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Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is an increasingly prevalent neuropsychiat-

ric disorder characterized by hyperactivity, inattention, and impulsivity. Symptoms emerge

from underlying deficiencies in neurocircuitry, and recent research has suggested a role

played by the gut microbiome. The gut microbiome is an ecosystem of interdependent taxa

involved in an exponentially complex web of interactions, plus host gene and reaction path-

ways, some of which involve neurotransmitters with roles in ADHD neurocircuitry. Studies

have analyzed the ADHD gut microbiome using macroscale metrics such as diversity and

differential abundance, and have proposed several taxa as elevated or reduced in ADHD

compared to Control. Few studies have delved into the complex underlying dynamics ulti-

mately responsible for the emergence of such metrics, leaving a largely incomplete, some-

times contradictory, and ultimately inconclusive picture. We aim to help complete this

picture by venturing beyond taxa abundances and into taxa relationships (i.e. cooperation

and competition), using a publicly available gut microbiome dataset (targeted 16S, v3-4

region, qPCR) from an observational, case-control study of 30 Control (15 female, 15 male)

and 28 ADHD (15 female, 13 male) undergraduate students. We first perform the same

macroscale analyses prevalent in ADHD gut microbiome literature (diversity, differential

abundance, and composition) to observe the degree of correspondence, or any new trends.

We then estimate two-way ecological relationships by producing Control and ADHD Micro-

bial Co-occurrence Networks (MCNs), using SparCC correlations (p� 0.01). We perform

community detection to find clusters of taxa estimated to mutually cooperate along with their

centroids, and centrality calculations to estimate taxa most vital to overall gut ecology. We

finally summarize our results, providing conjectures on how they can guide future experi-

ments, some methods for improving our experiments, and general implications for the field.
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Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a significant mental health problem with

a current 3.4% prevalence worldwide [1]. In the United States, ADHD affects one in 10 chil-

dren (a 43% increase over the last 15 years) [2], and 3–16% of adults [3] with that percentage

increasing over the past 20 years. Individuals with ADHD face many practical challenges,

including risk for low academic achievement, lower employment status, and incarceration [4].

Symptoms of hyperactivity, impulsivity, and inattention characterize ADHD [5]. Underlying

ADHD behavioral symptoms are deficits in the neurocognitive mechanisms of both executive

function (EF) and emotional regulation (ER) [6]. EF refers to a set of cognitive control pro-

cesses, including attention (specifically, one’s ability to focus on relevant information while

suppressing irrelevant distractors), memory, and motor skills [7]. ER generally ascribes to

one’s ability to effectively cope with emotionally charged circumstances (both negative and

positive). These deficits include and extend beyond prefrontal-striatal networks [8]. As just

one example, during attention-based tasks, reduced activation in the right dorsal attention net-

work (including the right dorsolateral prefrontal cortex, the basal ganglia and thalamus, parie-

tal lobe, and precuneus) has been reported [9]. Many medications have been developed to

combat the disorder by influencing the underlying neurocircuitry [10].

The pathogenesis of ADHD is thought to be multifactorial, with heritability estimates at

roughly 70–90% [11]. These genetic connections suggest some dependency on underlying

metabolic reactions, directly or indirectly involving gene products. In the meantime, the new

and exciting field of microbiome research has made its way into the mental health domain.

Our gut is home to a plethora of bacteria, fungi, and other microbial organisms, whose collec-

tive genomes comprise our gut microbiome. Studies estimate that the average number of bacte-

rial cells in humans matches or exceeds that of host cells [12, 13]. Each bacterium has unique

genetic material that produces different sets of metabolites, which interact with each other and

host metabolites downstream [14], creating a complex host-microbiome web of interactions. It

has become increasingly important to pay attention to the symbiotic relationship between the

gut microbiome and brain development and function, often referred to as the gut-brain-micro-
biome axis [15]. This axis is a bidirectional communication network, providing gut microbiota

and metabolites an avenue for influencing brain development and function [16–20].

The fact that individuals with ADHD suffer from gastrointestinal (GI) dysfunction, includ-

ing childhood digestive difficulties and low-grade inflammation [21] as well as constipation

[22, 23], suggests a potential role of the gut microbiome in this disorder. For example, the

plasma levels of the cytokine TNF-α were found to be significantly lower in ADHD children

compared to healthy controls, and these levels were also found to be negatively correlated with

gut microbiome diversity in these same samples [24]. Plasma short-chain fatty acid (SCFA)

levels were also found as deficient in ADHD patients (both children and adults, [25]). This is

particularly interesting because SCFAs are produced during bacterial fermentation and have

been hypothesized to improve neuro-immunoendicrine functionality [26], and speculated to

have a mediational role in microbiota-gut-brain crosstalk [27].

It has also been proposed that gut microbiota may affect our neurobiology by directly or

indirectly altering the levels of neurotransmitters, including dopamine and serotonin (5-HT)

[28], which fuel brain regions that mediate cognition and emotion. Although serotonin is also

produced in the brain, up to 90% of serotonin is synthesized in the gut [29]. Connections

between the gut microbiome and neurotransmitters, EF/ER, and neuropsychiatric disorders
(NPDs) are already well-established. In rodents, anxiety and social behavior have been linked

to the gut microbiome that can be attributed to altered neurotransmission in the hippocampus

and amygdala [30]. In humans, associations between microbiome composition and ER have
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been shown [20]. It has also been established that the gut microbiome can release dopamine

and 5-HT, impacting ER [31, 32]. Connections on the cognitive axis related to EF are less well-

established in humans, though some theories are beginning to emerge [33]. In humans, dopa-

mine influences EF [34]. In rodents, the gut microbiome is linked to dopamine [35], and EF-

like behavior [36]. The Autism Spectrum Disorder (ASD) [37], which is associated with

impaired EF [38], has been linked to the gut microbiome [39]. In animal studies, the gut

microbiome has been associated with anxiety-related disorders such as depression [40–45].

People with stress-related diseases have responded positively to probiotics [46, 47]. Connec-

tions between the gut microbiome and another neuropsychiatric disorder (NPD) characterized

by EF/ER dysfunction such as ADHD would further support the impact of the gut microbiome

on EF/ER. It could also help to explain the large amount of symptomatic overlap that exists

between ADHD with other NPDs, particularly ASD [48–50], and could even provide differen-

tiating factors [51] to help address the current diagnosis challenges due to this overlap [52],

and new potential options for treatment [53].

There are limited studies that implicate the gut microbiome on clinically diagnosed ADHD,

and recent efforts have been made to survey and summarize their results [54–57]. Two in par-

ticular [55, 56] contained findings from multiple published studies involving ADHD and the

gut microbiome. Based on this, we make the following observations about the current state of

ADHD and gut microbiome research:

1. Diversity results are contradictory and inconclusive

Table 1 shows that even closely age-matched gut microbiome studies using the same Shannon

index [58] to measure alpha-diversity produce contradictory results when comparing Control

and ADHD cohorts. With respect to Beta-Diversity in these same studies, some report a differ-

ence between Control and ADHD samples while others do not.

2. Results that estimate overall degree of differentiation between ADHD

microbiome datasets compared to Control are inconclusive

One ADHD gut microbiome study [59] attempted the unsupervised method non-parametric

multi-dimensional scaling (NMDS, [64]), but could not differentiate the two groups. Limited

studies have further decomposed ADHD samples by subscale but these focus on diversity and

distinguishing taxa, noting Inattention (elevated genus Dialister and reduced genus Phasco-
larctobacterium [63]) and Hyperactivity (lower alpha-diversity and elevated genus Parabacter-
oides [59]) properties.

3. Many microbial taxa have been proposed as elevated or reduced in

ADHD compared to healthy controls, some contradictory, others mixed

depending on taxonomic level, and others inconclusive

Table 2 summarizes these results. Taxa proposed as elevated in Control are colored orange,

those proposed as elevated in ADHD samples are colored purple, and those with contradictory

results are colored grey with bold text. Each includes corresponding literature citations. Note

taxa have been grouped by the next highest taxonomic level (for example, genera Ruminococ-
cus, Coprococcus, and Lachnoclostridium are all of the Lachnospiraceae family). Taxa in bold

and italics had conflicting results over member taxa, in just italics (i.e., with family Veillonella-
ceae, member genus Dialister was reported elevated in Control, member species V. parvula
was reported elevated in ADHD).
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Table 1. Closely age-matched alpha- and beta-diversity results.

Age Alpha-Diversity (Shannon Index [58]) Beta-Diversity

Mean: 11.9 [59] Higher in Control Difference

Mean: 9.3 [60] Higher in ADHD No Difference

6–10 [61] No Change No Difference

10 and 15 [62] Higher in ADHD for 15,

No Change for 10

No Difference

20.2 [63] No Change Difference (depends on metric)

Alpha- and beta-diversity results from ADHD gut microbiome studies of similar age groups.

https://doi.org/10.1371/journal.pone.0273890.t001

Table 2. Taxa proposed as elevated/reduced in ADHD.

Phylum Class Order Family Genus Species

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium[65], [66]

Coriobacteria Coriobacteriales Coriobacteriaceae Eggerthella [66]

Fusobacteria Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacterium [60]

Firmicutes Clostridia Clostridiales [66, 67] Lachnospiraceae [68] Ruminococcus R. gnavus [68]

Coprococcus [63] C. eutactus [66]

Lachnoclostridium [61]

Ruminococcaceae [68] Faecalibacterium [61, 68] F. prausnitzii [68]

Clostridiaceae Intestinibacter [63]

Catabacteriaceae [59]

Veillonellaceae [68] Veillonella V. parvula [68]

Dialister [61]

Peptostreptococcaceae [61]

Peptococcaceae [61]

Bacilli Lactobacillales Lactobacillaceae Lactobacillus [60]

Enterococcaceae [68] Enterococcus [68]

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae [59, 66]

Prevotellaceae [59] Prevotella [59, 63]

Paraprevotella P. xylaniphila [68]

Odoribacteriaceae [68] Odoribacter [68] O. splanchicus [68]

Rikenellaceae [66]

Bacteroidaceae [59] Bacteroides [59, 65] B. uniformis [60]

B. ovatus [60]

B. caccae [68]

B. coprocola [60]

Parabacteroides [59]

Proteobacteria Betaproteobacteria Neisseriales Neisseriaceae [59] Neisseria [59]

Burkholderiales Sutterellaceae Sutterella S. stercoricanis [60]

Alcaligenaceae [61]

Deltaproteobacteria Desulfovibriales Desulfovibrionaceae Desulfovibrio [67]

Gammaproteobacteria Pseudomondales Moraxellaceae [61]

Xanthomonadales Xanthomonadaceae [61]

Taxa that have been proposed as elevated in Control (orange) and ADHD (purple). Taxa labelled grey with bold text had conflicting results over multiple studies. Taxa

in bold and italics had mixed results over member sub-classifications (in normal italics).

https://doi.org/10.1371/journal.pone.0273890.t002
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Table 2 shows several taxa families with mixed results over member genera and species,

including Bacteroidaceae, Prevotellaceae, and Veillonellaceae (these mixed results were actually

within the same study). Conflicting results were reported for the following taxa:

Order clostridiales (Phylum: Firmicutes). This order was reported as reduced in ADHD

samples compared to Controls in a study with average ages of 19.5 and 27.1 in the respective

sample sets [66], but a later Genome-Wide Association (GWAS, [69]) study found Clostri-

diales as elevated in ADHD samples compared to Controls [67].

