
Research Paper PAIN 164 (2023) 2060–2069

TRPM3 as a novel target to alleviate acute
oxaliplatin-induced peripheral neuropathic pain
Vincenzo Davide Aloia,b,c, Sı́lvia João Poseiro Coutinho Pintob,c, Rita Van Breea, Katrien Luytena, Thomas Voetsb,c,
Joris Vriensa,b,*

Abstract
Chemotherapy-induced peripheral neuropathic pain (CIPNP) is an adverse effect observed in up to 80% of patients of cancer on
treatment with cytostatic drugs including paclitaxel and oxaliplatin. Chemotherapy-induced peripheral neuropathic pain can be so
severe that it limits dose and choice of chemotherapy and has significant negative consequences on the quality of life of survivors.
Current treatment options for CIPNP are limited and unsatisfactory. TRPM3 is a calcium-permeable ion channel functionally
expressed in peripheral sensory neurons involved in the detection of thermal stimuli. Here, we focus on the possible involvement of
TRPM3 in acute oxaliplatin-induced mechanical allodynia and cold hypersensitivity. In vitro calcium microfluorimetry and whole-cell
patch-clamp experiments showed that TRPM3 is functionally upregulated in both heterologous and homologous expression
systems after acute (24 hours) oxaliplatin treatment, whereas the direct application of oxaliplatin waswithout effect. In vivo behavioral
studies using an acute oxaliplatin model for CIPNP showed the development of cold and mechano hypersensitivity in control mice,
which was lacking in TRPM3 deficient mice. In addition, the levels of protein ERK, a marker for neuronal activity, were significantly
reduced in dorsal root ganglion neurons derived from TRPM3 deficient mice compared with control after oxaliplatin administration.
Moreover, intraperitoneal injection of a TRPM3 antagonist, isosakuranetin, effectively reduced the oxaliplatin-induced pain behavior
in response to cold andmechanical stimulation inmicewith an acute form of oxaliplatin-induced peripheral neuropathy. In summary,
TRPM3 represents a potential new target for the treatment of neuropathic pain in patients undergoing chemotherapy.
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1. Introduction

Antineoplastic chemotherapeutic regimes have proven tremen-
dously efficient in the regression of previously untreatable cancers.
Chemotherapy, however, is highly notorious for its toxic effects on
the central nervous system (CNS) including the progressive
deterioration of learning, memory, and other cognitive skills.25,38

In addition, peripheral neuropathy is a potentially chronic and, in
specific cases, also acute adverse event that occurs secondary to
the treatment with various cytostatic drugs such as platinum-

based compounds, taxanes, and vinca alkaloids. Neuropathic pain
is a characteristic feature of peripheral neuropathy secondary to
chemotherapy, which may be experienced in the form of
paresthesia, burning, or tingling sensations in the peripheral
extremities.2,5 Overall, chemotherapy-induced peripheral neuro-
pathic pain (CIPNP) has a significant negative effect on the quality
of life of cancer survivors. Platinum-based compounds such as
oxaliplatin and cisplatin have the strongest correlation with
peripheral neuropathy.1 Although most antineoplastic drugs lead
to a delayed development of neuropathy, oxaliplatin and paclitaxel
can induce an acute pain syndrome, which can become chronic
after long-term treatment.

Several members of the transient receptor potential (TRP)
superfamily of cation channels are functionally expressed at the
sensory endings of dorsal root ganglion (DRG) neurons, where they
have been implicated in the transmission of a diverse range of
mechanical, chemical, and thermal sensory stimuli. With the
presence of a leaky barrier between the blood and DRG neurons,
it has been speculated that chronic exposure to antineoplastic
drugs, in particular platinum-based compounds, could lead to a
modified activity of TRP channels in sensory DRG neurons.28

Especially, treatment with oxaliplatin triggers the upregulation of the
nociceptors TRPV1, TRPA1, and TRPM8 in DRG neurons, which
may contribute to oxaliplatin-induced thermal hypersensitivity.3

Paclitaxel has been found to induce an increased release of
substance P and other neuropeptides responsible for inducing
hyperalgesia in the peripheral extremities.29 The current options to
prevent or treat CIPNP are narrow and rather limited to duloxetine24

and tramadol.18 Based on the relative abundance of TRP channels
identified in DRG neurons, and their potential role in mediating
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CIPNP, TRP channels represent promising novel targets for treating
chemotherapy-induced peripheral pain.13,19 Recently, Transient
Receptor Potential cation Channel subfamily Mmember 3 (TRPM3)
was identified as a novel sensory TRP channel expressed at the
molecular and functional level in a large subset of C and Ad sensory
neurons of mouse35 and human.33 TRPM3 is a polymodally gated
calcium permeable ion channel which can be activated by different
chemical substances such us the endogenous neurosteroid
pregnenolone sulphate (PS) and by heat.35 Furthermore, TRPM3
activation iswell described to inducepain and stimulates the release
of neuropeptides such as calcitonin gene-related peptide (CGRP).8

