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ABSTRACT
Objective: Heatlhcare institutions are establishing frameworks to govern and promote the implementation of accurate, actionable, and reliable
machine learning models that integrate with clinical workflow. Such governance frameworks require an accompanying technical framework to
deploy models in a resource efficient, safe and high-quality manner. Here we present DEPLOYR, a technical framework for enabling real-time
deployment and monitoring of researcher-created models into a widely used electronic medical record system.

Materials and Methods: We discuss core functionality and design decisions, including mechanisms to trigger inference based on actions within
electronic medical record software, modules that collect real-time data to make inferences, mechanisms that close-the-loop by displaying infer-
ences back to end-users within their workflow, monitoring modules that track performance of deployed models over time, silent deployment
capabilities, and mechanisms to prospectively evaluate a deployed model’s impact.

Results: We demonstrate the use of DEPLOYR by silently deploying and prospectively evaluating 12 machine learning models trained using
electronic medical record data that predict laboratory diagnostic results, triggered by clinician button-clicks in Stanford Health Care’s electronic
medical record.

Discussion: Our study highlights the need and feasibility for such silent deployment, because prospectively measured performance varies from
retrospective estimates. When possible, we recommend using prospectively estimated performance measures during silent trials to make final
go decisions for model deployment.

Conclusion: Machine learning applications in healthcare are extensively researched, but successful translations to the bedside are rare. By
describing DEPLOYR, we aim to inform machine learning deployment best practices and help bridge the model implementation gap.
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BACKGROUND AND SIGNIFICANCE

Access to real-world data streams like electronic medical
records (EMRs) accelerates the promise of machine learning
(ML) in healthcare. Over 250 000 studies exist related to risk-
stratification models alone, many published in the past 10
years.1,2 Despite the hype, a sizeable gap separates ML mod-
els in research articles from those impacting clinical care.3,4

This implementation gap leaves most published clinical ML
applications lost in the “model graveyard”.5

The gap between research and implementation demon-
strates that strong predictive performance alone is not suffi-
cient for feasible and worthwhile translation of clinical ML
models to the bedside. Beyond demonstrating predictive accu-
racy, model champions must articulate actions that can be
taken as a result of inferences (model outputs).6 Actions must

incur utility, some measurably positive effect on a clinical out-
come of interest benefiting the deployment population.7–9

Positive impact on average, however, does not imply positive
impact for all. ML applications to healthcare must satisfy fair-
ness principles, ensuring performance and accrued utility are
not unfavorable across certain patient populations, particu-
larly those traditionally under-served.10–12 Institutions lead-
ing the charge in the translation of clinical ML applications
are establishing governance frameworks ensuring models are
safe, reliable and useful throughout their deployment life-
cycles.13–17

Even if the above are addressed, ML applications must
overcome technical feasibility hurdles related to their deploy-
ment. Traditionally, if such technical implementations were
possible at all within the context of existing vendor and legacy
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infrastructure, massive overhead was required to establish
and maintain computational frameworks enabling ML
deployment and integration into the EMR.18–20 Approaches
of early-adopting institutions can be broken down into 2
broad categories.21 Some institutions rely on platforms native
to their EMR vendor (eg, Epic Nebula) to deploy ML applica-
tions.22,23 These frameworks reduce maintenance overhead
and facilitate model sharing across hospitals that use the same
EMR.24,25 But deployment of researcher-developed models
trained using an institution’s clinical data warehouse remains
difficult, leading other institutions to develop custom frame-
works. These solutions often tap into daily refreshes of EMR
data (eg, from Epic Clarity) at inference time that do not sup-
port real-time use-cases.21,26 Successful solutions largely
spawn from collaborations of data scientists who build and
validate models and hospital information technology (IT) per-
sonnel who know the ins-and-outs of their institution’s EMR.
These combinations of expertise are valuable but rare. Cus-
tom implementations allow flexibility out-of-the-box EMR
vendor solutions do not, but design details largely remain
internal knowledge, leaving other institutions to either re-
invent the wheel or be left behind. This has led to a sparse and
eclectic set of solutions with limited academic discourse of
best practices.

OBJECTIVE

Through a collaboration of data scientists at the Stanford
School of Medicine, and IT persona at both Stanford Health
Care and Stanford Children’s Health, our objective was to
develop and describe DEPLOYR—a technical framework for
deploying researcher created clinical ML applications directly
into the EMR. The DEPLOYR framework does not rely on
EMR vendor solutions like Epic Nebula, and supports real-
time ML applications by tapping into an up-to-date data
stream. In this article, we detail the mechanisms DEPLOYR
enables and design decisions made during its formation to
provide a blueprint for development and best practices for
execution. Functions reviewed here include real-time closed-
loop model trigger, data retrieval, inference, user-interface
integration, and continuous monitoring. DEPLOYR enables
enhanced prospective evaluations of ML models that extend
beyond traditional retrospective evaluations. We demonstrate
this capability and importance by silently deploying 12 previ-
ously retrospectively validated ML models triggered by clini-
cian button-clicks in the EMR.