Family Porphyromonadaceae (Phylum: Bacteroidetes). The same study (with average

ages of 19.5 and 27.1 [66]) reported elevated Porphyromonadaceae in ADHD samples com-

pared to Controls, but a second gender-matched study [59] with similar mean respective ages

(11.9 and 13.7) reported taxa of this family as reduced in ADHD samples compared to

Controls.

Family Bacteroides (Phylum: Bacteroidetes). The same study (mean ages 11.9 and 13.7,

[59]) found members of this genus as elevated in ADHD samples compared to Controls.

Another involving 18 to 24 month olds [65] found members of this genus as lower in ADHD

samples compared to Controls (though it should be noted, these children did undergo probi-

otic intervention).

Genus Bifidobacterium (Phylum: Actinobacteria). Perhaps no greater mystery currently

exists than the role of genus Bifidobacterium. One Dutch study found a nominal increase in

Bifidobacterium in ADHD with average ADHD and Control subject ages of 19.5 and 27.1

years, respectively [66]. A longitudinal study (3 months, six months and 13 years) made a

somewhat contradictory observation of reduced Bifidobacterium in ADHD samples during

infancy, but not at age 13 [65]. A third study [70] reported reduced Bifidobacterium (specifi-

cally species B. longum and B. adolescentis) in ADHD children (mean age: 9.3) that actually

reversed after micro-nutrient treatment, where elevated Bifidobacterium was observed at high

ADHD-Rating Scale IV (ADHD-RS-IV, [71]) scores.

The current picture of the role played by the gut microbiome in ADHD is therefore still

unclear. Most of the effort to connect ADHD to the gut microbiome has involved (1) macro-

scale population metrics such as diversity, and/or (2) taxa abundances. These properties are in

reality emergent from a complex and interdependent interaction web involving taxa, their

gene products, and those of the host [72]. Diversity and abundance therefore ignore many

underlying details behind their measurements, helping to explain the current incomplete pic-

ture. Venturing deeper into this web is critical to completing more of this picture. Two studies

have attempted this task, both using multi-omics. One [68] reported differences ADHD neuro-

transmitter pathways. A second [66] uncovered a connection between Bifidobacterium and

cyclohexadienyl dehydratase (CDT) abundances.

We have thus far only scratched the surface of this large and exponentially complex interac-

tion web, and every completed piece has value. Multi-omics will continue to be critical, bridg-

ing an important gap between taxa, products, and metabolic reactions. We aim to complete

another piece, that involves ecological relationships between taxa. Microbial taxa have been

shown to demonstrate a wide variety of ecological relationships, including cooperation [73,

74] and competition [75], that ultimately impact collective functionality of the ecosystem and

macroscale properties [72]. We estimate these relationships for Control and ADHD datasets

and report results; including relationships, communities, driver taxa (or ‘centroids’) of these

communities, and taxa central to overall gut ecology. Results can offer guidance on potential

taxa to target for further multi-omics or laboratory experiments. The ultimate goal is to

increase depth of knowledge about connections between the influence of the gut microbiome

on an NPD that impacts millions of individuals worldwide.
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This work involves two parts, conducted on a publicly available, gender-matched dataset of

16S gut microbiome sequences. The first involves performing the same macroscale analyses

currently prevalent in ADHD gut microbiome literature, to note how this dataset compares, as

well as any new and interesting trends. Metrics will include alpha- and beta-diversity, Sparse

Partial Least Squares Discriminant Analysis (sPLS-DA, [76]) to estimate Control and ADHD

differentiation degree, various methods for differential abundance analysis [77–80] and Qiime

[81] normalized abundance compositional profiles.

In the second part we estimate ecological relationships [82] within Control and ADHD gut

microbiomes. We first use Microbial Co-occurrence Networks (MCNs, [83]) to estimate these

relationships [84], and then perform cluster analysis using the Affinity Propagation (AP, [85])

algorithm to discover communities of mutually supporting taxa, as well as driver or ‘centroid’

nodes of these communities. Finally we perform centrality analysis using the Ablatio Triadum

(ATria, [86]) algorithm, to estimate taxa most significant to the overall ecosystem.

Materials and methods

We provide more details on the methods we use for analysis. Our entire downstream analysis

pipeline has been built using Plugin-Based Microbiome Analysis (PluMA, [87]) version 2.0

and is available for download within its publicly available pipeline pool, (pipeline ADHD,

available open-source at http://biorg.cs.fiu.edu/pluma/pipelines.html), along with processed

sequence data. Source code for PluMA is available open source under the MIT software

License at http://biorg.cs.fiu.edu/pluma. Supplementary material, including all alpha- and

beta-diversity output, taxa plots, differential abundance output, networks, clusters, and central

nodes are available in computer-readable TXT and CSV formats at http://biorg.cs.fiu.edu/

pluma/ADHD.html.

Cohort

Our study starts from a publicly available dataset (Accession Number: PRJNA656791) of raw

gut microbiome samples (observational, case-control) from an undergraduate student popula-

tion. Members of this population completed the Adult ADHD Self Report Scale (ASRS) and

were classified as “Control” or “ADHD” following the published practice [88] of scoring at

least 17 on one of the two subscales (inattention or hyperactivity). A subset of patients were

then randomly selected from each group (32 Control, 29 ADHD) for gut microbiome sam-

pling. Full sequencing details are provided in the BioProject description; 16S rRNA (V3-V4

region) sequencing was used, following steps corresponding to standard Illumina protocols

[89]. We include details of the experiment that we were able to gather from both the BioProject

and its referenced protocols [90–92] using STORMS [93] format in S1 Table. Each deidentified

sample provides gender (NCIT:C17357, self-reported) and ADHD assessment (EFO:0007860)

based on ASRS score (Control, ADHD Combined, ADHD Inattentive, or ADHD Hyperactiv-

ity) in its title. The project released 61 samples, but recommended excluding 3 based on outlier

analysis (Mahalanobis distance, confidence level = 97.5%) leaving 58 samples: 30 Control and

28 ADHD, with 15 females in both groups. We summarize statistics in Table 3. Tetachoric cor-

relation [94] revealed little to no association (-0.05) between gender and group classification

(Control or ADHD).

The study used ASRS as its method for case-control classification, and much of our analyses

apply protocols which assume discrete classification schemes for samples. It is important to

note however, that while the ASRS can be a useful screening tool for ADHD [95] and has been

shown to achieve accuracy rates above 90% [96], it in the end does not offer an official diagno-

sis. Therefore, an immediate next step must involve a transition to continuous analysis
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protocols, operating on the ASRS scores (and possibly subscales as well) as purely continuous

data. We present these results as preliminary work, with the expectation of an immediate

segue into this continuous analysis as future work. We elaborate on these points in the

discussion.

Sequences were trimmed using Trimmomatic-0.33 [97] then assembled into a complete

amplicon sequence using SeqPrep [98]. Chimeric amplicon sequences were removed using

USearch 6.1 [99] in reference mode against a curated RDP database [100], along with all

sequences with length under 320bp. Finally for each sample, a set of 50000 sequences were ran-

domly sampled to reduce uneven sampling bias. To establish an initial set of Operational Tax-

onomic Units (OTUs) we took these sequences and compiled, clustered, and analyzed them

using Qiime 1.9.1 [81] open reference clustering (UClust, [99]) with a similarity threshold of

97% (GreenGenes version 13.8 reference database [101]). Each of these packages are available

as PluMA plugins. Finally, we removed all singletons. S2 Table shows the average number of

sequences retained in each sample after each preprocessing step.

Ethics Statement

As mentioned, we commenced this study from a publicly available dataset that was released in

fully deidentified form and no master key was provided, blocking any possible route for trac-

ing a sample back to an individual. IRB consent was therefore verbally waived for our study,

by the FIU Office of Research Integrity.

Part I. Traditional macroscale analyses

We first perform macroscale analyses on this ADHD dataset that have been performed on

other ADHD datasets, compare and contrast our results with those in the literature, and take

note of any new and interesting observations.

Diversity analysis. Alpha- and beta-diversity plots were constructed using Qiime (version

1.9.1). Input was provided in the form of raw abundances, sampled at a depth of 15000. For

alpha-diversity, we used default metrics: unique taxa count, Chao1 [102], and PD_whole_tree

(phylogenetic diversity), with default parameters. We confirm results using a non-parametric

t-test (999 Monte Carlo permutations and Bonferroni [103] correction for p-values). For beta-

diversity, we plot unweighted and weighted Unifrac distance [104], confirming results through

an ADONIS [105] statistical test on their respective distance matrices (999 permutations).

Differential abundance analysis. We conduct this using two methods, that produce dif-

ferent types of classification. The first uses Sparse Partial Least Squares Discriminant Analysis

(sPLS-DA, [76]), a sparse version of the Partial Least Squares (PLS, [106]) method (confi-

dence = 95%), as a supervised dimension reduction method for determining differentiation

degree between Control and ADHD samples with respect to taxa abundance [107]. We use

Table 3. Cohort analysis.

Groups Total No Gender Total No Inattentiveness Hyperactivity Combined

ASRS Scores ± SD

Control 30 Female 15 11.2 ± 4.3 9.6 ± 4.9 20.8 ± 7.2

Male 15 9.8 ± 3.4 9.9 ± 4.4 19.7 ± 6.8

ADHD 28 Female 15 22.6 ± 6.8 19.5 ± 5.3 42.1 ± 10.1

Male 13 18.2 ± 3.8 17.3 ± 4.7 35.5 ± 6.1

Cohort analysis. Samples are from an undergraduate student population.

https://doi.org/10.1371/journal.pone.0273890.t003
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centered log-ratio (CLR, [108]) transformed abundances to map to an unbound space and

reduce potential compositional effects. The second attempts to uncover specific microbial taxa

that are elevated/reduced in Control and ADHD samples. For this, we take a consensus

approach [109] using four methods: (1) Linear discriminant analysis Effect Size (LEfSe,[77])

(p� 0.05, LDA effect size > 2) with Bonferroni [103] correction, (2) DESeq2 [78] with Benja-

mini-Hochberg [110] False Discovery Rate (FDR) correction (p� 0.05), ANOVA-like Differ-

ential Gene Expression Analysis of Single-Organism and Meta-RNA-Seq (ALDEx2, [79])

(p� 0.05, also with Benjamini-Hochberg correction), and Analysis of Compositions of Micro-

biomes with Bias Correction (ANCOM-BC, [80]) (p� 0.05, Holm-Bonferroni [111] correc-

tion). Taxa were classified at the lowest possible taxonomic level.

Taxa plots. We use Qiime 1.9.1 [81] to generate taxa bar graphs, producing one bar per

sample broken down by taxa percentages (this directly corresponds to our normalized data).

We produce taxa plots at all levels of the taxonomic tree (from phylum to genus), plus one at

the lowest possible level of classification.

Part II: Ecological relationships

Co-occurrence network analysis. We computed correlations based on log-ratio trans-

formed taxa absolute abundances using SparCC [112] (p� 0.01) using 100 permutations and

5 iterations, and built Microbial Co-occurrence Networks (MCNs, [83]) using taxa as nodes

and correlations as edges. MCNs were visualized using Cytoscape (version 3.9.1, [113]) with

layout produced by Fruchterman-Reingold [114].