In addition, TRPM3 is already well described to be involved in
different types of pain-like inflammatory35 neuropathic pain and
spontaneous pain after nerve injury.27 Hence, given the functional
expression of TRPM3 in somatosensory neurons and its role as
nociceptor channel, this study aims to clarify the potential role of
TRPM3 in CIPNP and to investigate its potential as a target to
alleviate chemotherapy-induced peripheral neuropathic pain.

2. Materials and Methods

2.1. Cell culture and transfection

HEK293T cells stably expressing murine Trpm3 (HEK-mTRPM3)
and nontransfected HEK293 (NT) were designed and cultured as
described previously.35 HEK293T cells stably transfected with
human TRPM3 were developed and validated by SB Drug
Discovery (Glasgow, United Kingdom). The human TRPM3 was
stably expressed in HEK293T cells (HEK-hTRPM3) after in-
duction with tetracycline (3 mg/mL). For transient transfection,
cells were transfected with 2 mg of DNA 24 to 48 hours before
measurement using TransIT transfection reagents (Mirus, Mad-
ison, WI). Dorsal root ganglion neurons from adult (postnatal
weeks 8-12) mice were isolated and cultured as described
elsewhere.8

2.2. Calcium imaging and electrophysiology

HEK293T cells stably expressing murineTRPM3 cells or DRG
neurons were loaded with Fura-2-acetoxymethyl for 30 minutes
at 37˚C. Fluorescence was measured during alternating illumina-
tion at 340 and 380 nm using Eclipse Ti (Nikon, Europe BV)
fluorescence microscopy system, and absolute calcium concen-
tration was calculated from the ratio of the fluorescence signals at
these 2 wavelengths (R 5 F340/F380) as [Ca21] 5 Km 3 (R2
Rmin)/(Rmax2R), where Km, Rmin, and Rmax were estimated from
in vitro calibration experiments with known calcium concentra-
tions.31 The standard external solution contained (in mM) 150
NaCl, 10 HEPES, 2 CaCl2, and 1 MgCl2 (pH 7.4 with NaOH).
Whole-cell patch-clamp experiments were performed with an
EPC-10 amplifier and PatchMasterPro Software (HEKA Elektro-
nik, Lambrecht, Germany). The sampling rate for the current
measurements was 20 kHz, and currents were digitally filtered at
2.9 kHz. The extracellular solution contained (in mM) 150 NaCl, 1
MgCl2, and 10 HEPES (pH 7.4 with NaOH), and the standard
internal solution contained (in mM) 100 CsAsp, 45 CsCl, 10
EGTA, 10 HEPES, and 1 MgCl2 (pH 7.2 with CsOH).

2.3. Sensory nerve conduction

Sensory nerve conduction studies were performed as described
previously.30 Along the dorsal caudal nerve, sensory nerve action
potentials (SNAPs) were measured by using platinum-coated
intramuscular wire electrodes (Technomed Europe, Maastricht,

The Netherlands) and a Natus UltraPro S100 (Natus Medical
Incorporated, Pleasanton, CA).

2.4. RT–qPCR

Methods were based on established protocols from our research
group.34 RNA extraction of murine DRGs neurons was performed
usingRNeasymini kit (QIAGEN). cDNAwas generated from1mgof
RNA using the First-strand cDNA Synthesis Kit (Thermofisher
Scientific, Belgium). Reverse transcription quantitative real-time
polymerase chain reaction (RT-qPCR) was performed on triplicate
cDNA samples using specific TaqMan gene expression assays in
the StepOne PCR system. Data are represented as mean6 SEM
of 2 (2DCt) for which DCt 5 Ctgene of interest2Ctgeometric mean of

endogenous controls.

2.5. Animals

For all experiments, 8 to 12 week old male C57BL/6J (Janvier
Labs, Le Genest-Saint-Isle, France) mice were used. To in-
vestigate the effects of TRPM3deficiency, homozygous (Trpm32/

2) mice were generated as described previously.35 Mice of all
genotypes were housed under identical conditions, with a
maximum of 5 animals per cage, on a 12-hour light–dark cycle.
Food and water were provided ad libitum.

