smoking showed a little
higher proportional value in noncases than cases (17.2% vs
15.1%).

When we compared the predictive performances of the 7
models, the AUC for the light GBM showed the highest value
which was equal to 88.9% and AP 21.8%, followed by
GA2M, with 88.8% and 21.1%, for AUC and AP, respec-
tively. GAM and Logistic regression reported similar values
for AUC and AP (88.0, 19.6% and 87.8, 18.9%, respec-
tively). RF reported the lowest value to AUC (85.1%) and AP
(17.0%) (Table 3).

After inspecting the Precision-Recall curve, we opted to
compare the prediction models according to a sensitivity
threshold equal to 80%, which was able to identify most of
the patients (ie, true positives) with a “high” risk of incurring
in CKD. The selection of this sensitivity threshold was based
on 3 aspects: first, the fact that this sensitivity value corre-
sponds to a slope of the ROC curve with H/B of 15%; the
choice of this value was based on the fact that GPs can pre-
scribe a further evaluation of creatinine value to ascertain the
suspect of CKD. This is a noninvasive and/or unexpensive
examination; second, the size of patients, with no prior diag-
nosis of CKD, who would constitute the GP’s potential work-
load in evaluating them whether alerted by DSS; third, the
proximity of this sensitivity value to the highest Youden’s J
(Supplementary Figure S1). For the investigated models, accu-
racy and specificity were higher than 82%, and precision, F1
score and Youden’s J exceeded 12%, 21%, and 62%, respec-
tively (Table 4). When we recalculated the sensitivity

Table 1. Characteristics (categorical variable, n (%)) of patients with or without CKD

Determinant Total n (%) Cases n (%) Noncases n (%)

Sex (male)* 467 853 (46.9%) 13 064 (42.5%) 454 789 (47.0%)
Hypertension* 297 007 (29.8%) 21 023 (68.5%) 275 984 (28.5%)
Diabetes mellitus* 83 129 (8.3%) 8 564 (27.9%) 74 565 (7.7%)
Cardiovascular disease* 22 730 (2.3%) 3 106 (10.1%) 19 624 (2.0%)
Family history of CKD 103 (0.0%) 3 (0.0%) 100 (0.0%)
Glomerulonephritis 461 (0.0%) 17 (0.1%) 444 (0.0%)
Autoimmune disorders 261 (0.0%) 13 (0.0%) 248 (0.0%)
Urinary tract infections* 71 307 (7.1%) 3 733 (12.2%) 67 574 (7.0%)
Calculosis* 44 193 (4.4%) 2 322 (7.6%) 41 871 (4.3%)
Other urinary disorders* 3 541 (0.4%) 243 (0.8%) 3 298 (0.3%)
Nephrotoxic medications* 682 402 (68.4%) 25 369 (82.6%) 657 033 (67.9%)
Smoking* 171 068 (17.1%) 4 650 (15.1%) 166 418 (17.2%)
Alcohol abuse* 14 693 (1.5%) 728 (2.4%) 13 965 (1.4%)
Single kidney* 131 (0.0%) 12 (0.0%) 119 (0.0%)
Proteinuria* 6 624 (0.7%) 624 (2.0%) 6 000 (0.6%)

CKD: chronic kidney disease.
* P< .001 describing cases versus noncases (chi-square test).
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threshold according to the H/B ratio equals to 10% or 5%,
Accuracy, Specificity, Precision, F1 Score, and Youden’s J
index were lower than those obtained for the primary analysis
(Supplementary Table S1).

When the analysis with GBM, GAM, and GA2M were con-
ducted using incomplete datasets, the results were largely con-
sistent with those after MICE (Supplementary Table S2). For
this reason, the subsequent findings have been gathered using
GA2M in incomplete dataset, in which categories of missing
values were part of training and testing datasets.

Through the iterative evaluation of 20 candidate determi-
nants and their related combinations, GA2M selected 30 main
terms explaining 75% of the model importance in predicting
CKD. The other 180 terms were each able to explain the
0.6% of importance or less. In specific, age, creatinine value,
interaction term between age and creatinine had a relative
importance of 19.21%, 7.21%, and 3.73%, respectively. The
other determinants reported an importance lower than 3%.
Most of the interaction terms included age (Figure 1).