Clustering. MCNs were clustered using Affinity Propagation (AP, [85]) with a damping

coefficient of 0.5 and 200 convergence iterations. AP has been shown to operate efficiently and

successfully on signed and weighted biological networks without requiring an initial cluster

count estimate, and additionally computes the most representative or centroid node for each

cluster.

Centrality analysis. We use Ablatio Triadium (ATria, [86]) for evaluating the impor-

tance, or centrality, of taxa in our MCNs. ATria computes centrality for signed and weighted

networks through a modified economic payment model [115] that calculates the influence of a

node on all other nodes. ATria provides an alternative perspective by considering relationships

(not relative abundance) when computing centrality, and unlike LEfSe does not compare sam-

ple sets. ATria produces a ranked list of important taxa and runs iteratively; once a taxon is

found as central, ATria removes this taxon and its dependencies using social network theory

[116]. Then it runs again to produce the next most important taxon, repeating until no edges

are left. Taxa not found as important are simply not ranked.

We analyze these ecological relationships at all taxonomic levels starting from phylum. We

first observe the upper three levels (phylum, class, and order) for an overview of relationships

between consistently abundant taxa and an observation of general trends and behaviors. We

then move to the lower three levels (family, genus and lowest possible classification level)

which provide a finer level of granularity and enough taxa to perform meaningful community

analyses, facilitating a vision of the key players within these dynamics. The lowest possible clas-

sification level will attempt to classify at a species level, but because of the lack of variability in

the 16S gene at the species level only a limited number of taxa will be classifiable at an appro-

priate level of confidence. When species-level classification is not possible, the next highest

level (genus or family) will be used. To be clear, these networks are based on correlations,

which does not imply causation. Results from our analyses should therefore be interpreted as

providing guidance and potential targets for future downstream (i.e. pathway or multi-omics)

analysis, that ultimately will require lab experimentation for full verification.
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Prevalence filtering. Once we venture past macroscale community metrics (alpha- and

beta-diversity), we apply a prevalence filter to remove scarce taxa and restrict our analysis to

core microbiome members of both groups (Control and ADHD) by adopting a prevalence

threshold of 50% [117, 118]. By restricting our analysis to taxa that are not scarce, our sample

size (30 and 28, 1.07 control to case ratio) achieves a power size of 88% given a two-sided confi-

dence interval of 95% when comparing specific taxa between Control and ADHD sets (com-

puted using EpiInfo version 7.2.5, STATCALC package), critical especially for differential

abundance analysis. Additionally for co-occurrence networks, a prevalence threshold is impor-

tant for avoiding spurious clusters of correlated scarce taxa that are simply not appearing

across most samples, and 50% is estimated to be a moderate to conservative threshold [119]. A

survey across multiple correlation algorithms (including SparCC) also found a performance

decline (defined as the ratio of true to false positives) once sparsity (the percentage of zeroes in

correlated taxa) exceeded 50% [120]. S2 Table shows that this prevalence filter still maintains

91% of sequence counts on average per sample.

With this prevalence filter the final set of taxa will differ slightly for Control and ADHD, as

some taxa will meet the prevalence threshold in only one of the two groups. This will create

bias in differential abundance calculations, as these taxa will have an artificial zero abundance

in one group but not the other. To avoid this bias, we keep taxa that meet the prevalence

threshold in one of the two groups in both groups for all differential abundance calculations

(SPLS-DA, LEfSe, DESeq, ALDEx2 and ANCOM-BC). For all other methods that do not per-

form differential abundance calculations between the two groups (taxa plots and co-occur-

rence networks), we use the prevalence filter as defined above.

Results

Part I. Traditional macroscale analyses

Diversity. Qiime [81] alpha- and beta-diversity results produced no conclusive differences

between ADHD and Control. Fig 1 shows no Alpha diversity difference within error bars for

ADHD using all three metrics: unique taxa count, Chao1 [102], and PD_whole_tree (phyloge-

netic diversity), which was later confirmed by a non-parameteric t-test (respective t = -1.14,

-1.17, -0.967; p-values: 0.2664, 0.246, 0.309). Beta-diversity with unweighted and weighted

Unifrac [104] distance also shows no separation (Fig 2), confirmed by p-values computed

from an ADONIS [105] statistical test (respective F = 0.847, 0.581; p-values = 0.707, 0.671

respectively). This lack of alpha- and beta- diversity differences matches several results from

other datasets [61, 62, 66].

Differential abundance. One differential abundance technique involves dimensionality

reduction, attempting to determine differentiation degree between datasets, by accounting for

Fig 1. Alpha-diversity. Alpha-diversity of Control (blue) and ADHD (red) samples using (in order) the count of

unique taxa, Chao1 richness [102], and phylogenetic diversity, with error bars.

https://doi.org/10.1371/journal.pone.0273890.g001
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all variables in each set [121] but displaying in a reduced dimensional space using principal

component analysis. Unsupervised and supervised approaches can be used, with supervised

having prior sample classification knowledge (i.e., Control or ADHD). When applying a CLR

transform to our data in Fig 3 (ellipse confidence level = 95%), we see that even our supervised

method Sparse Partial Least Squares Discriminant Analysis (sPLS-DA, [76]) is unable to con-

vincingly differentiate Control vs. ADHD. Table 4 confirms this, as classification error rates of

the two principal components for general Control vs. ADHD range from 40 to 50%. This is

even with a supervised method, which needs to be taken with a grain of salt anyway, as super-

vised methods have a priori sample category knowledge and have sometimes been shown to

differentiate completely random data [107].

Techniques for dimensionality reduction like sPLS-DA estimate the degree of differentia-

tion between two sets (e.g., Control and ADHD). For more targetted future lab studies, it may

also be useful to estimate specific taxa that are elevated in one set of samples (e.g., Control)

compared to another set of samples (e.g., ADHD). As differential abundance techniques have

been shown to vary widely in their results [109], we use four techniques (LEfSe [77], DESeq2

[78], ALDEx2 [79] and ANCOM-BC [80]) with a range of different correction mechanisms for

their p-values (Bonferroni [103], Benjamini-Hochberg [110], and Holm-Bonferroni [111])

though keep the same p-value threshold of 0.05.

We first show results for LEfSe (p� 0.05, Bonferroni correction) both as a cladogram (Fig

4) and a bar graph (Fig 5). LEfSe has identified orange taxa as elevated for Control, and purple

taxa as elevated for ADHD. Taxa produced by LEfSe will be classified at the lowest taxonomic

level possible.

The cladogram (Fig 4) shows these taxa on the phylogenetic tree, highlighting those closely

related. Fig 4 shows one Bacteroidetes family (Odoribacteriaceae) distinguishing ADHD, while

Firmicutes (family Turicibacteriaceae and its order Turicibacterales) distinguishing Control.

The bar graph (Fig 5) uses Linear Discriminant Analysis (LDA, [122]) to order by differentia-

tion degree, expanding to include genera and species. ADHD continues to be predominated

by Bacteroidetes taxa, again including Odoribacteriaceae and its genera Odoribacter and Butyr-
icimonas, supporting earlier claims of Odoribacteriaceae as ADHD-elevated [68]. Veillonella
and member V. dispar were also reported as elevated in ADHD. Control continues to be pre-

dominated by Firmicutes taxa (now including genus Turicibacter).

We also run three other methods: DESeq2 [78] and ALDEx2 [79] (both with Benjamini-

Hochberg [110] corrected p� 0.05, and ANCOM-BC [80] with a Holm-Bonferroni corrected

Fig 2. Beta-diversity. Beta-diversity of Control (blue) and ADHD (red) samples computed using unweighted and weighted Unifrac [104]

distance.

https://doi.org/10.1371/journal.pone.0273890.g002
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p� 0.05. Table 5 shows our results. In addition to p-values we include the applicable effect

size–Linear Discriminant Analysis (LDA) for LEfSe, Log-Fold Change (LFC) for DESeq2, and

Effect Size (EFF) for ALDEx2, computed as the ratio between the group difference and the

larger of the two internal group variations. Note ANCOM-BC did not report any differentially

abundant taxa. Turicibacter and Butyricimonas (in bold) are the only genera reported more

than one of these methods, and Turicibacter was actually repoted by three (LEfSe, DESeq2 and

ALDEx2).

Fig 3. Differential analysis. Results of running sPLS-DA [76] on microbiome abundance data (ellipse confidence level 95%),

comparing Control (orange) and ADHD (blue) groups.

https://doi.org/10.1371/journal.pone.0273890.g003

Table 4. Principal component error rates.

Principal Component Largest Predicted Score Distance to Centroid (Euclidean) Distance to Centroid (Mahalanobis)

1 0.476 0.481 0.481

2 0.453 0.457 0.452

Classification error rates of the top two principal components in Fig 3.

https://doi.org/10.1371/journal.pone.0273890.t004
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Genus Odoribacter has also been previously reported as ADHD-elevated [68]. Although

species H. parainfluenzae has not been observed as Control-elevated in any ADHD gut micro-

biome studies, its genus (Haemophilus) has [63]. This same study [68] found family Veillonel-
laceae as Control-elevated and member species V. parvula as differentially abundant in

ADHD. Our LEfSe analysis found Veillonellaceae members Veillonella and V. dispar as differ-

entially abundant in ADHD samples. Although Turicibacter has never previously reported as a

elevated or reduced in any ADHD gut microbiome study, it has been reported in one involving

depression in mice [42]. Metabolically in mice, Turicibacter signals the gut to produce seroto-

nin (5-HT) [123], which influences ER [124]. Both ADHD and depression are characterized

by ER neurocircuitry deficiencies. LEfSe did not report any EF-associated taxa. This may be

Fig 4. Differential abundance (Cladogram). Taxa reported by LEfSe as elevated for Control (orange) and ADHD (purple) groups, produced by LEfSe [77] (p
� 0.05, Bonferroni correction). LEfSe-reported taxa are plotted on a cladogram, with each concentric circle representing a phylogenetic classification level

(innermost = phylum). Shared areas represent distinctive regions of the phylogenetic tree.

https://doi.org/10.1371/journal.pone.0273890.g004
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largely because EF is more strongly regulated by dopamine [124], for which the gut only pro-

duces roughly 50% [125], compared to 90% of 5-HT [29].

Taxa plots. Taxa bar plots visualize taxa relative abundances [126]. We generated these at

all phylogenetic tree levels beginning with phylum (Fig 6). Samples on the x-axis are ordered

by increasing ASRS score, and the y-axis represents relative abundance.

A typical gut microbiome profile [127] is observed, dominated by Firmicutes and Bacteroi-

detes phyla, followed by Actinobacteria and Proteobacteria. Control has slightly elevated

Fig 5. Differential abundance (Bar graph). LEfSe-reported taxa ordered by Linear Discriminant Analysis (LDA,

[122]). A higher magnitude indicates more reliable differentiation.

https://doi.org/10.1371/journal.pone.0273890.g005

Table 5. Taxa reported by various differential abundance methods throughout our analysis.