MATERIALS AND METHODS

Core functions of the DEPLOYR framework include data
sourcing, inference triggers, and EMR integration. We detail
our implementation of a monitoring module that tracks per-
formance of deployed models over time, mechanisms that
enable silent trial deployments, and prospective evaluations of
model impact. DEPLOYR enables these mechanisms by lever-
aging integration capabilities native to Stanford Health Care’s
EMR vendor (Epic Systems) in conjunction with 3 software
applications: DEPLOYR-dev (a python package used for
model development and validation), DEPLOYR-serve (a
python Azure Function application to expose trained models
as APIs), and DEPLOYR-dash (a dashboard implemented
using the streamlit python package).27,28 Figure 1 provides a
system level overview of DEPLOYR.

Data sources

The design of ML deployment frameworks requires data
sourcing decisions. To effectively translate research models,
training data should be sourced from research-grade clinical
data warehouses. At inference time, many ML use-cases
require real-time and up-to-date data streams.16,29–31 Since
clinical data warehouses are typically several transformations
removed from these data streams, mappings must be imple-
mented to ensure models receive the same data elements in
training and deployment environments.

Training data source

DEPLOYR uses data from Stanford’s clinical data warehouse
(STARR) for training.32 STARR contains deidentified EMR
data from over 2.4 million unique patients spanning 2009–
2021 who have visited Stanford Hospital (academic medical
center in Palo Alto, CA), ValleyCare hospital (community
hospital in Pleasanton, CA) and Stanford University Health-
care Alliance affiliated ambulatory clinics. STARR data are
derived from the EMR through a series of ETLs (exchange
transform load) developed and maintained by a research IT
team within the school of medicine. Quality checks are exe-
cuted after each transformation to mitigate error propagation
and persistence.32 Use of STARR data was approved by the
institutional review board of the Stanford University School
of Medicine.

Inference data source

In production, DEPLOYR sources data from the EMR’s
transactional database, Epic Chronicles, which contains real-
time patient data.33 We access this data stream using vendor
specific and Fast Healthcare Interoperability Resources
(FHIR) representational state transfer (REST) application
programming interfaces (APIs) documented by our EMR ven-
dor.34,35 Credentials enabling authentication to these APIs
were provisioned upon registration of a back-end application
to our EMR vendor’s application marketplace, Epic’s App
Orchard. Use of this data source falls under the umbrella of
hospital operational work specifically scoped to quality
improvement. Data sources and mappings are depicted in
Figure 2.

Model inference triggers

Inference triggering mechanisms dictate how model’s can inte-
grate into workflow. Additionally, because triggering logic
specifies a model’s deployment population, it should be con-
sidered during cohort development to ensure the population
in a researcher’s retrospective test set matches what is seen
in production. DEPLOYR supports 2 classes of inference
mechanisms—event- and time-based triggers.

Event-based triggers

Event-based triggers execute as a direct result of a clinical
action. Examples include order entry for a laboratory diag-
nostic test, signature of a progress note, inpatient admission,
or discharge. We enable event-based triggers by exposing
models as REST APIs that listen for inbound HTTPS requests
from the EMR. Models are wrapped in custom python func-
tions using DEPLOYR-serve, an Azure Function application
deployed to Stanford Health Care’s instance of Azure.27

Requests are spawned from the EMR through use of EMR
alerts (eg, Epic Best Practice Advisories), rules, and
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programming points configured to execute upon button-
clicks in the EMR’s graphical-user-interface, Epic Hyper-
space.36,37 Requests from the EMR transmit patient identi-
fiers to DEPLOYR-serve functions enabling patient specific
feature vector collection.

Time-based triggers

Time-based triggers initiate inference periodically on batches of
patients. Example applications include models that periodically

monitor patients for deterioration, sepsis, or acute kidney
injury.38–41 DEPLOYR-serve supports time-based triggering
through use of Azure Function timer triggers configured using
cron logic.27,42 Because time-based triggers do not originate
from the EMR, DEPLOYR needs to determine which patients
to perform inference on. DEPLOYR-serve functions select
patients using vendor maintained APIs that collect patient iden-
tifiers, for example, within specific hospital units. Event- and
time-based triggers are summarized in Figure 3.

Figure 1. Summary of a DEPLOYR enabled model deployment. Blue shading indicates infrastructure operated by the Stanford School of Medicine

(academic research). Orange shading indicates infrastructure operated by Stanford Health Care (clinical operations). (A) De-identified EMR data are

sourced from Stanford’s clinical data warehouse (STARR), a model is developed and retrospectively validated using the DEPLOYR-dev python package.