2.6. Drugs

Oxaliplatin was purchased from Tocris Bioscience (United
Kingdom) and freshly dissolved in 5% glucose solution. For the
acute oxaliplatin model, mice received a single intraperitoneal
administration of oxaliplatin (6 mg/kg) or vehicle.4 Tramadol
hydrochloride (5 mg/kg, Sigma, Belgium) was prepared in a
mixture of 1% hydroxypropylmethylcellulose HPMC/0.5% Tween
80 and administered through oral gavage. Isosakuranetin (2 mg/
kg) was dissolved in Miglyol 812 (Caesar & Loretz GmbH, Hilden,
Germany) containing 0.1% dimethyl sulfoxide (DMSO), and
compounds or the vehicle alone were injected intraperitoneally.
Primidone and PS were purchased from Sigma-Aldrich (Belgium)
and dissolved in DMSO. Stock solutions were 20 mM and
100 mM, respectively.

2.7. Ethical approval

All animal experiments were performed in accordance with the
European Union Community Council guidelines and approved by
the Local Ethics Committee of the KU Leuven (P108/2016).

2.8. Behavioral tests

2.8.1. Chemogenic pain model

PS (250 mM) was dissolved in PBS 1 0.1% DMSO. The mice
were allowed to acclimate in a clear plastic box for at least 40 min
after which 20 mL of PS solution (5 nmol) was injected
intraplantarly using a 30 G needle coupled to a Hamilton syringe,
and behavior was recorded. Experiments were performed during
the light cycle. The duration of the PS-evoked nocifensive
behavior such as licking and flicking was quantified for 10
minutes.35 Chemogenic pain model was actually performed on
animals treated to vehicle and oxaliplatin at day21 (baseline) and
at day 6 after chemotherapy treatment.
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2.8.2. Acetone spray test

Cold sensitivity was tested by the acetone spray test, as previously
described.11 In brief, 30minutes before the start of the experiments,
all the animals were placed in a testing apparatus consisting of 8
chambers with a mesh floor to acclimatize the mice with the
environment. After the acclimation, a volume of 50 mL of acetone
was applied to one of the hind paw and the responses were
monitored for 60 seconds after application. Responses to a cold
stimulation were graded according to the following 5-point scale:
0–no response; 1–brief lift, sniff, flick, or startle; 2–jumping and paw
shaking; 3–multiple lifts and paw lick; 4–prolonged paw lifting,
licking, shaking, or jumping; and 5–paw guarding.11 Pain scores
were determined by 2 independent researchers based on the post
hoc analysis of video-recorded behavioral experiments, without
knowledge of genotype or treatment. Scores from both researchers
were equivalent and averaged to obtain the final pain score for
statistical analysis.

2.8.3. Electronic Von Frey Assay

Mechanical allodynia was assessed by the von Frey test using an
electronic device (Bioseb, France) as previously described.15,21

Mice were placed individually in an 8-place chamber with a mesh
floor and acclimatized for at least 30 minutes prior testing. Each
paw was poked 4 times with a nonhygroscopic polypropylene
von Frey tip of uniform diameter (0.8 mm), and the paw

withdrawal threshold was calculated as the average of these 4
consecutive measurements. The numeric value of the force
required to induce the paw withdrawal was recorded automat-
ically by the apparatus.

2.9. Immunohistochemistry

Immunohistochemical staining of pERK on DRG neurons was
performed based on a previously described protocol.27 First,
after euthanizing the animals by CO2 inhalation, DRG neurons of
each distinct group were dissociated, followed by their
postfixation in 4% paraformaldehyde solution for 4 hours at
4˚C and treated overnight at 4˚C with the primary antibody
(rabbit anti-pERK; 1:200, PhosphoSolutions Denver, CO). The
pretreated sections were then incubated for 2 hours at room
temperature with goat antirabbit conjugated to Cy3. Triple
washing with PBS was performed between each step. Sub-
sequently, the sections were fixed with 49,6-diamidino-2-
phenylindole (DAPI) mounting media (Sigma-Aldrich, Belgium).
Immunofluorescence-labeled cells were imaged using a fluo-
rescence microscope Eclipse Ci (Nikon). The NIH ImageJ
software was used to quantify the labeled cells. Protein ERK
(pERK) positive cells were defined as DAPI positive and a pERK
immunofluorescence intensity that was above the threshold
value of 2 times the mean value of the 5 lowest immunofluo-
rescent pERK signals.