Taxonomic Level Taxon Algorithm Control/ADHD Effect Size and p-value

Family Clostridiaceae 1 ALDEx2 Control EFF = 7.90, p = 0.016

Genus Coprobacillus DESeq2 ADHD LFC = 2.00, p = 0.044

Genus Odoribacter LEfSe ADHD LDA = 2.68, p = 0.027

Genus Turicibacter LEfSe Control LDA = 3.04, p = 0.028

DESeq2 LFC = 2.12, p = 0.007

ALDEx2 EFF = 1.75, p = 0.033

Genus Haemophilus parainfluenzae DESeq2 Control LFC = 0.572, p = 0.042

Genus Butyricimonas LEfSe ADHD LDA = 2.37, p = 0.019

ALDEx2 EFF = 3.15, p = 0.032

Lowest Possible V. dispar LEfSe ADHD LDA = 2.31, p = 0.039

Taxa reported as elevated by various differential abundance methods, when comparing Control vs ADHD, and further broken down by subscale. LDA = Linear

Discriminant Analysis effect size (for LEfSe), LFC = Log Fold Change (for DESeq2), EFF = Effect Size (for ALDEx2).

https://doi.org/10.1371/journal.pone.0273890.t005
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Firmicutes (70–66%), mirroring an earlier study [66] that importantly [128] also sequenced

the same 16S V3-V4 region. Slightly contrary to this same study, which reported this difference

to be largely occupied by an ADHD Actinobacteria increase, ours was mostly occupied by an

ADHD Bacteroidetes increase (from 22% to 25%). Yet Actinobacteria remains mysterious in

Fig 6, elevated at very high ASRS scores, but also at very low scores. Bacteroidetes and Proteo-

bacteria also appear reduced at these same extremes. These seemingly contradictory results

create challenges in drawing meaningful conclusions with respect to role(s) played by these

phyla. Yet they capture our interest, especially given the earlier reported anomalous behavior

of an Actinobacteria genus, Bifidobacterium, at high and low ASRS-IV scores [70].

Class and order levels produced bar charts similar to Fig 6; we include these as S1 and S2

Figs. Levels below order often had too many taxa to clearly view dynamics. We include the

genus level (Fig 7), family and species as S3 and S4 Figs), as the genus level includes Bifidobac-
terium. And indeed, it turns out, Bifidobacterium (blue, bottom) has elevated abundances high

and low ASRS scores, appearing most responsible for this same behavior in its phylum

Fig 6. Taxa plots, phylum level. Plots of taxa relative abundance for each subject, generated using Qiime [81],

conducted at the phylum level. Subjects are ordered by increasing Adult ADHD Self Report Scale (ASRS) score, with

the y-axis representing relative abundance.

https://doi.org/10.1371/journal.pone.0273890.g006

Fig 7. Taxa plots, genus level. Plots of taxa relative abundance for each subject, generated using Qiime [81],

conducted at the genus level. Subjects are ordered by increasing Adult ADHD Self Report Scale (ASRS) score, with the

y-axis representing relative abundance.

https://doi.org/10.1371/journal.pone.0273890.g007
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Actinobacteria (Fig 6). Bacteroides (orange, middle) is a highly abundant genus that also mir-

rors the behavior of its phylum (Bacteroidetes, Fig 6), increasing in the middle and decreasing

at extremes. Proteobacteria is more difficult to observe given its low relative abundance (1–

2%), though genus Sutterella (lilac, top) also appears to follow this trend. These three observa-

tions are verified in S5–S7 Figs.

This is not the first time these taxa have generated interest. Many Actinobacteria, and espe-

cially Bifidobacterium, have been used as probiotics and are considered elements of a healthy

gut [129–134]. As discussed, genus Bacteroides and its family Bacteroidaceae, as well as several

member species, have been reported differentially abundant in ADHD [59, 60, 65, 68]; some

elevated, others reduced. Some have argued Bacteroides to be the most important "window" to

understanding the human gut [135]. Species Sutterella stercoricanis was also reported as

ADHD elevated [60]. These same taxa make multiple appearances in studies involving other

NPDs as well. Bacteoridaceae was reported as the most differentially abundant LEfSe Major

Depressive Disorder (MDD) taxon in one study [45]. Another reported elevated Bacteroides
and reduced Bifidobacterium in anxiety [136]. Sutterella is elevated in Autism Spectrum Disor-

der (ASD) [137], a condition with so much symptomatic overlap with ADHD that an ASD

+ADHD phenotype has been established [138].

Discussion. These analyses produced a few interesting preliminary observations, but once

again their birds-eye view limited the depth we could pursue. Our taxa plots showed a perfect

example: even though there was a visible trend between ASRS score and Bifidobacterium, Bac-
teroides, and Sutterella abundances, no definitive conclusions could be observed. Fundamen-

tally macroscale behaviors emerge from microscale interactions. We attempt to unlock some

of these mysteries by now exploring ecological relationships.
Microbial ecological relationships take many forms. They can be positive or negative,

mutual (cooperation [73, 74] or competition [75]) or one-way (commensalism [139] or

amensalism [140]). In particular, two-way relationships (cooperation and competition) can be

approximated using correlations [84]. We use SparCC [112] to compute correlations, which

has advantages in reducing compositional effects within relative abundances. We build Micro-

bial Co-occurrence Networks (MCNs, [83]) using taxa as nodes and SparCC correlations as

edges, and perform community detection on these networks using the clustering algorithm

Affinity Propagation (AP, [85]). Finally, we use Ablatio Triadium (ATria, [86]) as a centrality

algorithm to produce a ranked list of important taxa in each MCN. ATria is specifically

designed for signed and weighted networks, incorporating both social network [117] and eco-

nomic theory [116] in its calculations. It is also iterative, removing dependencies of a central

node before computing the next most central.

When computing correlations, we use a p-value threshold of 0.01, the generally recom-

mended value for disease studies [141], to increase the confidence of our results, as the histori-

cally accepted threshold of 0.05 has come under recent question [142, 143]. Because our study

is exploratory and meant to guide future experimentation, we chose to err on the side of false

positives as opposed to false negatives, and increase the strength of the threshold as opposed to

correcting the p-value. Our p-value threshold of 0.01 produced correlations with magnitude

moderate (0.4, [144]) or stronger more than 95% of the time (279 out of 293 total over all

MCNs). We therefore report all of these candidate relationships in our MCNs, each of which

can be subsequently experimentally verified in future studies.

During our analyses we sometimes use “cooperation” to refer to a positive SparCC correla-

tion and “competition” when referring to a negative. We emphasize, however, that correlations

are an estimate of ecological relationships, that ultimately require further downstream analysis

(multi-omics and experimental verification) before establishing official conclusions. With the

underlying web of interactions being exponentially complex and large-scale laboratory
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experiments potentially costly, our results can provide guidance regarding target taxa and ave-

nues to pursue.

Part II. Ecological relationships

Upper levels: Phylum, class, and order. Fig 8 shows MCNs at the phylum (Fig 8(A) and

8(B)), class (Fig 8(C) and 8(D)), and order (Fig 8(E) and 8(F)) levels. Taxa (nodes) in all MCNs

are colored by phylum (legend at the bottom of Fig 8). Node size is proportional to relative

abundance (larger = higher). Correlation (edge) color represents sign; green indicates positive

(est. cooperation) and red indicates negative (est. competition). Edge thickness is proportional

to correlation magnitude (thicker = stronger). Networks are visualized using the Fruchter-

man-Reingold algorithm [114], which spatially orients nodes based on edge weight

(closer = more positive). Nodes are labeled with their taxon and provided with ATria centrality

ranking if found important (format: #rank, T = Tie). At the phylum level only (Fig 8(A) and 8

(B)), we label each edge with its correlation value. Phylum-level MCNs (Fig 8(A) and 8(B))

show SparCC appears to handle compositional effects well, as despite collectively encompass-

ing about 95% of both populations, Firmicutes and Bacteroidetes are only weakly negatively

correlated.

Table 6 shows every correlation in all three MCNs, and its sign, + (green) or–(red). Correla-

tions that appear only in Control are highlighted orange, only in ADHD highlighted purple,

and in both highlighted grey. Correlations at each taxonomic level are grouped by their next

highest level classification; for example in row 1: phyla Actinobacteria and Bacteroidetes were

negatively correlated in both phylum-level MCNs (Fig 8(A) and 8(B)), member classes Actino-

bacteria and Bacteroidia were negatively correlated only in Control (Fig 8(C)), as were mem-

ber orders Bifidobacteriales and Bacteroidales (Fig 8(E)). White, italicized correlations were

not present in either MCN, but a correlation among descendants was; for example in row 3:

phyla Actinobacteria and Firmicutes were not correlated in either MCN, nor were member

classes Actinobacteria and Clostridia, but member orders Bifidobacteriales and Clostridiales

were positively correlated in Control (Fig 8(E)).

Table 7 shows collective ATria results, similarly grouped. At each level, taxa found equally

important in both MCNs are highlighted grey; taxa found more important in Control light

orange, and only important in Control dark orange (analogous case for ADHD and purple).

Taxa ranked as first or tied for first in either MCN are bold.

Taxa bar plots are mirrored here: ADHD showed elevated Bacteroidetes at the expense of

Firmicutes, and these taxa are negatively correlated in both MCNs (Fig 8(A) and 8(B)). But

while Firmicutes and Bacteroidetes dominate both populations (largest nodes, Fig 8(A) and 8

(B)) as is typical in the gut microbiome [127], SparCC and ATria estimate a far less abundant

phylum, Actinobacteria (roughly 4% of both populations), as most important to their overall

gut ecology. In both MCNs (Fig 8(A) and 8(B)), phylum Actinobacteria has the strongest nega-

tive correlations and ATria ranks it first (Table 7).

We make three more observations at these upper taxonomic levels, that we keep in mind

when moving to the lower:

(A) A core Proteobacteria-Bacteroidetes positive correlation (est. cooperation) forms. Table 6

shows this, with Proteobacteria and Bacteroidetes (the only positive correlation in either phy-

lum-level MCN), member classes Betaproteobacteria and Bacteroidia, and member orders

Burkholderiales and Bacteroidiales.

(B) In Control, taxa in (A) have more negative edges with Actinobacteria (est. competition),
especially order Bifidobacteriales. The highest magnitude negative edges in both phylum-level

MCNs (Fig 8(A) and 8(B)) involve Actinobacteria with Proteobacteria and Bacteroidetes. Yet
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Fig 8. Upper-level Microbial Co-occurrence Networks (MCNs). MCNs at the phylum (A), class (B), and order (C) taxonomic levels,

visualized using Cytoscape [57], and oriented by Fruchterman-Reingold [58]. Nodes represent taxa, colored by phylum

(yellow = Firmicutes, purple = Bacteroidetes, brown = Actinobacteria, blue = Proteobacteria) with size directionally proportional to

abundance. The co-occurrences are distinguished by those that co-habit (green edges) and co-avoid (red edges). SparCC [112]

correlation (p�0.01) was used as edge weight and also the parameter for Fruchterman-Reingold when determining edge length

(larger = closer). SparCC correlations are shown at the phylum level. All taxa found as important by ATria are denoted by a pound sign

(#) followed by its rank (ties indicated).

https://doi.org/10.1371/journal.pone.0273890.g008
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while the two consistently dependent Actinobacteria classes (Actinobacteria and Coriobac-

teria) continue this same dynamic with Bacteroidia (Bacteroidetes) and Betaproteobacteria

(Proteobacteria) in Control (Fig 8(C) and Table 6), they are completely disconnected in

ADHD (Fig 8(D)). Worth noting, this is despite their average relative abundance being nearly

the same in Control/ADHD: Coriobacteria 1.5/1.1%, and Actinobacteria 3.2/3.7%. Further,

ATria ranks Actinobacteria and Coriobacteria as the top two Control taxa (Table 7). In

ADHD, Bacteroidia and Betaproteobacteria are the top two (Table 7), and the MCN shows no

negative edges (est. competition) at all involving these taxa (Fig 8(D)).