(B) The model is deployed to the inference engine, and exposed as a REST API using DEPLOYR-serve. (C) Inference is triggered, spawning an HTTPS

request from the EMR directed at the exposed model. (D) The request results in the collection of a feature vector from the EMR’s transactional database

using REST (both FHIR and EMR specific) APIs maintained by the EMR vendor. Inference is performed on the real-time retrieved data, and routed back to

the EMR closing the loop with end-users and integrating into workflow. (E) Inferences and relevant metadata are additionally saved to the inference store,

(F) and consumed by monitoring software (DEPLOYR-dash) that continuously tracks model performance via dashboard. REST: representation state

transfer; HTTPS: hypertext transfer protocol secure; FHIR: fast healthcare interoperability resources.

Figure 2. ML models are trained using data sourced from Stanford’s clinical data warehouse (STARR). In production, real-time data are sourced from the

EMR’s transactional database (Epic Chronicles) through Epic and FHIR REST APIs. STARR data are several ETLs (extract, transform, loads) removed from

the transactional database. Data mapping is necessary at inference time to ensure features seen during training match features seen in production.

Mappings and inferences are invoked in DEPLOYR-serve.
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Directing model outputs

Deployment frameworks require mechanisms to direct model
inferences and recommendations back to end-users, closing
the loop. Although possible to communicate inferences via
third-party web or mobile application, DEPLOYR integrates
inferences into the EMR, reducing technical overhead and
best fitting clinical workflow. Integration with the EMR is
possible through several mechanisms, implemented in
DEPLOYR-serve.

Passive integration

Inferences can be written to the EMR without interrupting
clinical workflow, for example to an external model score col-
umn visible in inpatient lists and outpatient schedules. In
Epic, score columns can be configured to display probabil-
ities, binary flags, feature values and their contributions to
promote interpretability.43 Additionally, inferences can be
written to flowsheet rows and dynamic data elements, for
example Epic Smart Data Values, which can be used to trigger
downstream clinical decision support.44 Inferences can also
be directed at clinicians using the EMR’s internal messaging
system, for example Epic in-basket messages. Inferences are
written to the EMR using APIs exposed and documented by
our EMR vendor.

Active integration

Some applications better integrate with workflow through
interruptive alerts. Consider the ML use-case of flagging low-
yield laboratory diagnostic testing to reduce wasteful ordering
behavior.31 In production, inference could be triggered upon
order entry of the diagnostic and interrupt the ordering proc-
ess. Such active integration is possible through use of typical
EMR alerts. Specifically, we use Epic Best Practice Advisory
web-services. Epic supports 2 styles of web-services: classic
clinical document architecture (CDA) and CDS web-hooks.45

DEPLOYR currently uses classic CDA web-services, which
direct HTTPS requests at DEPLOYR-serve functions and
await XML (Extensible Markup Language) responses.46 We
show mock-ups of EMR integration capabilities in Figure 4.

Continuous performance monitoring

Deployed models must be monitored to ensure continued reli-
ability in production.47–49 All models are subject to potential
performance decay over time due to distribution shift. Exam-
ples include covariate shift (changes over features), label shift
(changes over labels), and concept shift (changes to the rela-
tionship between features and labels).2,50

Extracting labels in production

DEPLOYR uses LabelExtactors to collect labels in produc-
tion. LabelExtractors, implemented in DEPLOYR-serve, are
specific to a deployed model. They execute periodically using
cron logic. At inference time, in addition to integrating model
outputs to the EMR, we package inferences with relevant
metadata (identifiers, timestamps, features) in inference pack-
ets and save them to the inference store, an Azure Cosmos
database maintained by Stanford Health Care. LabelExtac-
tors consume inference packets and pair to them their corre-
sponding labels (once observable). A model tasked with
predicting unplanned (30-day readmission) might produce
inference packets that include the patient’s FHIR identifier,
discharge time, and inference. The corresponding LabelEx-
tractor would use the FHIR identifier and discharge time to
make requests directed at relevant APIs, determining whether
the patient was readmitted to the hospital within 30 days of
the produced inference.