Figure 1.Modulation of TRPM3 function in HEK293T cells stably expressing murine TRPM3 after oxaliplatin pretreatment. (A) Time course of intracellular calcium
concentrations ([Ca21]i) (mean6SEM) at 37˚C on application of the TRPM3 inhibitors primidone (100mM) in HEK-mTRPM3 cells after pretreatment with oxaliplatin
(100 mM) (n5 299) and vehicle (n5 293) and nontransfected (NT) cells (n5 97) (N5 3 independent experiments). (B) Basal intracellular calcium concentrations
before (full bars) and after the application of primidone (open bars). Data are represented as mean 6 SEM. Statistically significant changes in the basal channel
activity were assessed using a Kruskal–Wallis ANOVA with the Dunn post hoc test, where *P5,0.05 and ***P5,0.001. (C and E) Time course of intracellular
calcium concentrations ([Ca21]i) (mean6 SEM) for HEK-mTRPM3 cells in response to PS (40mM) and heat (37˚C) after oxaliplatin (100mM) and vehicle treatment.
(D and F) Quantification of calcium responses for experiments as in panel (C and E), respectively. Where ***P, 0.001 (Mann–WhitneyU test). ANOVA, analysis of
variance; NT, nontransfected; PS, pregnenolone sulfate; Vhc, vehicle; OXA, oxaliplatin.
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2.10. Experimental design and statistical analysis

Sample sizes for patch-clamp experiments on HEK293T cells
were based on earlier work from our team and literature, with a

minimal sample size of n5 5. Sample sizes for calcium imaging

on HEK293T cells and DRG neurons was based on the

literature but always included a minimum of 5 independent

experiments containing .100 cells per experiment. The

sample sizes for all the in vivo experiments was based on a

power analysis using statistical data from pilot experiments,

aimed at detecting a difference of at least 20% between

groups with an a of 0.05 and a power of 0.8. Data analysis,

statistics, and data display were performed using Origin 9.1

(OriginLab). All data are presented as the mean 6 SEM from n

biological replicates. Normality was tested using the Shapiro–

Wilk test. The specific statistical tests used to determine the

significance of the differences between experimental data sets

are indicated in the figure legends. P values of ,0.05 were

considered significantly different.

3. Results

3.1. Effect of oxaliplatin on the TRPM3 channel activity

First, we tested whether oxaliplatin has a direct agonistic effect on
the TRPM3 activity using microfluorimetric calcium imaging in
HEK-mTRPM3 and HEK-hTRPM3 cell lines (Supplementary
Fig. 1, available at http://links.lww.com/PAIN/B806). Direct
application of oxaliplatin (100 mM) did not evoke any response
in the intracellular Ca21 concentration, [Ca21]I, whereas stimu-
lation with the TRPM3 agonist, PS (40 mM), induced a strong
TRPM3-mediated Ca21 influx. Similar results were obtained in
isolated DRG neurons frommice (Supplementary Fig. 1, available
at http://links.lww.com/PAIN/B806). In addition, to test the effect
of oxaliplatin on the TRPM3 activity, HEK-mTRPM3 and HEK-
hTRPM3 cell lines and DRG neurons were first stimulated by PS
and followed by coapplication of PS 1 oxaliplatin. In all different
expression systems, coapplication of PS 1 oxaliplatin was
without effect on the PS-induced Ca21 influx, suggesting that
oxaliplatin has no direct effect on the TRPM3 channel activity