The order level reveals Bifidobacteriales (Actinobacteria) may be more responsible for this

difference than Coriobacteriales (Coriobacteria). While Bifidobacteriales and Coriobacteriales

both continue their negative correlations with Bacteroidales (Bacteroidia) in Control, only

Coriobacteriales does in ADHD. Table 6 actually shows all edges involving Bifidobacteriales to

be exclusive to Control, now including a positive correlation with Clostridiales (the most

abundant Firmicute). An increased participation of order Bifidobacteriales thus emerges as a

distinguishing feature of Control, which is further supported by ATria (Table 7), which ranks

Bifidobacteriales higher (tied for second) in Control, and Coriobacteriales only in ADHD.

Table 6. Upper-level taxa correlations.

Phylum Class Order

Actinobacteria-Bacteroidetes - Actinobacteria-Bacteroidia - Bifdobacteriales-Bacteroidales -

Coriobacteria-Bacteroidia - Coriobacteriales-Bacteroidales -

Actinobacteria-Proteobacteria - Actinobacteria-Betaproteobacteria -

Coriobacteria-Deltaproteobacteria -

Actinobacteria-Firmicutes Actinobacteria-Clostridia Bifidobacteriales-Clostridales +

Proteobacteria-Firmicutes - Gammaproteobacteria-Bacilli Enterobacteriales-Turicibacteriales -

Gammaproteobacteria-Clostridia -

Deltaproteobacteria-Clostridia - Desulfovibrionales-Clostridiales -

Proteobacteria-Bacteroidetes + Betaproteobacteria-Bacteroidia + Burkholderiales-Bacteroidales +

Bacteroidetes-Firmicutes - Bacteroida-Clostridia Bacteroidales-Clostridiales -

Upper level taxa correlations (p � 0.01), grouped by taxonomic classification. Orange = only found in Control, purple = only found in ADHD, grey = found in both.

+(green) = positive correlation, -(red) = negative correlation.

https://doi.org/10.1371/journal.pone.0273890.t006

Table 7. Upper-level ATria rankings.

Phylum Class Order

Actinobacteria (#1/#1) Actinobacteria (#2/NR) Bifidobacteriales (#T2/T5)

Coriobacteria (#1/NR) Coriobacteriales (NR/#T5)

Bacteroidetes (NR/#T2) Bacteroidia (NR/#T1) Bacteroidales (#1/#1)

Firmicutes (#2/#T2) Bacilli (NR/NR) Turicibacteriales (#T3/NR)

Clostridia (#T3/#T3) Clostridiales (#T2/#T3)

Erysipelotrichia (NR/NR) Erysipelotrichiales (NR/#T3)

Proteobacteria (NR/NR) Betaproteobacteria (NR/#T1)

Deltaproteobacteria (NR/#T3) Desulfovibrionales (NR/#2)

Gammaproteobacteria (#T3/NR) Enterobacteriales (#T3/NR)

Upper-level ATria results, grouped by taxonomic classification. Dark orange = only ranked in Control, dark purple = only ranked in ADHD, light orange = higher

ranked in Control, light purple = higher ranked in ADHD, grey = evenly ranked. Bold taxa are ranked #1.

https://doi.org/10.1371/journal.pone.0273890.t007
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(C) A shift in Firmicutes-Proteobacteria dynamics. This begins immediately at the phylum

level (Fig 8(A)) with Control having a negative correlation (-0.65) that is absent in ADHD (Fig

8(B)). The most abundant Firmicute class (Clostridia) is negatively correlated with different

Proteobacteria classes; Gammaproteobacteria in Control (Fig 8(C)), Deltaproteobacteria in

ADHD (Fig 8(D)), and the latter continues at the order level (Fig 8(F)) with Clostridiales

(Clostridia) and Desulfovibrionales (Deltaproteobacteria). In Control (Fig 8(E)), a negative

correlation emerges between order Enterobacteriales (class Gammaproteobacteria) and LEfSe-

reported order Turicibacteriales (class Bacilli).

Summary. Upper-level analysis revealed increased Actinobacteria participation in Con-

trol gut ecology, especially order Bifidobacteriales. Much of this involved negative correlations

with a core of positively correlated Bacteroidetes (order Bacteroidales) and Proteobacteria

(order Burkholderiales). Recalling our taxa plots and anomalous behavior involving genera

Bifidobacterium (Bifidobacteriales), Bacteroides (Bacteroidales), and Sutterella (Burkholder-

iales), we are now interested in exploring these dynamics at lower taxonomic levels. We will

continue to observe Firmicutes-Proteobacteria dynamics, as despite a still unclear picture, a

clear distinction is shown between Control and ADHD.

Lower levels: Family, genus, and lowest possible. Fig 9 shows Control and ADHD

MCNs at family (Fig 9(A) and 9(B)), genus (Fig 9(C) and 9(D)), and lowest possible taxonomic

classification levels (Fig 9(E) and 9(F)). In this latter MCN each taxon is classified at the species

level if possible (rare with 16S), otherwise more commonly the genus level is used. Schemes

regarding color, node size, and edge thickness are the same as Fig 8. Since the MCNs are now

larger we do not label every node, only those that we reference in our analyses. We also extend

Table 6 to include correlations from every taxonomic level, but as this is also very large we

include it as S3 Table and extract only relevant portions to our discussion. We perform a simi-

lar task with ATria, and S4 Table.

Fig 9 shows taxa separating into a group of primarily Bacteroidetes (dark purple, lower left),

and another of primarily Firmicutes (yellow, upper right). Enough taxa are also now present to

perform meaningful community analysis. Fig 10 shows the same MCNs as Fig 9, after running

Affinity Propagation (AP, [112]) and coloring by cluster. At the family level (Fig 10(A) and 10(B))

four clusters form. One is dominated by Bacteroidetes, family Bacteroidaceae (BB, magenta). Two

are dominated by Firmicutes, one family Lachnospiraceae (FL, gold), and the other family Rumi-
nococcaceae (FR, green). In Control (Fig 10(A)) the fourth cluster consists of three mixed-family

Firmicutes (FM, dark teal). In ADHD (Fig 10(B)) two of these are absent and the Proteobacteria

family Enterobacteriaceae is present, leaving it no longer Firmicutes-dominant (M, grey).

Clusters BB and FR remain at the genus level (Fig 10(C) and 10(D)). Several Firmicutes,

family Lachnospiraceae-dominant clusters emerge, referred to as FL1, FL2, etc. (gold shades).

A mixed-family Actinobacteria cluster of genera Bifidobacterium and Collinsella forms in both

MCNs (AM, brown), and an Actinobacteria, family Coriobacteriaceae-dominated cluster

forms in ADHD (Fig 10(D), AC, burnt sienna). A small group of two Clostridiaceae family

composes cluster FC in Control (Fig 10(C), aqua). In ADHD (Fig 10(D)), a cluster (orange)

emerges as the only Firmicutes-dominant cluster with positive correlations to cluster BB. This

eventually becomes present in both lowest-level MCNs (Fig 10(E) and 10(F)) with core mem-

ber Control-elevated genus Turicibacter, so we call this cluster FT.

At the lowest level we kept cluster names as consistent as possible with genus-level member-

ship (for example, a cluster mostly comprised of FL2 genus-level taxa would also be named

FL2 at the lowest level). Both MCNs (Fig 10(E) and 10(F)) now include a mixed-family, Bacter-

oidetes-dominant cluster BM1 (pink), and Control includes a second (BM2, orchid). S5–S7

Tables list all clusters, members, and centroids at all levels. As with earlier tables, we will

extract portions relevant to our discussion.
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Finally, to measure cluster size, tightness, and interactions, we produce a heatmap of taxa

correlations (Fig 11) with taxa ordered on the x- and y-axes by Fig 10 cluster. Green/red inten-

sity at each point (x, y) denotes the degree of positive/negative correlation between taxa x and

y (symmetric, by definition). Clusters appear as rough squares of positive (green) correlations

on the diagonal. We outline each box with the same color as its corresponding Fig 10 cluster.

We first continue to pursue observations (A)-(C) from the upper taxonomic levels. After-

wards, we discuss any new and interesting trends.

(A) A core Proteobacteria-Bacteroidetes positive correlation (est. cooperation) forms. Recall

the orders involved in this correlation were Burkholderiales (Proteobacteria) and Bacteroidales

Fig 9. Lower-level MCNs. MCNs at the family (A), genus (B), and species (C) taxonomic levels. Network visual

properties, including node and edge size, color, and orientation, are the same as Fig 8. Taxa noted throughout our

analyses are labeled (* = family-level taxon, # = genus-level taxon).

https://doi.org/10.1371/journal.pone.0273890.g009
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(Bacteroidetes). This corresponds to cluster BB, with genus Sutterella and multiple Bacter-
oidales taxa. In ADHD this cluster is larger and includes more Bacteroidales plus some Fir-

micutes, and nearly all members are positively correlated with its centroid Bacteroides.
Additionally it has fewer negative correlations (est. competition) with other clusters.

Cluster BB is the only cluster with order Burkholderiales and Bacteroidales descendants.

Table 8 shows all correlations involving Burkholderiales and Bacteroidales lineages, organized

and shaded using the same scheme as Table 6. One core positive correlation survives all six tax-

onomic levels in Control and ADHD (12 MCNs total, the only correlation in our entire dataset

Fig 10. Clusters. Same MCNs as Fig 9, after clustering with the affinity propagation (AP) algorithm [85]. Family-level

clusters are each given a unique color, and labeled with their dominant phylum and member family. New clusters that

form at each lower taxonomic level are labeled, colored with shades corresponding to their dominant phylum/family

when applicable—i.e. at the genus level FL1-FL3 are different shades of gold (family-level FL). Taxa noted throughout

our analyses are labeled (* = family-level taxon, # = genus-level taxon).

https://doi.org/10.1371/journal.pone.0273890.g010
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with this property). This occurs between genera Sutterella and Bacteroides. Several others

involving Sutterella and its family Alcaligenaceae with cluster BB members are present only in

ADHD–support for a larger cluster BB in ADHD. Alcaligenaceae/Sutterella are immediately

visible in Fig 9, as the only Proteobacteria (royal blue) among a slew of Bacteroidetes (dark

purple).

Fig 10 also illustrates the increase in ADHD cluster BB size, as do the heatmaps (Fig 11,

magenta square). Table 9 quantifies differences in node and edge count.

Fig 11. Heatmaps. Heatmap representation of taxa correlations (green = positive, red = negative), with taxa organized

on each axis by cluster (symmetric matrix). The area corresponding to the intersection of each cluster with itself is

outlined with a box using the corresponding cluster color in Fig 10. Taxa and clusters noted throughout our analyses

are labeled on the axes.

https://doi.org/10.1371/journal.pone.0273890.g011
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Table 9 shows cluster BB size to mysteriously drop in Control from the genus to the lowest

level, from six taxa down to three. A closer look at Fig 10(C) and 10(E) shows several genus-

level BB members may be joining a mixed-family, Bacteroidetes-dominant cluster (BM1, pink)

at the lowest level. Table 10, which shows BB and Control BM1 members, confirms this. Core

BB members are shown in bold, while italicized members are unique to Control or ADHD.

Taxa of genus-level Control cluster BB members Odoribacter, Adlercruetzia, Parabacteroides
(P. distasonis) and Bacteroides (B. ovatus) compose Control cluster BM1 at the lowest level.