Tracking model performance

After a LabelExtractor has collected labels, performance met-
rics can be estimated. When monitoring binary classifiers,
metrics may include threshold dependent measures like accu-
racy, sensitivity, specificity, precision along with threshold
independent metrics like area under the receiver operator
characteristics curve (AUROC). Plots that track discrimina-
tion ability (ROC and precision-recall curves) and calibration
(calibration curves) can be constructed. In addition to popula-
tion estimates, metrics can be monitored over patient sub-
groups, including protected demographic classes. Beyond
classic ML metrics, measures of model usefulness such as net
benefit and expected utility can be tracked to ensure model
use is yielding more good than harm.7,51

Figure 3. DEPLOYR triggering mechanisms. Models deployed with event-based triggering logic are exposed as REST APIs on the inference engine using

a python Azure Function application (DEPLOYR-serve). An event (A) in the EMR (eg, clinician button-click initiating a laboratory order) transmits an HTTPS

request (B) directed at the exposed DEPLOYR-serve function, which wraps an ML model. The function transmits HTTPS requests (C) to REST APIs

documented in Epic’s App Orchard to collect a feature vector, performs model inference, and directs the inference and resulting clinical decision support

via HTTPS request (D) back into the EMR to interface with end-users. Models deployed with time-based triggering logic perform inference at set intervals

(E) through use of Azure Function timer triggers. Every time interval (eg, 15 min), a DEPLOYR-serve function transmits HTTPS requests (F) to REST APIs

to retrieve a batch of patient identifiers for whom inference should be made. Feature vectors are collected for the batch of patients (G), and inferences are

transmitted back into the EMR (H). SHC: Stanford Health Care.
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Tracking distribution shifts in features and labels

Performance decay over time is often attributable to distribu-
tional shift. Beyond calculating prospective performance met-
rics, DEPLOYR monitoring infrastructure tracks statistics
that describe the distributions of features, labels, and predic-
tions over time. Both model performance and distributional
statistics are displayed to a dashboard created using the
streamlit python package, which we show in Figure 5.28

Enabling silent deployment

Deployment infrastructure requires the ability to silently test
models prospectively.14,52,53 Silent trials allow data scientists
to ensure data pipes are appropriately linked, and provide
more robust appraisals of model performance than typical ret-
rospective analyses because they occur directly in the intended
production environment.54 Additionally, silent deployment
can uncover faulty cohort design, for instance when a retro-
spective cohort was generated using exclusion criteria observ-
able only after inference time, common when generating ML
cohorts using case–control study design.55,56 DEPLOYR
event- and time-based triggers can be configured to execute in
the background, enabling silent trials.

Enabling prospective evaluation of impact

The ultimate evaluation of healthcare ML impact is not a pro-
spective ROC curve, but rather estimation of the causal effect
of the model’s implementation on a clinical or operational
outcome. In some use-cases, a model’s inference and corre-
sponding recommendation will only be displayed to the end-
user if predicted risk exceeds some threshold.26 Here, regres-
sion discontinuity designs may be suitable to estimate the

local treatment effect of the model’s implementation.57 In
other cases when an average treatment effect on the deploy-
ment population at large is desired, tracking end-user adher-
ence to model suggestions (eg, whether an alert was accepted)
can enable observational estimates of the intervention’s
effect.58 These analyses require traditional assumptions from
causal inference literature, for example no unobserved con-
founding, positivity, and consistency to produce unbiased
effect estimates. Under equipoise, randomized study designs
may be appropriate to achieve unbiased effect estimates.59,60

DEPLOYR supports functionality to inject randomization
into the inference-directing mechanism to enable prospective
determination of a model’s impact.

Silent trial deployment of laboratory prediction

models

To evaluate DEPLOYR, we silently deployed 12 binary classi-
fiers that predict laboratory diagnostic results, building off of
previous retrospective analyses of similar models designed to
reduce wasteful laboratory utilization.31,61–63 Models were
trained using STARR data, and exposed as REST APIs using
DEPLOYR-serve. EMR alerts were configured to trigger the
deployed models upon signature of the diagnostic test whose
result each model aimed to predict.

Cohort and prediction task definitions

Three retrospective cohorts specific to a laboratory diagnostic
exam were constructed. The unit of observation was an order
for the exam. One cohort included orders for complete blood
count (CBC) with differential diagnostics. Another included
orders of metabolic panels. A third included orders for

Figure 4. Mock-up frames depicting the EMR user-interface and mechanisms in which inferences (model outputs) can be displayed to end-users.

Inferences can be directed back into the EMR passively, without interrupting clinical workflow. They can be written as smart data values or as external

model score columns displayed in inpatient lists and outpatient schedules (A). Hovering the mouse over an external model score column value in a patient

list displays a pop-up window (B) depicting the trend of the model score over time, feature values, and contribution of those features to the resulting

inference. Model inferences can be written to flowsheet rows (C) and visualized over time in conjunction with other vital sign data (eg, heart rate, blood

pressure, temperature). Inferences and suggested interventions can be directed as in-basket messages (D) to specific providers. Additionally, inferences

can be integrated with the EMR actively through use of interruptive alerts (E, F) that trigger as a result of button-clicks (eg, signature of a laboratory order)