Figure 2. Modulation of TRPM3 function in HEK293-mTRPM3. (A) Time course at 6 150 mV of a whole-cell patch-clamp recording showing the effect of
pregnenolone sulphate (PS; 40 mM) on HEK-mTRPM3 expressing cells after vehicle preincubation (n5 16). (B) Current (I)2voltage (V) relationship corresponding
to the time points indicated in A. (C) Time course at 6 150 mV of a whole-cell patch-clamp recording showing the effect of PS (40 mM) on HEK-mTRPM3
expressing cells after 24 hours of oxaliplatin (100 mM) preincubation (n5 16). (D) I-V relationship corresponding to the time points indicated in C. (E) Mean current
increase at6 150 mV in HEK-TRPM3 cells on PS application after 24 hours of vehicle or oxaliplatin preincubation. Where *P, 0.05 (Mann–Whitney U test). PS,
pregnenolone sulfate.
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(Supplementary Fig. 2, available at http://links.lww.com/PAIN/
B806). Next, we investigated the effect of long-term incubation
with oxaliplatin (100 mM for a period of 24 hours) on TRPM3
expression and activity, in HEK-mTRPM3 and HEK-hTRPM3 cell
lines and in DRG sensory neurons. In transiently transfected
HEK293T cells with murine TRPM3, we measured significantly
increased basal calcium levels at 37˚C in cells treated with
oxaliplatin compared with vehicle-treated cells (Fig. 1A); the
increased cytosolic calcium levels could be partially reversed by
the application of the TRPM3 inhibitor primidone (100 mM)
(Figs. 1A and B).12 Moreover, [Ca21]i responses to PS or heat
were significantly larger in oxaliplatin preincubated cells com-
pared with vehicle-treated cells (Figs. 1C–F). The heat-induced
[Ca21]i influx was fully inhibited in the presence of the TRPM3
antagonist isosakuranetin (20 mM), which further validates the
heat induced calcium response by the activation of TRPM3
(Supplementary Fig. 3, available at http://links.lww.com/PAIN/
B806). Similar results were obtained using the human TRPM3
isoform (Supplementary Fig. 4, available at http://links.lww.com/
PAIN/B806). These observations were further validated bywhole-
cell patch-clamp experiments, showing larger PS-induced
current amplitudes in oxaliplatin pretreated HEK-mTRPM3 cells
compared with vehicle controls (Fig. 2). Next, we evaluated
whether oxaliplatinmodifies the opening of the noncanonical pore
of TRPM3.36 Therefore, cells were first stimulated with clotrima-
zole (Clt) and afterwards stimulated with coapplication of PS 1
Clt. No differences were observed in the amplitude of the
noncanonical current at 2150 mV between oxaliplatin and
vehicle-treated cells (Supplementary Fig. 5, available at http://
links.lww.com/PAIN/B806).

We also tested the effect of oxaliplatin pretreatment on the PS
responses in primary cultures of DRG neurons derived from wild-
type mice. Application of PS (40 mM) to neurons evoked a [Ca21]i
response that was significantly larger in oxaliplatin-pretreated cells
compared with vehicle controls (Figs. 3A and B). Moreover, the
percentage of PS-responsive DRG neurons was increased after
oxaliplatin treatment compared with vehicle controls (Fig. 3D).
Interestingly, similar results were obtained when comparing DRG
neurons isolated from mice at day 11 after oxaliplatin treatment (6
mg/kg) compared with vehicle (5% glucose)-treated mice (Figs. 3E,
F, H). To validate the neuronal character of the cells, a high K1

(50 mM) solution was applied at the end of the experiment to
induce a depolarization of the membrane potential and to activate
voltage-dependent Ca21 channels (CaV). Intriguingly, the amplitude
of the [Ca21]i influx induced by the high K1 solution was significantly
increased in DRG neurons preincubated with oxaliplatin (Figs. 3C
and G). These results can be explained by the upregulation of the
protein levels of voltage-gated calcium channels after 24 hours
incubation with oxaliplatin.23 Note that this in vivo treatment of the
mice with a single dose of oxaliplatin had no effect on electrophys-
iological parameters of sensory nerve conduction (Supplementary
Fig. 6, available at http://links.lww.com/PAIN/B806), indicating that
the integrity of the sensory nerves was preserved.

To elucidate whether the increased TRPM3 functionality was a
result of increased mRNA expression, RT-qPCR was performed
on DRG neurons isolated from mice 24 hours after oxaliplatin or
vehicle injection. This analysis did not reveal any significant
change in TRPM3-encoding mRNA, but confirmed increased
mRNA expression for TRPM8, in line with earlier work.10 A similar
outcome was also observed on HEK-mTRPM3 after 24 hours of

Figure 3.Modulation of TRPM3 function in DRG sensory neurons after oxaliplatin pretreatment. Time course of the intracellular Ca21 concentration ([Ca21]i) (mean
6 SEM) in DRG isolated fromwild-type animals TRPM31/1 in response to PS (40 mM) and high K1 (50 mM) after oxaliplatin (100 mM; red) and vehicle treatment in
black (A) and after 24 hours after oxaliplatin (6 mg/kg; red color) or vehicle i.p injection (black color) (E). (B, C, F, G) Quantification of calcium responses for
experiments as in panel A and E, respectively, *** P , 0.001 (Mann–Whitney U test). Percentage of sensory neurons derived from TRPM31/1 responding
stimulation by PS (40mM) after oxaliplatin and vehicle preincubation (D) and after 24 hours after oxaliplatin (6mg/kg) or vehicle i.p injection (H). Where *P, 0.05 (x2

test); **P , 0.01 (x2 test). DRG, dorsal root ganglia; PS, pregnenolone sulfate.
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oxaliplatin preincubation. (Supplementary Fig. 7, available at
http://links.lww.com/PAIN/B806).