In contrast with GBM, GA2M allowed a straightforward
interpretation for both individual features and interaction
terms. In this respect, Figure 2 depicts the example of data
interpretability which were assessed through the shape func-
tions by plotting age and creatinine values towards the occur-
rence of CKD. By doing so, we can visualize the contribute of
each determinant to the overall risk of CKD. Along this line,
heatmaps allow to visualize the contribute of interaction
terms as shown in the example for age and creatinine. Basi-
cally, for a patient aged 20 years, the risk of presenting CKD
is clearly modified by creatinine value a little higher than
1 mg/dL; on the other hand, for those older than 50ies, age is
an increasing factor per se (Figure 3; see Supplementary
Appendix S3 for other interaction terms).

As a whole, the predicted risk of CKD being cumulated
during follow-up was equal to 3.2%. With 80% sensitivity
(assuming an H/B equal to 0.15), the GA2M threshold distin-
guishing high versus low risk of CKD was equal to 4.43%
according to sigmoid function.

By applying the sigmoid function to the sum of individual
contributes for all terms composing the GA2M, we were able
to visualize the prediction of CKD for 2 hypothetical patients
with high and low risk according to an algorithm threshold of
4.43% (80% sensitivity). Namely, the hypothetical patient
with a GA2M-based high (17.2%) risk of CKD, age of
75 years, creatinine equal to 1 mg/dL, presence of diabetes
and hypertension are the most contributing factors to the
quantification of risk (Figure 4); while the hypothetical
patient with a GA2M-based low (0.7%) risk, creatinine equal
to 1.1 mg/dL, and the interaction between creatinine and age
were the most contributing factors for the quantification of
risk (Figure 5).

DISCUSSION

To our knowledge, this is the first study which provides evi-
dence on prediction performance of CKD occurrence when its
determinants were modeled through GA2M. This model was
the most performant over 4 machine learning algorithms and
logistic regression. Among the 30 terms composing the mod-
els which provided the highest contribute to explain the risk
of CKD, age, creatinine, and their respective interactions had
the most relevant importance. Even if GA2M are slightly less
performant than light GBM, they are not “black-box” algo-
rithms, so being simply interpretable and applicable using
shape and heatmaps functions.

In this context, prior models have been developed for CKD
prediction but they were focused on small, local, and selected
populations, including some Italian cohort (ie, 1249 patients
with diabetes),7 and/or suffered from certain limitations.
Indeed, the absence of prediction tools in the large primary
care settings in Italy cannot allow the adoption of foreign
algorithms which may not fit the Italian context well. In this
respect, a systematic review of studies by Collins and cow-
orkers13 on 14 risk prediction models for CKD and ESKD has
highlighted methodological issues and a general poor level of
reporting, along with inappropriate handling of missing data.
In specific, 3 studies adopted prevalent instead of incident
cases of CKD as response variables; most of them were con-
ducted in specific settings (ie, renal or cardiovascular-based
cohorts) in decades preceding 2010, so selecting patients who
likely differ from those generally and/or more recently cared
by GPs; only 2 studies were carried out in community-based

Table 2. Characteristics (continuous variable, n (%)) of patients with or without CKD

Determinant Total Cases Noncases

Mean SD Missing value Mean SD Missing value Mean SD Missing value

Age (years) 52.6 18.9 0.0% 75.0 11.2 0.0% 51.9 18.7 0.0%
Creatinine (mg/dL) 0.846 0.197 38.7% 1.03 0.255 14.4% 0.838 0.189 39.5%
BMI (kg/m2) 26.0 5.19 46.6% 27.9 5.09 29.6% 25.9 5.18 47.2%
Diastolic blood pressure (mmHg) 78.2 9.63 35.9% 78.0 9.31 13.8% 78.3 9.64 36.6%
Systolic blood pressure (mmHg) 128 17.1 35.9% 135 16.8 13.8% 128 17.0 36.6%

BMI: body mass index; CKD: chronic kidney disease; SD: standard deviation.
P< .001 for all variables describing cases versus noncases (t test).

Table 3. Prediction performances across models to assess the risk of

CKD

Model AUC (95% CI) Average precision (95% CI)

Light GBM 88.9% (88.9, 88.9) 21.8% (21.8, 21.8)
GA2M (EBM) 88.8% (88.8, 88.8) 21.1% (21.1, 21.2)
XGBoost GBM 88.6% (88.5, 88.6) 21.5% (21.5, 21.6)
CatBoost GBM 88.2% (88.2, 88.2) 21.6% (21.5, 21.6)
GAM 88.0% (87.9, 88.0) 19.6% (19.6, 19.7)
Logistic regression 87.8% (87.7, 87.8) 18.9% (18.8, 18.9)
Random forest 85.1% (85.1, 85.2) 17.0% (17.0, 17.0)