in the user-interface. Inference integration is implemented in DEPLOYR-serve.
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magnesium diagnostics. CBC and metabolic panel diagnostics
result in several components, whereas magnesium exams yield
a single result. Consistent with prior work, we trained binary
classifiers per component to, at order time, predict whether
the test result would fall outside the clinical laboratory
defined normal reference range.31,62 Four binary classifiers
were trained for the CBC cohort that separately predicted
hematocrit, hemogloblin, white blood cell, and platelet
results. Seven binary classifiers were trained for the metabolic
panel cohort to predict albumin, blood urea nitrogen, cal-
cium, carbon dioxide, creatinine, potassium, and sodium
results. One classifier was trained to predict magnesium
results. Retrospective cohorts spanned from 2015 to 2021,
with 2000 diagnostic tests sampled randomly per year for a
total of 14 000 orders per task. Corresponding prospective
cohorts were collected in real-time during our silent deploy-
ment trial—spanning the dates January 11 to February 15,
2023.

Model training and evaluation

We trained and deployed random forest classifiers, as tree-
based models are strong baselines for EMR-based ML
tasks.64,65 A description of random forests as well as other
model classes considered are detailed in Supplementary Note
S1. Features included patient demographics, diagnosis codes
mentioned on the problem list, medication orders, and prior
lab results. Features were represented as counts, as detailed in
Supplementary Note S2.66 All 12 classifiers were evaluated
using retrospective and prospective test sets. We measured
model discrimination ability by estimating the AUROC. The

95% confidence intervals were estimated by bootstrapping
the corresponding test set 1000 times.

RESULTS

Here we present the results of our retrospective and prospec-
tive silent trial evaluations. In Table 1, we summarize demo-
graphic characteristics of patients in both retrospective and
prospective cohorts. In Table 2, we summarize model per-
formance estimated using retrospective and prospective test
sets. We compute prevalence of the positive class (an abnor-
mal diagnostic result), as well as AUROC. Additionally, we
constructed retrospective and prospective receiver operating
characteristics (ROC) curves, precision recall (PR) curves, and
calibration plots—shown in the Supplementary Figures S1–
S3. We estimated model performance across patient sub-
groups stratified by protected demographic classes, which we
show in Supplementary Tables S1–S12. Additionally, we
show retrospective and prospective AUROC stratified by the
number of available features in Supplementary Figure S4.

DISCUSSION

Our silent trial results underscore the necessity of prospective
evaluations before ML applications are integrated into clinical
work-streams.14 Across our 12 laboratory predictions tasks,
AUROC in our prospective test sets were generally several
percentage points lower than what is seen retrospectively.
Drops in performance were similarly apparent in our ROC
and PR curves, though the shapes of the curves remained

Figure 5. DEPLOYR performance monitoring. Panel A depicts the flow of data from monitoring software to the inference store. A LabelExtactor is

implemented in DEPLOYR-serve as an Azure Function timer trigger. When executed it collects inference packets and pairs them with their corresponding

labels. Inference packets paired with labels are consumed by a monitoring dashboard, implemented in DEPLOYR-dash. Panel B shows a screenshot of

the dashboard displaying global model performance for the user-specified model. Panel C shows a group fairness evaluation across protected

demographic classes for the user-specified time window. Panel D shows feature and label distribution statistics collected and tracked over time.
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similar across settings. Poorer performance could be attribut-
able to data drift, data-elements appearing to be accessible at
inference time in the clinical data warehouse not actually
being accessible in production, and imperfect mappings
between training and inference data sources. In Supplemen-
tary Figure S4 we show model performance stratified by num-
ber of available features at inference time, which differs
between retrospective and prospective settings. Due to these
deviations, we recommend using performance measures esti-
mated from prospectively collected test sets during silent trials
to make final go decisions when deploying clinical ML
models.

In our evaluation we silently deploy 12 random forest clas-
sifiers, but DEPLOYR allows integration of arbitrary model
classes ranging from simple regressions to complicated neural
networks.67,68 This feature is attributable to DEPLOYR’s use
of server-less compute, which is separate from the EMR and
allows users to expose arbitrary code as REST endpoints.22,25

While DEPLOYR is model class agnostic, latency will increase
with increasing model complexity. If latency is an issue, data
scientists should consider whether the more complicated
model is necessary to achieve desired model performance, and

if so serve the model using a graphics processing unit (GPU),
which server-less functions support.69

Continuous monitoring tools are essential to any deploy-
ment framework.47 Statistically significant and clinically
meaningful variations in performance can indicate models
need re-training or decommissioning.70–72 Careful attention
to feedback mechanisms from interventions administered as a
result of model integration must be considered. Feedback
mechanisms occur when predictions lead to interventions that
alter the distribution from which prospective data are gener-
ated. When monitoring risk-stratification models, interven-
tions assigned to high risk patients intending to reduce risk
can make models appear as “victims of their own success”.73