3.2. Oxaliplatin modulates TRPM3-dependent pain
responses in vivo

To investigate whether oxaliplatin-induced peripheral neuro-
pathic pain is associated with alterations in TRPM3-
dependent pain responses, we compared the in vivo TRPM3
function in oxaliplatin-treated and vehicle-treated mice. To
this aim, animals were submitted to a TRPM3-specific
chemogenic pain model consisting of the intraplantar

injection of PS (20 mL, 5 nmol).35 The nociceptive response
was quantified as the total time of nociception, ie, the time
during which the animals licked, lifted, or guarded the
affected paw. Before oxaliplatin treatment, the intraplantar
injection of PS-evoked robust nocifensive behavior in wild-
type mice, which was not observed in TRPM3-deficient mice,
similar to earlier studies.35 Interestingly, the PS-induced pain
response in wild-type mice was significantly enhanced at day
6 after injection with oxaliplatin (6 mg/kg) compared with
vehicle-treated mice or to the pretreatment condition. Even
after oxaliplatin treatment, TRPM3-deficient mice remained
nonresponsive to PS, confirming the TRPM3 specificity of the

Figure 4. Nocifensive responses to PS after oxaliplatin and vehicle injection. (A) Total duration of nocifensive behavior (paw licks and lifts during a period of 10
minutes) in response to intraplantar injection of pregnenolone sulfate (PS, 5 nmol/paw) in TRPM31/1 and TRPM32/2 mice (n 5 8 animals/genotype). Data are
represented as mean 6 SEM. Statistically significant changes in the duration of PS-evoked pain responses were assessed using the 2-way ANOVA repeated
measurement statistical test with Sidak-holm post hoc test. Where **P , 0.01; ***P , 0.001. ANOVA, analysis of variance; WT, TRPM31/1; KO, TRPM32/2.

Figure 5. TRPM3 genetic ablation reduces oxaliplatin-induced mechanical allodynia. (A and B) A single intraperitoneal injection of oxaliplatin (6 mg/kg) induces in
TRPM31/1mice (black color) a time-dependent reduction inmechanical nociceptive threshold and increase in cold sensitivity, respectively. Mechanosensitivity (A)
and cold sensitivity (B) weremeasured at baseline (Day21), 24 hours after the injection of vehicle (Day 0) and after 6 days (Day 6). On day 7 (Day 7), animals treated
with oxaliplatin and mechano (A) or cold sensitivity (B) were measured after 24 hours (Day 8) and after 6 days (Day 13) after injection. The development of
mechanical and cold allodynia observed in TRPM31/1 animals (black) after oxaliplatin treatment was decreased in TRPM32/2mice (red color). Data are presented
asmean6 SEM (n5 8mice per group). Statistically significant changes were assessed by using the 2-way ANOVA repeatedmeasurement statistical test with the
Sidak-Holm post hoc test. Where *P, 0.05; **P, 0.01; ***P, 0.001. ANOVA, analysis of variance; Vhc, vehicle; OXA, oxaliplatin;WT, wild-type; KO, TRPM32/2.
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assay (Fig. 4). Taken together, these data indicate that
TRPM3 is functionally upregulated in DRG neurons after
oxaliplatin treatment.

3.3. Involvement of TRPM3 in oxaliplatin-induced
mechanical allodynia and cold hypersensitivity

To evaluate whether TRPM3 is involved in oxaliplatin-induced
cold hypersensitivity and mechanical allodynia, we tested the
effect of a single administration of oxaliplatin on behavioral
responses tomechanical and cold stimuli in control and TRPM32/

2 mice (acute oxaliplatin neuropathy). In wild-type animals, the
withdrawal threshold to a mechanical stimulus was significantly
reduced 6 days after oxaliplatin treatment (Day 13) compared

with the pretreatment levels (Day 6) (Fig. 5A). Notably, oxaliplatin-
induced mechanical hypersensitivity was significantly sup-
pressed in TRPM32/2 mice (Fig. 5A). Similarly, wild-type mice
exhibited significant and robust cold hypersensitivity in the
acetone spray test at day 8 and day 13 after oxaliplatin treatment
(Day 7), whereas TRPM32/2 mice did not develop such cold
hypersensitivity (Fig. 5B).