Table 11 supports weakened connections between BB and BM1 taxa in Control, showing

higher intra-correlation values (0.61 and 0.62) relative to inter-correlation (0.44).

Table 10 also shows cluster BB members that differ between the MCNs. Cluster BB gains a

different Actinobacteria–species B. longum (ADHD) and genus Adlercruetzia (Control, even-

tually joining BM1). The presence of Firmicutes (yellow) is exclusive to ADHD, including fam-

ily Streptococcaceae and member genus Streptococcus, plus genus Clostridium. Family

Odoribacteriaceae (reported by LEfSe as ADHD-elevated) joins cluster BB only in ADHD, and

the sole Clostridium connection to cluster BB is with genus Butyricimonas (Fig 9(D)), a taxon

reported as ADHD differentially abundant by two methods (LEfSe and ALDEx2).

Table 10 also indicates BB/BM1 centroids, which we see across the board for ADHD are

genus Bacteroides and its family Bacteroidaceae. In Control this belongs to Porphyromonada-
ceae (family) and descendant Parabacteroides (genus), until the BB-BM1 “split” where genus

Bacteroides becomes centroid of BB and species P. distasonis of BM1. Table 12 shows connec-

tivity of each of these taxa within their corresponding cluster. Percentagewise, in ADHD Bac-
teroidaceae/Bacteroides is a much stronger centroid; in fact over all levels only one cluster BB
taxon was not positively correlated (Clostridium, genus level). Particularly given the ADHD

cluster BB size increase, this could imply a significant role of Bacteroidaceae/Bacteroides in sta-

bilizing a large ADHD Bacteroidetes-dominant community (would require additional experi-

ments to verify).

Table 8. Burkholderiales-Bacteroidales correlations.

Phylum Class Order Family Genus Species

Proteobacteria-

Bacteroidetes

+ Betaproteobacteria-

Bacteroidia

+ Burkholderiales-

Bacteroidales

+ Alcaligenaceae-

Bacteroidaceae

+ Sutterella-

Bacteroides

+ Sutterella-

Bacteroides

+

Sutterella- B.

uniformis

+

Alcaligenaceae-

Porphyromonadaceae

+ Sutterella-
Parabacteroides

Sutterella-P.

distasonis

+

Alcaligenaceae-

Odoribacteriaceae

+ Sutterella-

Butyricimonas

+ Sutterella-

Butyricimonas

+

Alcaligenaceae-Rikenellaceae Sutterella-

Rikenellaceae

+

Correlations between order Burkholderiales-Bacteroidales lineages, shaded using the same scheme as Table 6 (grey present in both MCNs, purple only ADHD).

https://doi.org/10.1371/journal.pone.0273890.t008

Table 9. Cluster BB size.

Taxonomic Level Family Genus Lowest

MCN Control ADHD Control ADHD Control ADHD

Cluster BB size: Taxa (+ Edges) 4 (3) 6 (7) 6 (7) 7 (9) 3 (2) 7 (11)

Control and ADHD cluster BB size. Notation: Taxa (edges).

https://doi.org/10.1371/journal.pone.0273890.t009
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Interestingly ATria (Table 13) shows Bacteroidaceae/Bacteroides and lineages to nearly

always have higher importance in Control, supporting a more “global” importance to overall

gut ecology as opposed to a more local importance (cluster BB) in ADHD. MCNs agree, as in

ADHD Bacteroidaceae/Bacteroides have few connections outside cluster BB (Fig 10(B), 10(D)

and 10(F)). In Control (Fig 10(A), 10(C) and 10(E)) Bacteroidaceae/Bacteroides have many

external connections, mostly negative (est. competition).

Control MCNs (Fig 10(A), 10(C) and 10(E) and heatmaps) (Fig 11(A), 11(C) and 11(E),

magenta rectangle) show negative correlations (red) to be fairly evenly distributed among

Table 10. Bacteroidaceae/Bacteroides dominant clusters.

Control ADHD

Level Community Cluster Type Taxon Phylum Taxon Phylum

Family Bacteroidetes-dominant (B) Bacteroidaceae-dominant (BB) Bacteroidaceae Bacteroidaceae*
Porphyromonadaceae* Porphyromonadaceae

Alcaligenaceae Alcaligenaceae

Rikenellaceae Rikenellaceae

Odoribacteraceae
Streptococcaceae

Level Community Cluster Type Taxon Phylum Taxon Phylum

Genus Bacteroidetes-dominant (B) Bacteroidaceae-dominant (BB) Bacteroides Bacteroides*
Parabacteroides* Parabacteroides

Sutterella Sutterella

Rikenellaceae Rikenellaceae

Odoribacter Butyricimonas
Adlercruetzia Streptococcus

Clostridium
Level Community Cluster Type Taxon Phylum Taxon Phylum

Species Bacteroidetes-dominant (B) Bacteroidaceae-dominant (BB) Bacteroides* Bacteroides*
Bacteroides uniformis Bacteroides uniformis

Sutterella Sutterella

Parabacteroides distasonis
Rikenellaceae
Butyricimonas
Bifidobacterium longum

Bacteroidetes, Mixed (BM1) Odoribacter

Bacteroides ovatus

Parabacteroides distasonis*
Adlercruetzia

Bacteroides, Bacteroidaceae dominant clusters (BB) and Bacteroidetes, Mixed family (BM1) cluster in Control. Core taxa are bold, taxa exclusive to one MCN (Control

or ADHD) are italicized, and centroids are marked with an asterisk (*). Phylum: purple = Bacteroidetes, yellow = Firmicutes, brown-Actinobacteria,

blue = Proteobacteria.

https://doi.org/10.1371/journal.pone.0273890.t010

Table 11. Bacteroidaceae-dominant community intra- and inter-correlations.

Control BB (Intra) Control BM1 (Intra) Control BB-BM1 (Inter) ADHD BB (Intra)

Taxa Edges Mean Correlation Taxa Edges Mean Correlation Taxa Edges Mean Correlation Taxa Edges Mean Correlation

3 2 0.61 ± 0.15 4 4 0.62 ± 0.1 4 3 0.44 ± 0.02 7 11 0.56 ± 0.12

Intra-correlations between cluster BB members, and BB-BM1 inter-correlations in Control.

https://doi.org/10.1371/journal.pone.0273890.t011
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cluster BB taxa. By contrast in ADHD (Figs 10–11(B)), nearly all cluster BB negative correla-

tions are localized to family Porphyromonadaceae (ranked #1 by ATria). Fig 9(B) shows Por-
phyromonadaceae to be the sole cluster BB member negatively correlated with the Firmicutes-

dominant portion (Fig 9(B), upper right, collectively more than 70% of the population).

Table 14 shows that for all MCNs, in Control more than two-thirds of cluster BB had nega-

tive correlations with members of other clusters, compared to less than half in ADHD. Nega-

tive edge count was also almost always higher for Control, despite a smaller cluster BB.

Collectively these results show that in Control cluster BB is smaller, and more connected to

other clusters, primarily through negative correlations (est. competition). In ADHD cluster BB
is larger, and more isolated.

Table 15 provides a few final interesting observations for various Bacteroidetes taxa.

(B) In Control, taxa in (A) have more negative edges with Actinobacteria (est. competition),
especially Bifidobacteriales. We now know taxa from (A) to correspond to cluster BB, which in

both MCNs contained one core Proteobacteria (family Alcaligenaceae/genus Sutterella) and

otherwise primarily Bacteroidetes. We also observed cluster BB taxa to have far more negative

correlations (est. competition) with other clusters in Control. We now see if this is also true

with order Bifidobacteriales lineages, including genus Bifidobacterium. Our analysis in fact

reveals that negative correlations between Bifidobacterium or any parent/descendant with

any Bacteroidetes or Proteobacteria are exclusive to Control and absent in ADHD.

Table 16 shows all correlations involving Bifidobacterium and its lineages, grouped and col-

ored as in previous tables. Not only are negative Bacteroidetes correlations exclusive to Control

(orange), but these taxa include the most abundant Bacteroidetes family/genus Bacteroidaceae/

Bacteroides (ADHD cluster BB centroid), as well as family/genus Porphyromonadaceae/Para-
bacteroides (Control cluster BB centroid). Another appears at the lowest level between soecues

B. adolescentis and B. ovatus. With Proteobacteria, negative Bifidobacterium correlations are

Table 12. Cluster BB centroid connectivity.

Level Family Genus Lowest

MCN Control ADHD Control ADHD Control ADHD

Bacteroidaceae/Bacteroides 2/3 (66%) 5/5 (100%) 3/5 (60%) 5/6 (84%) 2/2 (100%) 6/6 (100%)

Porphyromonadaceae/Parabacteroides/P. distasonis* 2/3 (66%) 2/5 (40%) 4/5 (80%) 3/6 (50%) 3/3* (100%) 3/6 (50%)

Connectivity between the centroid of cluster BB (* = BM1) and the rest of its cluster members.

https://doi.org/10.1371/journal.pone.0273890.t012

Table 13. Bacteroidetes rankings.

Phylum Class Order Family Genus Lowest Possible

Bacteroidetes (NR/#T2) Bacteroidia (NR/#1) Bacteroidales (#1/#1) Bacteroidaceae (#T9/#T12) Bacteroides (#10/#T23) B. uniformis (#12/#7)

B. ovatus (#2/#T20)

Bacteroides (#T23/#T28)

Odoribacteriaceae (NR/#2) Odoribacter (#9/#T21) Odoribacter (#3/#T20)

Butyricimonas (NR/#4) Butyricimonas (NR/#17)

Porphyromonadaceae (#T7/#1) Parabacteroides (#T12/NR) Parabacteroides (#T19/#T24)

P. distasonis (NR/#T24)

Prevotellaceae (NR/#5) Prevotella (NR/#18)

Rikenellaceae (#T7/#3) Rikenellaceae (#T12/#8) Rikenellaceae (#T19/#8)

ATria rankings of Bacteroidetes taxa. Dark orange = only ranked in Control, dark purple = only ranked in ADHD, light orange = higher ranked in Control, light

purple = higher ranked in ADHD, grey = evenly ranked. Bold taxa are ranked #1.

https://doi.org/10.1371/journal.pone.0273890.t013
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also observed with genus Sutterella (core cluster BB member) and family Enterobacteriaceae,

also only in Control. Heatmaps confirm family/genus Bifidobacteriaceae/Bifidobacterium to be

negatively correlated with cluster BB taxa only in Control (Fig 11(A)–11(D), intersection of

brown and magenta rectangles). By contrast, the only ADHD correlation is positive and within

cluster BB (species B. longum with species B. uniformis).
Table 16 also shows Bifidobacterium to even have far more Firmicutes connections (positive

and negative) in Control. Collectively 24 correlations were observed in Control, compared to 9

in ADHD, supporting an overall increase in Bifidobacterium participation in Control. ATria

(Table 17) also almost uniformly ranks Bifidobacterium and its lineages higher in Control.

Again, this is despite Bifidobacterium average abundances being relatively the same (slightly

higher in ADHD in fact, 3.6% to 3.2%).

(C) A Shift in Firmicutes-Proteobacteria dynamics. Only two Proteobacteria families/genera

were consistently present. One was genus Sutterella (family Alcaligenaceae), already noted as a

core cluster BB member. The other is family Enterobacteriaceae, which our analysis supports

being mostly responsible for this shift.