Models intending to discourage diagnostics test orders whose
results are highly predictable, for example those we silently
evaluate in this study, will induce censoring of the most pre-
dictable labels. Feedback mechanisms can cause drastic devia-
tions between observed and actual performance.73–75 Naively
updating these models do more harm than good.76

DEPLOYR supports injecting randomization into inference
integration, which can be used in tandem with traditional
weighting estimators to recover true performance in the

Table 1. Demographic breakdown of retrospective and prospective cohorts

Demographic breakdown Retrospective cohorts Prospective cohorts

Diagnostic CBC Magnesium Metabolic CBC Magnesium Metabolic

N unique patients 13 362 11 771 13 410 18 982 5234 16 441
Age, mean (SD) 51.4 (23.7) 53.1 (24.2) 54.6 (21.4) 55.7 (21.4) 62.1 (17.8) 55.4 (21.1)
Sex, n (%) Female 7103 (53.2) 5432 (46.1) 6923 (51.6) 10 092 (53.2) 2425 (46.3) 8711 (53.0)

Male 6259 (46.8) 6338 (53.8) 6485 (48.4) 8884 (46.8) 2808 (53.6) 7724 (47.0)
Unknown 0 (0.0) 1 (0.0) 2 (0.0) 6 (0.0) 1 (0.0) 6 (0.0)

Race, n (%) White 6888 (51.5) 6038 (51.3) 6915 (51.6) 9009 (47.5) 2726 (52.1) 7636 (46.4)
Other 2870 (21.5) 2899 (24.6) 2680 (20.0) 4545 (23.9) 1067 (20.4) 4103 (25.0)
Asian 2444 (18.3) 1739 (14.8) 2600 (19.4) 3612 (19.0) 928 (17.7) 3125 (19.0)
Black 557 (4.2) 587 (5.0) 583 (4.3) 1060 (5.6) 327 (6.2) 884 (5.4)
Unknown 391 (2.9) 238 (2.0) 420 (3.1) 382 (2.0) 56 (1.1) 353 (2.1)
Pacific Islander 168 (1.3) 212 (1.8) 171 (1.3) 294 (1.5) 98 (1.9) 261 (1.6)
Native American 44 (0.3) 58 (0.5) 41 (0.3) 80 (0.4) 32 (0.6) 79 (0.5)

Note: Retrospective cohorts were sourced from Stanford’s clinical data warehouse (STARR). Prospective cohorts were collected in real-time through the EMR
transactional database (Epic Chronicles) as diagnostic orders triggered model inferences between January 11 and February 15, 2023.
CBC: complete blood count.

Table 2. Model performance estimates on retrospective and prospectively collected test sets for all twelve models

Model performance Positive (abnormal) prevalence AUROC

Diagnostic Component Retrospective Prospective Retrospective Prospective

CBC with differential Hematocrit 0.47 [0.45, 0.49] 0.43 [0.42, 0.44] 0.86 [0.85, 0.88] 0.83 [0.83, 0.84]
Hemoglobin 0.50 [0.48, 0.52] 0.47 [0.46, 0.47] 0.88 [0.86, 0.89] 0.83 [0.83, 0.84]
Platelets 0.26 [0.24, 0.28] 0.21 [0.21, 0.22] 0.79 [0.77, 0.82] 0.77 [0.76, 0.78]
White blood cell 0.29 [0.27, 0.31] 0.27 [0.27, 0.28] 0.76 [0.74, 0.79] 0.69 [0.68, 0.70]

Metabolic panel Albumin 0.20 [0.18, 0.21] 0.21 [0.20, 0.21] 0.88 [0.86, 0.91] 0.85 [0.84, 0.86]
Blood urea nitrogen 0.22 [0.20, 0.24] 0.24 [0.23, 0.25] 0.85 [0.83, 0.87] 0.80 [0.79, 0.81]
Calcium 0.11 [0.10, 0.13] 0.11 [0.11, 0.12] 0.80 [0.76, 0.83] 0.79 [0.78, 0.81]
Carbon dioxide 0.16 [0.14, 0.17] 0.20 [0.20, 0.21] 0.69 [0.66, 0.72] 0.62 [0.61, 0.63]
Creatinine 0.31 [0.29, 0.33] 0.32 [0.31, 0.33] 0.78 [0.75, 0.80] 0.75 [0.74, 0.76]
Potassium 0.06 [0.05, 0.08] 0.08 [0.08, 0.09] 0.67 [0.61, 0.72] 0.60 [0.59, 0.62]
Sodium 0.12 [0.10, 0.13] 0.17 [0.16, 0.17] 0.79 [0.75, 0.82] 0.71 [0.70, 0.72]