Increased activity of DRG neurons is associated with higher
levels of the phosphorylated form of the pronociceptive pERK,

which has been observed in animal models of inflammatory and

neuropathic pain, including oxaliplatin-induced neuropathy.14,16

We, therefore, compared pERK expression levels analysed by

immunohistochemical stainings of DRG neurons isolated from

wild-type and TRPM32/2mice 24 hours after dosing of oxaliplatin

Figure 6. pERK expression levels in DRG of wild-type and TRPM32/2 mice after dosing of oxaliplatin. (A) Sections of pERK immunostaining in DRG neurons of
TRPM3-WT and TRPM3-KO mice at 24 hours after oxaliplatin or vehicle injection. Scale bars, 50 mm. (B) The percentage of pERK-positive cells in the DRG
sections was counted (n 5 6 sections, from 3 independent DRG preparations). Data are expressed as the mean 6 SEM. Statistically significant changes were
assessed by using the 2-way ANOVA statistical test with the Sidak-Holm post hoc test. Where ***P ,0.001. ANOVA, analysis of variance; DRG, dorsal root
ganglia; pERK, protein ERK; WT, wild-type; KO, TRPM32/2.
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(6 mg/kg) or vehicle. We observed that the number of pERK-
positive cells was significantly increased in DRG cell bodies of
oxaliplatin-injected wild-type animals compared with vehicle
controls animals. Importantly, oxaliplatin did not cause any
increase in pERK expression in DRG neurons derived from
TRPM32/2mice (Fig. 6). Taken together, these data indicate that
TRPM3 deficiency protects mice from oxaliplatin-induced me-
chanical allodynia and cold hypersensitivity and prevents the
oxaliplatin-induced upregulation of the pronociceptive pERK.

3.4. Effects of TRPM3 inhibition on the development of
chemotherapy-induced peripheral neuropathic pain

To investigate whether acute pharmacological inhibition of
TRPM3 affects CIPNP, the effect of the TRPM3 antagonist
isosakuranetin26 was tested on oxaliplatin-induced cold and
mechanical hypersensitivity (Fig. 7), using the opioid tramadol (5
mg/kg) as a positive control.18 In these experiments, the cold and
mechanical sensitivity of wild-type mice was tested at baseline
(Day 21) and at day 6 after a single dose of oxaliplatin was
injected, confirming significant hypersensitivity similar to the
experiments shown in Figure 5. After the first testing on day 6,
animals received a single i.p. injection with isosakuranetin (2 mg/
kg), tramadol, or vehicle, followed by repeat testing for cold and
mechanical sensitivity. In comparison with vehicle, both iso-
sakuranetin and tramadol resulted in a significant increase in
mechanical threshold and decrease in the cold nociceptive
response (Fig. 7). Taken together, these findings indicate that
TRPM3 antagonism alleviates single-dose oxaliplatin-induced
cold and mechanical hypersensitivity.

4. Discussion

Oxaliplatin as a drug has been used for a long time in the
treatment and management of cancer. Despite the effectiveness
of oxaliplatin, the drug comes with substantial side effects,
including hair loss, diarrhea, mouth sores, change in taste,
dizziness, nosebleeds, and painful peripheral neuropathy.
Several mechanisms have already been proposed in the literature
to explain the dose-limiting painful side effects often linked with
the administration of chemotherapeutics agents such us
oxaliplatin. For instance, oxaliplatin reportedly induces modifica-
tions of several intracellular signaling pathways9 and alters activity
of voltage-gated sodium and calcium channels and the sensory
TRP channels TRPA1, TRPV1, and TRPM8.6,20,23,37 Recently,

another member of the TRP channel superfamily, TRPM3, has
increasingly received attention as a potential key player in acute
inflammatory and neuropathic pain signaling and as a potential
target for new analgesic treatments.27 However, the contribution
of TRPM3 to CIPNP remained unstudied. Here, we present
evidence that TRPM3 is critically involved in the development of
acute oxaliplatin-induced neuropathic pain and demonstrate that
both genetic ablation and pharmacological inhibition of the
channel significantly reverts oxaliplatin-induced mechanical
hyperalgesia and cold hypersensitivity.