Table 18 shows all Proteobacteria-Firmicutes correlations. A couple of negative correlations

can be seen involving family/genus Alcaligenaceae/Sutterella, with Firmicutes families Rumi-
nococcaceae (Control) and Clostridiaceae (both). Far more significant are the differences

involving family Enterobacteriaceae. One is its negative correlation with genus Oscillospira in

ADHD (genus level), that becomes a positive correlation with Oscillospira in Control (lowest

level). This is the only time, over all twelve MCNs, where a correlation sign changed between

the same two taxa in Control vs. ADHD.

Interesting shifts involving family Enterobacteriaceae and various Firmicutes occur even at

the family level, however. A small mixed-family, Firmicutes-dominant cluster FM forms (Fig

10(A), upper left), consisting of families Mogibacteriaceae, Christensenellaceae, and Erysipelo-
trichiaceae (Table 19). In ADHD, Enterobacteriaceae instead joins family Mogibacteriaceae to

form a small two-taxon mixed cluster M (Fig 10(B), upper left, and Table 19).

Dynamics of FM and M taxa change between the MCNs. Fig 10(A) and 10(B) shows a dis-

tinguishing core FM/M feature is the negative correlation with family Rikenellaceae of cluster

BB, but the taxon involved changes from family Erysipelotrichiaceae in Control to family Mogi-
bacteriaceae in ADHD. Table 20 (ATria) shows the two taxa from Control cluster FM

Table 14. Negative correlations between cluster BB and other clusters.

Level Family Genus Lowest

MCN Control ADHD Control ADHD Control ADHD

Cluster BB (-) Edges with Other Clusters (Participation Rate) 7 (100%) 5 (33%) 10 (88%) 4 (43%) 5 (67%) 5 (43%)

Amount of negative correlations between members of Bacteroidaceae-dominant cluster BB and other clusters. Notation: Number (participation rate).

https://doi.org/10.1371/journal.pone.0273890.t014

Table 15. Additional Bacteroidetes observations.

Taxa Observation

Family Odoribacteriaceae ADHD-elevated, ADHD cluster BB member, only ranked in ADHD.

Family Prevotellaceae and member

genus Prevotella
ADHD negative correlation with Bacteroidaceae/Bacteroides is the only

negative correlation between two Bacteroidetes taxa in any MCN. Only

ranked in ADHD,

Family Rikenellaceae Ranked in every MCN at every level, and always higher for ADHD.

Additional observations we make for some other Bacteroidetes taxa.

https://doi.org/10.1371/journal.pone.0273890.t015

PLOS ONE ADHD and the gut microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0273890 August 18, 2023 26 / 48

https://doi.org/10.1371/journal.pone.0273890.t014
https://doi.org/10.1371/journal.pone.0273890.t015
https://doi.org/10.1371/journal.pone.0273890


“replaced” by family Enterobacteriaceae in ADHD cluster M, families Christensenellaceae and

Erysipelotrichiaceae, are only ranked in Control, and family Mogibacteriaceae only ranked in

ADHD. This applied across all descendants, with the one notable exception being genus

Coprobacillus (family Erysipelotrichiaceae), ranked #1 for ADHD at the genus and lowest levels

(the only taxon to be ranked #1 in two MCNs). Recall Coprobacillus was also reported by

Table 16. Bifidobacterium correlations.

Phylum Class Order Family Genus Lowest Possible

Actinobacteria-

Bacteroidetes

- Actinobacteria-

Bacteroidia

- Bifidobacteriales-

Bacteroidales

- Bifidobacteriaceae–

Bacteroidaceae

- Bifidobactrium

-Bacteroides

- B. adolescentis–B.

ovatus

-

B. longum–B.uniformis +

Bifidobacteriaceae–

Porphyromonadaceae

- Bifidobacterium—

Parabacteroides

-

Actinobacteria

Proteobacteria

- Actinobacteria

-Betaproteobacteria

- Bifidobacteriales-
Burkholderiales

Bifidobacteriaceae-
Alcaligenaceae

Bifidobacterium–

Sutterella

-

Actinobacteria-
Gammaproteobacteria

Bifidobacteriales-
Enterobacteriales

Bifidobacteriaceae-
Enterobacteriaceae

Bifidobacterium-
Enterobacteriaceae

Bifidobacterium 2 –

Enterobacteriaceae

-

Actinobacteria-
Firmicutes

Actinobacteria- Bacilli Bifidobacteriales-
Turicibacteriales

Bifidobacteriaceae-
Turicibacteriaceae

Bifidobacterium-
Turicibacter

Bifidobacterium 1 –

Turicibacter

+

Actinobacteria-Clostridia Bifidobacteriales

-Clostridiales

+ Bifidobacteriaceae-

Lachnospiraceae

+ Bifidobacterium

-Lachnospiraceae 2

+ Bifidobacterium 1 –

Blautia 2

-

Bifidobacterium 1 –

Ruminococcus [L]

+

B. longum–Blautia 1 +

Bifidobacteriales–Clostridiales Bifidobacterium-
Clostridiales

B. adolescentis–

Clostridiales 1

+

Bifidobacterium-
Ruminococcaceae

Bifidobacterium 2 –

Ruminococcaceae

-

B. longum–Oscillospira -

Bifidobacteriaceae–
Veillonellaceae

Bifidobacterium-
Veillonella

Bifidobacterium 2 –

Dialister

-

Actinobacteria-
Actinobacteria

Actinobacteria-
Actinobacteria

Bifidobacteriales–
Bifidobacteriales

Bifidobacteriaceae–
Bifidobacteriaceae

Bifidobacterium-
Bifidobacterium

Bifidobacterium 2 –B.

adolescentis

-

Actinobacteria-
Coriobacteria

Bifidobacteriales-

Coriobacteriales

+ Bifidobacteriaceae-

Coriobacteriaceae

+ Bifidobacterium-
Adlercruetzia

Bifidobacterium 1

-Adlercruetzia

+

Bifidobacterium-

Collinsella

+

Bifidobacterium-
Eggerthella

B. longum–E.lenta -

Correlations involving Bifidobacterium and its lineages. Orange = only found in Control, purple = only found in ADHD, grey = found in both. +(green) = positive

correlation, -(red) = negative correlation.

https://doi.org/10.1371/journal.pone.0273890.t016

Table 17. Bifidobacterium rankings.

Phylum Class Order Family Genus Lowest Possible

Actinobacteria (#1/

#1)

Actinobacteria (#2/

NR)

Bifidobacteriales (#T2/

#T5)

Bifidobacteriaceae (#5/

NR)

Bifidobacterium (NR/

#T19)

Bifidobacterium 1 (#10/

NR)

Bifidobacterium 2 (#1/11)

B. longum (#15/NR)

ATria rankings of Bifidobacterium and lineages. Dark orange = only ranked in Control, dark purple = only ranked in ADHD, light orange = higher ranked in Control,

light purple = higher ranked in ADHD, grey = evenly ranked. Bold taxa are ranked #1.

https://doi.org/10.1371/journal.pone.0273890.t017
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DESeq2 as elevated in ADHD compared to Control. Other members of the Erysipelotrichaceae
family (including the family itself) were only ranked by ATria in the case of Control. We label

it in Fig 10(D) and 10(F), noting its negative correlations with multiple Firmicutes-dominant

clusters.

Family Enterobacteriaceae was also only ranked in ADHD, across all three lower levels. Its

Oscillospira positive correlation (Table 18) is the only Control correlation involving Enterobac-
teriaceae, and Enterobacteriaceae actually joins genus Oscillospira’s cluster (FR, Fig 10(E)) in

Control. The sign change takes place at the genus level in ADHD (Fig 9(D)), where Oscillospira
and Enterobacteriaceae are negatively correlated. Although this correlation did not persist to

the lowest level (Fig 9(F)), Enterobacteriaceae is still positively correlated with genus Anaeros-
tipes, a taxon negatively correlated with Oscillospira across the board. We therefore observe

Enterobacteriaceae dynamics to shift from a state that favors Oscillospira cooperation in Con-

trol, to Oscillospira competition in ADHD. The role of Enterobaceriaceae in gut ecology has

historically been controversial [145], with both beneficial [146] and pathogenic [147] proper-

ties emerging. Gut dysbiosis has actually been shown to trigger horizontal gene transfer

between the two types [148].

Table 18. Proteobacteria-Firmicutes correlations.

Phylum Class Order Family Genus Lowest Possible

Proteobacteria-

Firmicutes

- Betaproteobacteria—
Clostridia

Burkholderiales-
Clostridiales

Alcaligenaceae–

Ruminococcaceae

-

Alcaligenaceae—

Clostridiaceae-

- Sutterella–

Clostridiaceae 2

- Sutterella–

Clostridiaceae 2

-

Gammaproteobacteria—
Bacilli

Enterobacteriales—

Turicibacteriales

-

Gammaproteobacteria–

Clostridia

- Enterobacteriales-
Clostridiales

Enterobacteriaceae–

Mogibacteriaceae

+

Enterobacteriaceae-
Lachnospiraceae

Enterobacteriaceae–
Anaerostipes

Enterobacteriaceae-

Anaerostipes

+

Ruminococcaceae-
Enterobacteriaceae

Enterobacteriaceae–

Oscillospira

- Enterobacteriaceae–

Oscillospira

+

Gammaproteobacteria—
Erysipelotrichi

Enterobacteriales-
Erysipelotrichiales

Enterobacteriaceae-
Erysipelotrichiaceae

Enterobacteriaceae–

Erysipelotrichiaceae 2

+ Enterobacteriaceae–

Erysipelotrichiaceae 2

+

Deltaproteobacteria—

Clostridia

- Desulfovibrionales–

Clostridiales

-

Correlations between Proteobacteria and Firmicutes taxa. Orange = only found in Control, purple = only found in ADHD, grey = found in both. +(green) = positive

correlation, -(red) = negative correlation.

https://doi.org/10.1371/journal.pone.0273890.t018

Table 19. Mixed-family clusters.

Control ADHD

Community Cluster Type Cluster Taxon Phy Cluster Taxon Phy

Firmicutes-dominant (F) Mixed (FM) FM Mogibacteriaceae
FM Christensellaceae*
FM Erysipelotrichiaceae

Mixed (M) N/A M Mogibacteriaceae
M Enterobacteriaceae

Control and ADHD clusters consisting of taxa from multiple families. Phylum: purple = Bacteroidetes, yellow = Firmicutes, brown-Actinobacteria,

blue = Proteobacteria.

https://doi.org/10.1371/journal.pone.0273890.t019
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New observations. We make the following new observations at the lower levels.

(D) LEfSe reported taxa: Genera Turicibacter and Odoribacter. Earlier we noted ADHD-ele-

vated family Odoribacteriaceae as an ADHD cluster BB member (Table 15). We now observe

two remaining LEfSe-reported genera: Turicibacter (Control) and Odoribacter (ADHD).

Cluster FT (Fig 10, orange) was the only Firmicutes-dominant cluster with members posi-

tively correlated with any Bacteroidetes-dominant cluster (BB in ADHD, BM1 in Control).

We named this cluster FT because of core member genus Turicibacter. Turicibacter (Firmi-

cutes, Control-elevated), which joins genus Phascolarctobacterium (Firmicutes, reduced in

Inattention, [63]) to form FT at the genus level in ADHD (Fig 10(D)), where it is not present

in Control. At the lowest level, FT is slightly larger (by one taxon) in ADHD. Supplementing

the earlier trend of less cluster BB negative correlations (est. competition) in ADHD, this also

supports the presence of a larger cluster with positive correlations (est. cooperation) as well,

with Turicibacter as its centroid (Table 21).