AUC: area under the curve; CKD: chronic kidney disease; CI: confidence
interval; EBM: explainable boosting machines; GAM: generalized additive
model; GBM: gradient boosting machines.
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Table 4. Prediction performances across models to assess the risk of CKD with a sensitivity threshold equal to 80%

Model Accuracy (95% CI) Specificity (95% CI) Precision (95% CI) F1 score (95% CI) Youden’s J (95% CI)

Light GBM 82.5% (82.5, 82.5) 82.6% (82.6, 82.6) 12.7% (12.7, 12.8) 22.0% (22.0, 22.0) 62.6% (62.6, 62.6)
GA2M (EBM) 82.3% (82.3, 82.4) 82.4% (82.4, 82.4) 12.6% (12.6, 12.6) 21.8% (21.8, 21.8) 62.4% (62.4, 62.4)
XGBoost GBM 81.9% (81.8, 81.9) 81.9% (81.9, 82.0) 12.3% (12.3, 12.4) 21.4% (21.3, 21.4) 61.9% (61.9, 62.0)
CatBoost GBM 81.5% (81.4, 81.5) 81.5% (81.5, 81.6) 12.1% (12.1, 12.1) 21.0% (21.0, 21.0) 61.5% (61.5, 61.6)
GAM 80.6% (80.7, 80.7) 80.7% (80.7, 80.7) 11.6% (11.6, 11.6) 20.3% (20.3, 20.3) 60.7% (60.7, 60.7)
Logistic regression 81.0% (80.8, 81.0) 81.0% (80.9, 81.0) 11.8% (11.7, 11.8) 20.6% (20.4, 20.6) 61.0% (60.9, 61.0)
Random forest 77.4% (77.3,77.4) 77.2% (77.2, 77.3) 10.2% (10.1, 10.2) 18.0% (18.0, 18.1) 58.2% (58.1, 58.4)

AUC: area under the curve; CKD: chronic kidney disease; CI: confidence interval; EBM: explainable boosting machines; GAM: generalized additive model;
GBM: gradient boosting machines.

Figure 1. Relative importance of the first 30 features forming the GA2M predicting CKD. CKD: chronic kidney disease; GA2M: Generalized Additive2

Model.

Figure 2. Shape function for age (A) and creatinine (B) against the occurrence of CKD. CKD: chronic kidney disease.
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settings similar to ours. Namely, Chien and coworkers9

adopted a small Chinese cohort including 5168 patients, 190
cases of CKD, and 9 covariates. This model reported a fair/
modest discrimination value of 67%. Hippsley-Cox and cow-
orkers8 developed and validated an algorithm for CKD pre-
diction using 2 UK primary care databases (ie, QRESEARCH
and THIN). Such a model was able to well predict moderate-
severe CKD, with an explained variance of 56.4% and
57.5%, in women and men, respectively. The AUC statistic
was 0.875 for women and 0.876 for men. In the light the sim-
ilarities between NHS for Italy and the United Kingdom, this
model could be reliably translated in the Italian context after
recalibration. Nevertheless, the traditional approach using
Cox regressions was not able to iteratively assess all potential

interaction terms and nonlinearities which peculiarly charac-
terized the prediction of CKD. As stated in the background,
prior clinical knowledge of CKD is not likely enough to assess
the profile of patients at risk of developing this multifaceted
condition.

Some machine learning algorithms have been proposed for
the early identification of CKD as well. In general, algorithms
such as J48 and GBM,10,26 showed a better accuracy than RF
as confirmed in our analysis. Nonetheless, the traditional
logistic regression demonstrated a better accuracy for CKD
prediction,14,15 reporting an AUC equal to 91%, when com-
pared with RF, SVM, NN, K-NN, and GBM.15 In addition,
the authors used GAM to assess the role of nonlinearities (ie,
using spline regression) and interactions (ie, using decision
trees) in predicting CKD, but did not find a relevant contribu-
tion of these terms when entered the models. These findings
were likely due to the reduced sample size, number events
and/or candidate determinants. In any case, the authors tested
different chronic diseases as outcomes, and only for CKD
there was a growing improvement reaching AUC around 0.91
with interaction depth equal to 2 when GBM were used. This
result, in line with ours, was substantially related to interac-
tion between age and GFR value, which was not significant in
logistic regression.15 It confirms that decision-tree-based algo-
rithms might be more sensitive to interactions than the tradi-
tional regression model. This evidence supports the fact that
machine learning techniques should be adopted in case of
highly complex algorithms with several determinants such as
those that predict the risk of CKD, especially when large and
heterogeneous data sources are used.