Oxaliplatin treatment was associated with increased TRPM3
activity, which we demonstrated in heterologous expression
systems, in isolated sensory neurons, as well as and in an in
vivo chemogenic pain model. The mechanisms whereby
oxaliplatin affects TRPM3 activity currently remain unknown.
In contrast to earlier findings in inflammatory pain mod-
els,17,34,39 we did not find any evidence for increased TRPM3
expression at the mRNA level after oxaliplatin treatment.
However, we confirmed increased mRNA levels for the cold-
activated TRPM8, which is in line with earlier studies.3,7 These
data suggest that oxaliplatin enhances TRPM3 activity at the
posttranscriptional level. Based on our experiments, we can
exclude a direct agonistic effect of oxaliplatin on TRPM3
channel function or the noncanonical TRPM3 pore suggesting
that the enhanced channel activity is the consequence of
increased protein expression at the plasma membrane or
sensitized channel gating. In this respect, studies on other ion
channels, including TRPV1 and TRPA1, point towards an
important role for reactive oxygen species (ROS), which are
generated after oxaliplatin-induced mitochondrial dysfunc-
tion22 and can affect the activity of these channels through
posttranslational modifications to cysteine or proline residues.
Further research is needed to test whether similar ROS
modulation occurs at TRPM3.

Oxaliplatin treatment in cancer patients frequently causes
neuropathic pain, which encompasses cold hypersensitivity and
mechanical allodynia. These symptoms develop within the first
hours to days after dosing and can reproducibly be mimicked in
rodent models. Here, we demonstrate a key role for TRPM3 in the
development of these acute symptoms in mice. First, we show
that the hypersensitivity towards cold and mechanical stimuli,
which develops after single dose injection of oxaliplatin in wild-
type mice, is suppressed in TRPM32/2 mice. These findings
establish that TRPM3 is required for the development of the

Figure 7. Pharmacological inhibition of TRPM3 reduces neuropathic pain induced by oxaliplatin. The effect is tested in the electronic Von Frey assay and acetone
spray test at day 6 after oxaliplatin treatment. (A and B) Effect of isosakuranetin (2 mg/kg) and tramadol (5 mg/kg) as positive control and vehicle used in the
intervention protocol on nociceptive mechanical threshold and escape behavior score in mice treated with oxaliplatin. Results are shown asmean6 SEM of n5 8
mice per condition. Statistical analysis: 2-way ANOVA repeatedmeasurements with the Sidak-holm post hoc test. Where §§ Vhc vs tramadol (P,0.01); ## Vhc vs
isosakuranetin (P ,0.01); # Vhc vs isosakuranetin (P ,0.05). ANOVA, analysis of variance.
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hallmark symptoms of acute oxaliplatin-induced neuropathic
pain. Moreover, we observed that the oxaliplatin-induced
upregulation of pERK in the cell bodies of DRG neurons, which
is a biochemical marker of increased neuronal activation, is
absent in TRPM32/2 mice. In addition, we found that the
pharmacological inhibition of TRPM3 using isosakuranetin could
effectively inhibit oxaliplatin-induced mechanical and cold hyper-
sensitivity, with a similar efficacy as the opioid tramadol. The
analgesic effect of isosakuranetin was not observed in TRPM32/2

mice, suggesting for an on-target effect of isosakuranetin on
TRPM3. Taken together, these findings reveal TRPM3 as a
promising potential new target to treat painful hyperesthesia
associated with oxaliplatin treatment.

Our observations that genetic ablation or pharmacological
inhibition of TRPM3 has a significant effect on oxaliplatin-induced
hypersensitivity to cold and mechanical stimuli may seem at odds
with the known activation modalities of TRPM3 as a sensory ion
channel. Indeed, TRPM3 is primarily known to be activated by and
involved in the sensation of heat32,35 and specific chemical ligands;
as such, cold temperatures reduce the TRPM3 channel activity, and
there is limited experimental evidence to link TRPM3 to the detection
of mechanical stimuli. One possible explanation for our findings
could be that the oxaliplatin-induced increased functionality of
TRPM3, adepolarizingcationcurrent, increases theexcitability of the
large set of TRPM3-expressing DRG neurons, including those
involved in detecting cold andmechanical stimuli. In such a scenario,
inhibition of TRPM3 function would revert the sensory neuronal
hyperexcitability, thereby reducing the thermal and mechanical
sensitivity to control levels. A similar role for TRPM3 in modulating
nociceptor excitability has also been proposed in a mouse model of
inflammatory hyperalgesia.26 In those experiments, inhibition of
TRPM3 in neurons innervating inflamed tissue reduced the
responses to agonists of TRPA1 and TRPV1, which are broadly
coexpressed with TRPM3 in nociceptor neurons.

In conclusion, we have demonstrated that the chemothera-
peutic drug oxaliplatin evokes enhanced TRPM3 activity in vitro
and in vivo and is essential for the development of oxaliplatin-
induced cold and mechanical hypersensitivity. TRPM3, thus,
represents a potential new target for the treatment of neuropathic
pain in patients undergoing chemotherapy.
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