Magnesium Magnesium 0.15 [0.14, 0.17] 0.14 [0.13, 0.15] 0.70 [0.67, 0.73] 0.65 [0.63, 0.67]

AUROC: area under the receiver operating characteristics curve; CBC: complete blood count.
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presence of feedback mechanisms.77 The ability to randomize
is similarly critical for deliberate randomized controlled trial
evaluations of ML model impact on clinical outcomes.59,60

DEPLOYR can serve and evaluate a broad class of models
for a range of clinical applications. Though we deploy binary
classifiers in this study, the framework naturally extends to
multi-class, multi-label and regression settings, which may be
more suitable for alternative clinical applications including
emergency department triage, recommender systems, and
insulin dose optimization.78–80 Performance metrics a data
scientist chooses to monitor will vary depending on the task.
In a binary setting, a data scientist might monitor an ROC
curve, in a multi-class setting a confusion matrix, and in a
regression setting mean-squared-error. Irrespective of the
exact metric set, the overarching goals of continuously moni-
toring remain the same. Because DEPLOYR leverages server-
less compute that allows execution of arbitrary software, data
scientists have control over postprocessing of inferences and
the metrics they choose monitor in deployment.

The DEPLOYR framework can be extended to institutions
that (1) have access to a clinical data warehouse for model
development and (2) maintain 21st Century Cures Act com-
pliant FHIR APIs.81,82 Though the DEPLOYR code base does
also utilize Epic specific APIs, making extensions to institu-
tions that vendor with Epic Systems easier, similar
FHIR-based APIs exist that serve as suitable alternatives.83

Additionally, while our installation of DEPLOYR uses an
EMR alerting mechanism native to Epic Systems to trigger
model inferences (Epic Best Practice Advisories), similar alert-
ing mechanisms are maintained by alternative EMRs that
would enable equivalent functionality.84,85

Successful installation and maintenance of DEPLOYR
requires dedicated financial resources and personnel.
DEPLOYR’s computing infrastructure is resource efficient.
The total cloud computing cost for our silent deployment
which lasted between January 11 and February 15, 2023
(Azure Function executions and data storage in Azure Cos-
mos) was less than $300.86,87 To assign dedicated personnel,
Stanford Health Care’s IT department has formed a data sci-
ence team. Expertise in engineering is required to adequately
connect data pipes and manage cloud infrastructure. Data sci-
entists are required to develop, monitor and evaluate
deployed models. EMR integration expertise is required to set
up EMR alerts, ensure the EMR can communicate with the
server-less function application, and maintain integrations in
the advent of EMR upgrades. Networking and security per-
sonnel are required to ensure data are appropriately routed
between the EMR and the institution’s cloud infrastructure.
At Stanford Health Care, data never leaves our internal
network.

Limitations to this study include that, while the DEPLOYR
framework is general and can be extended to additional insti-
tutions that use alternative EMRs, expertise and support from
an institution’s IT department would be required to translate
the Epic specific integrations we leverage (eg, Best Practice
Advisories) and data mappings to alternative EMR solutions
and clinical data warehouse structures. The design decisions
and considerations we have outlined in this article remain rel-
evant to any institution attempting to install a deployment
framework of their own. We note that EMR data are notori-
ously messy and frequently incomplete. Missing data can
influence performance of clinical ML models, which we dem-
onstrate in Supplementary Figure S4. We show that

performance of our ML models increases with the number of
available features at inference time. Data scientists tasked
with deploying ML models may benefit from specifying a tol-
erance threshold on the sparsity of a feature vector used for
inference, which may boost performance in production by
restricting inferences to examples a model is more likely to
correctly classify. While DEPLOYR can even include unstruc-
tured EMR data represented in clinical notes, future upgrades
would be necessary to support a broader array of clinical ML
applications that use multiple data modalities.88–90

CONCLUSION

There exist frameworks to govern and promote the implemen-
tation of accurate, actionable and reliable models that inte-
grate with clinical workflow.14,15 The creation of such
frameworks has created the need for accompanying technical
solutions that enable executing best practices laid out as
desiderata.53 To enable adherence to such guidance, we have
developed and demonstrated DEPLOYR, a technical frame-
work for rapidly deploying as well as prospectively monitor-
ing custom, researcher developed ML models trained using
clinical data warehouses. The framework’s design elements
and capabilities are demonstrated via silent deployment of
multiple ML models triggered by button-clicks in Stanford
Healthcare’s production EMR instance, enabling prospective
evaluation of the models’ performance on unseen data directly
in the deployment environment. The ability to perform
enhanced prospective evaluations of researcher created ML
models that extend beyond typical retrospective analyses sup-
ports the adoption of best practices that can close the ML
implementation gap.
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48. Schröder T, Schulz M. Monitoring machine learning models: a cat-

egorization of challenges and methods. Data Sci Manage 2022; 5

(3): 105–16.
49. Klaise J, Van Looveren A, Cox C, Vacanti G, Coca A. Monitoring

and explainability of models in production. arXiv preprint

arXiv:200706299. 2020.
50. Jung K, Shah NH. Implications of non-stationarity on predictive

modeling using EHRs. J Biomed Inform 2015; 58: 168–74.

51. Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches

to the evaluation of prediction models, molecular markers, and

diagnostic tests. BMJ 2016; 352: i6.
52. Tonekaboni S, Morgenshtern G, Assadi A, et al. How to validate

machine learning models prior to deployment: silent trial protocol

for evaluation of real-time models at ICU. In: conference on health,

inference, and learning. PMLR; April 7–April 8; 2022, pp. 169–82.

Virtual Event.
53. Blueprint for trustworthy AI implementation guidance and assur-

ance for healthcare. https://tinyurl.com/CHAI-paper. Accessed

March &, 2023.

54. Otles E, Oh J, Li B, et al. Mind the performance gap: examining

dataset shift during prospective validation. In: Machine learning

for healthcare conference. PMLR; August 6–August 7; 2021, pp.

506–34. Virtual Event.
55. Krautenbacher N, Theis FJ, Fuchs C. Correcting classifiers for sam-

ple selection bias in two-phase case-control studies. Comput Math

Methods Med 2017; 2017: 1.
56. Reps JM, Ryan PB, Rijnbeek PR, Schuemie MJ. Design matters in

patient-level prediction: evaluation of a cohort vs. case-control

design when developing predictive models in observational health-

care datasets. J Big Data 2021; 8 (1): 1–18.
57. David G, Smith-McLallen A, Ukert B. The effect of predictive

analytics-driven interventions on healthcare utilization. J Health

Econ 2019; 64: 68–79.
58. Adams R, Henry KE, Sridharan A, et al. Prospective, multi-site

study of patient outcomes after implementation of the TREWS

machine learning-based early warning system for sepsis. Nat Med

2022; 28 (7): 1455–60.
59. Nemati S, Shashikumar SP, Holder AL, Wardi G, Owens RL.

Randomized clinical trials or convenient controls: TREWS or

FALSE? medRxiv. 2022.
60. Escobar GJ, Liu VX, Schuler A, Lawson B, Greene JD, Kipnis P.

Automated identification of adults at risk for in-hospital clinical

deterioration. N Engl J Med 2020; 383 (20): 1951–60.
61. Aikens RC, Balasubramanian S, Chen JH. A machine learning

approach to predicting the stability of inpatient lab test results.

AMIA Summits Transl Sci Proc 2019; 2019: 515.
62. Rabbani N, Ma SP, Li RC, et al. Targeting repetitive laboratory

testing with electronic health records-embedded predictive decision

support: a pre-implementation study. Clin Biochem 2023; 113:

70–7.
63. Kim GY, Noshad M, Stehr H, et al. Machine learning predictability

of clinical next generation sequencing for hematologic malignan-

cies to guide high-value precision medicine. In: AMIA annual sym-

posium proceedings. vol. 2021. American Medical Informatics

Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 9 1541

https://doi.org/10.1056/CAT.20.0655
https://doi.org/10.1056/CAT.20.0655
https://azure.microsoft.com/en-us/products/functions/
https://azure.microsoft.com/en-us/products/functions/
https://streamlit.io/
https://tinyurl.com/CHAI-paper


Association; October 30–November 3; 2021, p. 641. San Diego,
California.

64. Steinberg E, Jung K, Fries JA, Corbin CK, Pfohl SR, Shah NH. Lan-
guage models are an effective representation learning technique for

electronic health record data. J Biomed Inform 2021; 113: 103637.
65. Corbin CK, Medford RJ, Osei K, Chen JH. Personalized antibio-

grams: machine learning for precision selection of empiric antibiot-

ics. AMIA Summits Transl Sci Proc 2020; 2020: 108.
66. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learn-

ing with electronic health records. NPJ Digit Med 2018; 1 (1): 18.

67. Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based models
still outperform deep learning on typical tabular data? In: thirty-

sixth conference on neural information processing systems datasets
and benchmarks track; 2022.

68. Hastie T, Tibshirani R, Friedman JH, Friedman JH. The Elements
of Statistical Learning: data Mining, Inference, and Prediction. vol.
2. New York, NY: Springer; 2009.

69. Garg A. Why use azure functions for ML inference? 2020. https://
techcommunity.microsoft.com/t5/apps-on-azure-blog/why-use-
azure-functions-for-ml-inference/ba-p/1416728. Accessed January

9, 2023.
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