None of the previous work adopted GA2M to develop an
algorithm predicting CKD. Given the relevant size of our
cohort (ie, the eligible individuals were equal to 997 864 with
30 705 cases of CKD), we were able to inspect several

Figure 3. Heatmap functions for age�creatinine interaction and

occurrence of CKD. CKD: chronic kidney disease.

Figure 4. GA2M predicting CKD for a hypothetical patient with high risk (higher than 4.43%). CKD: chronic kidney disease; GA2M: Generalized Additive2

Model.
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interaction terms and nonlinearities for model specification so
demonstrating the greater predictive ability of GA2M versus
the other models, including logistic regression. From epide-
miological and analytical perspectives, GA2M has the advant-
age to be interpretable by means of shape and heatmap
functions. This aspect is particularly useful given the multifac-
eted aspects of CKD, for which the iterative investigation of
predicting interactions is complex, and its implementation
into a DSS would result poorly applicable. We found that
GA2M allowed us to assess the relative importance of each
feature and interaction terms. As expected, age had a relevant
contribution along with creatinine value.

The importance of each determinant can be quantified for
an individual patient according to his/her specific risk factors,
so simplifying its implementation in GP’s software of DSS for
early recognition of CKD. Given the relevance of CKD preva-
lence (ie, up to 18%)1 and underdiagnosis (ie, up to 77%),3,4

the 3% or greater increase of AUC obtained with GA2M and
other models versus RF, might sensibly improve the model
performance in terms of number of new CKD cases being
potentially captured.

Through the GA2M, the values of interpolations stemming
from shape and heatmap functions reveal the importance of
each determinant in predicting CKD; according to the GA2M,
the sum of these values provides the overall patient-specific
risk of CKD. In Italy, a GP with 1500 patients (ie, the highest
allowed number for most of the local health authorities),
would have in charge 5.3% (n¼ 80) CKD patients expect-
edly. As such, there are 1420 patients at “high” or “low” risk

of developing CKD, and they could be categorized by their
GP as shown in Supplementary Figure S2. According to a
population-based approach, GPs could therefore generate a
list of “high-risk” patients with which to plan screening strat-
egies. This approach is clearly complemented by patient-
specific DSS embedding a GA2M-based algorithm. Yearly, the
algorithm should provide a reminder to investigate kidney
function (ie, evaluate or re-evaluate creatinine/GFR) in 258
(out of 1420: 18.2%) patients once they have one risk factor
for CKD at least. On average, for an Italian GP, there are
10.3 encounters per patient/year; most them were due to older
adults, who can reach 20 or more encounters per patient/year
for those aged 85þ years.41 Given the relevance of underrec-
ognition of CKD in primary care, this workload should be
therefore acceptable for GPs and cost-effective for the NHS.

The present study suffers from limitations as well. First, in
GAM and GA2M patients’ features cannot be modeled
according to a time-related fashion. Nevertheless, the presence
of duration (years) of follow-up in the model is not easily
interpretable, and the shape functions were intrinsically able
to identify the best fit for each determinant-CKD association.
In this respect, the fact that we obtained similar values for
observed and predicted risk (3.1% vs 3.2%) of CKD being
cumulated during follow-up was reassuring. Second, the rele-
vant presence of missing values observed for certain covari-
ates might have partly biased the results. However, the results
gathered with incomplete datasets for GBM, GAM, and
GA2M were largely consistent with those obtained after
MICE. Third, there were no covariates defining

Figure 5. GA2M predicting CKD for a hypothetical patient with low risk (equal or lower than 4.43%). CKD: chronic kidney disease; GA2M: Generalized

Additive2 Model.
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socioeconomic determinants in HSD. Nevertheless, GA2M
allowed the analysis of a relevant the number of variable com-
binations (>¼200) which should likely contain the risk varia-
tion due to unmeasured variables. Fourth, we did not conduct
an external validation for the final model. Nevertheless, HSD
is a large national primary care database which should over-
come the limitations seen in small datasets in case of absent
external validity. Along this line, the issue of overfitting
should be minimized as well.42

In conclusion, GA2M was reliable to accurately predict
CKD in primary care. Such a model should therefore consti-
tute the base for further analytic approaches to investigate the
risk of renal diseases and related conditions as well as to
implement new prediction algorithms for GPs’ informatic
tool.
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