In ADHD Turicibacter provides the sole genus-level (Fig 10(D)) FT-BB positive correlation,

with genus Parabacteroides (Bacteroidetes, previously reported elevated in Hyperactivity,

[59]). At the lowest level (Fig 10(F)) Parabacteroides joins FT, and along with Turicibacter
forms FT-BB positive correlations, with member species P. distasonis. Interestingly in Control

(Fig 10(E)), the FT-BB positive correlation does not involve Firmicutes or Bacteroidetes taxa at

Table 20. Mixed-family cluster member rankings.

Phylum Class Order Family Genus Lowest Possible

Firmicutes (#2/#T2) Clostridia (#T3/#T3) Clostridiales (#T2/#3) Christensenellaceae (#2/

NR)

Christensenellaceae (NR/
NR)

Christensenellaceae (#18/

NR)

Mogibacteriaceae (NR/

#T6)

Mogibacteriaceae (NR/#6)

Erysipelotrichia (NR/NR) Erysipelotrichales (NR/

#T3)

Erysipelotrichaceae (#3/

NR)

Coprobacillus (NR/#1) Coprobacillus (#T31/#1)

Erysipelotrichaceae 1 (#6/

NR)

Erysipelotrichaceae 1 (#16/

NR)

Erysipelotrichaceae 2 (#11/

NR)

Eubacterium (#T14/NR) E. dolicum (#T29/NR)

Proteobacteria (NR/
NR)

Gammaproteobacteria (#T3/

NR)

Enterobacteriales (#T3/

NR)

Enterobacteriaceae (NR/

#T6)

Enterobacteriaceae (NR/

#7)

Enterobacteriaceae (NR/

#T26)

Members of mixed family clusters from Table 19, their lineages, and ATria rankings. Dark orange = only ranked in Control, dark purple = only ranked in ADHD, light

orange = higher ranked in Control, light purple = higher ranked in ADHD, grey = evenly ranked. Bold taxa are ranked #1.

https://doi.org/10.1371/journal.pone.0273890.t020

Table 21. FT members.

Control ADHD

Level Community Cluster Type Taxon Phy Taxon Phy

Family Firmicutes-dominant (F) Turicibacter-core (FT) Not present. Turicibacter
Phascolarctobacterium

Level Community Sub-Community Taxon Phy Taxon Phy

Genus Firmicutes-dominant (F) Turicibacter-core (FT) Turicibacter Turicibacter*
Ruminococcus [L] Phascolarctobacterium
Bifidobacterium 2* Clostridiales 2

Parabacteroides

Cluster FT (Firmicutes-dominant, Turicibacter-core) members. Phylum: purple = Bacteroidetes, yellow = Firmicutes, brown-Actinobacteria, blue = Proteobacteria.

https://doi.org/10.1371/journal.pone.0273890.t021
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all, but rather two Actinobacteria–Bifidobacterium 1 (FT centroid), and Adlercruetzia (BB).

This continues our observed increases in Actinobacteria and particularly Bifidobacterium
involvement in Control gut ecology.

Cluster FC forms in Control (Fig 10(C) and 10(E), aqua) and contains two family Clostri-
diaceae taxa. In both MCNs these taxa negatively correlate with multiple cluster BB members,

and in ADHD (Fig 10(F)) family Clostridiaceae 1 has negative correlations with BB centroid

genus Bacteroides plus taxa involved in FT-BB cooperation: species P. distasonis, and FT cen-

troid genus Turicibacter. In both MCNs, they participate in correlations that favor cluster BB
competition (especially the more abundant Clostridiaceae 1).

Exclusive to ADHD is a negative correlation (est. competition) between these family Clos-
tridiaceae taxa and ADHD-elevated genus Odoribacter–both at the genus level (Fig 10(D)),

and family Clostridiaceae 1 at the lowest level (Fig 10(F)). Genus Odoribacter was reported by

LEfSe as elevated in ADHD, and this negative correlation implies that an increase in Odoribac-
ter abundance will decrease family Clostridiaceae 1. ALDEx2 reported Clostridiaceae 1 as dif-

ferentially abundant in Control, and upon further inspection Clostridiaceae 1 average relative

abundance is indeed reduced by a factor of two in ADHD vs. Control. Cooperation between

families Clostridiaceae 1 and 2 in Control (forming FC) is also absent in ADHD.

(E) Changes in the role of genus Adlercruetzia (Actinobacteria). In contrast to genus Bifido-
bacterium (Bifidobacteriaceae), Adlercruetzia is a member of the other consistently present

Actinobacteria family, Coriobacteriaceae. While the distinguishing feature of family/genus Bifi-
dobacteriaceae/Bifidobacterium was increased Control participation, the distinguishing feature

of family Coriobacteriaceae appears to be changes in cluster membership. In fact over all Corio-
bacteriaceae descendants, only once (Collinsella, genus level, cluster AM, Fig 10(C) and 10(D))

were any in the same Control and ADHD cluster. Table 22 also shows ATria results to be

more mixed for family Coriobacteriaceae, compared to family Bifidobacteriaceae (Table 19).

We earlier noted genus Adlercruetzia as the Actinobacteria member of cluster BB/BM1 in

Control, and (along with genus Bifidobacterium 1) connecting clusters FT and BB. Table 23

shows that outside of Bifidobacterium 1, its positive correlations in Control were entirely with

Bacteroidetes taxa (all BB/BM1 members). By contrast in ADHD, Adlercruetzia relationships

mostly occur with Firmicutes, including a cluster membership with genus/species Eubacte-
rium/E. dolicum. Several negative correlations are seen between genus Adlercruetzia and dif-

ferent Firmicutes, with no overlap between Control and ADHD. This suggests genus

Adlercruetzia may play a significantly different role in Control and ADHD gut ecologies.

(F) Bacteroidetes-Firmicutes positive correlations (est. cooperation) are entirely exclusive to
ADHD, and absent in Control. Table 24 shows all Bacteroidetes-Firmicutes positive correla-

tions. They are entirely limited to ADHD, and with one exception (genus Clostridium) involve

class Bacilli descendants.

We have already seen most of these, including genera Clostridium and Butyricimonas, and

the ADHD FT-BB connections involving genera Turicibacter and Parabacteroides, and species

Table 22. Coriobacteriaceae rankings.

Phylum Class Order Family Genus Lowest Possible

Actinobacteria (#1/#1) Coriobacteria (#1/NR) Coriobacteriales (NR/#T5) Coriobacteriaceae (NR/#4) Adlercruetzia (NR/#17) Adlercruetzia (#14/NR)

Collinsella (NR/#T19) C. aerofaciens (NR/#15)

Coriobacteriaceae (#18/NR)

Eggerthella (#4/NR) E. lenta (#T25/NR)

ATria rankings of Coriobacteriaceae and its lineages. Dark orange = only ranked in Control, dark purple = only ranked in ADHD, light orange = higher ranked in

Control, light purple = higher ranked in ADHD, grey = evenly ranked. Bold taxa are ranked #1.

https://doi.org/10.1371/journal.pone.0273890.t022
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P.distasonis. We now analyze the remaining top row, between genera Bacteroides (family Bac-
teroidaceae) and Streptococcus (family Streptococcaceae).

Firmicutes taxa were only ever present in cluster BB in ADHD, and we earlier noted family

Streptococcaceae and its genus Streptococcus as two of those taxa. Their cluster BB positive cor-

relation was with centroid family/genus Bacteroidaceae/Bacteroides. Additionally cluster BB
had almost no negative correlations (est. competition) with FL/FR (collectively 70% of the pop-

ulation) in ADHD, compared to a significant amount in Control.

What makes genus Streptococcus interesting for ADHD is that across all MCNs, it forms the

only positive correlation between cluster BB and FL/FR (Fig 10(D)). In other words, in addi-

tion to estimating significantly less BB-(FL/FR) competition in ADHD, our MCNs also esti-

mate cooperation only in ADHD, between genera Streptococcus (BB) and Blautia (FL1).

Table 23. Adlercruetzia correlations.

Phylum Class Order Family Genus Lowest Possible

Actinobacteria-

Bacteroidetes

- Coriobacteria-

Bacteroidia

- Coriobacteriales

-Bacteroidales

- Coriobacteriaceae–

Bacteroidaceae

- Adlercreutzia-

Bacteroides

+ Adlercreutzia- B.

uniformis

+

Adlercreutiza-

Parabacteroides

+ Adlercreutzia- P.

distasonis

+

Adlercreutzia-

Odoribacter

+

Actinobacteria-
Firmicutes

Actinobacteria-
Clostridia

Coriobacteriales-
Costridiales

Coriobacteriaceae-
Erysipelotrichaceae-

Adlercreutzia-

Eubacterium

+ Adlercreutzia- E.

dolicum

+

Coriobacteriaceae-
Lachnospiraceae

Adlercreutzia -Blautia -

Adlercreutzia–

Lachnospira

- Adlercreutzia—

Lachnospira

-

Adlercreutzia—

Lachnospiraceae 1

-

Adlercreutzia—

Lachnospiraceae 2

Adlercreutzia—

Lachnospiraceae 2

-

Coriobacteriaceae-
Ruminococcaceae

Adlercreutzia–

Ruminococcus

- Adlercreutzia–

Ruminococcus

-

Actinobacteria-
Actinobacteria

Actinobacteria-
Coriobacteria

Bifidobacteriales-

Coriobacteriales

+ Bifidobacteriaceae-

Coriobacteriaceae

+ Bifidobacterium-
Adlercruetzia

Bifidobacterium 1

-Adlercruetzia

+

Coriobacteria—
Coriobacteria

Coriobacteriales—
Coriobacteriales

Coriobacteriaceae-
Coriobacteriaceae

Adlercruetzia-

Coriobacteriaceae

+

Correlations involving genus Adlercreutzia and its lineages. Orange = only found in Control, purple = only found in ADHD, grey = found in both. +(green) = positive

correlation, -(red) = negative correlation.

https://doi.org/10.1371/journal.pone.0273890.t023

Table 24. Bacteroidetes-Firmicutes positive correlations.

Phylum Class Order Family Genus Lowest Possible

Bacteroidetes-

Firmicutes

- Bacteroidia
-Bacilli

Bacteroidales
Lactobacillales

Bacteroidaceae

Streptococcaceae

+ Bacteroides

-Streptococcus

+

Porphyromonadaceae
Turicibacteriaceae-

Parabacteroides

-Turicibacter

+ Parabacteroides-

Turicibacter

+

Parabacteroides

-Turicibacter

+ P.distasonis

-Turicibacter

+

Bacteroidales–

Clostridiales

- Odoribacteriaceae–
Clostridiaceae

Butyricimonas

-Clostridium

+

Bacteroidetes-Firmicutes positive correlations, over all MCNs. Orange = only found in Control, purple = only found in ADHD, grey = found in both. +(green) =

positive correlation, -(red) = negative correlation.

https://doi.org/10.1371/journal.pone.0273890.t024
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Fig 10(D) and 10(F) also show Streptococcus to be negatively correlated with genus Oscillos-
pira in ADHD, a taxon we noted earlier its correlation sign change with family Enterobacteria-
ceae. ATria (Table 25) also only ranks family/genus Streptococcaceae/Streptococcus as

important in ADHD.

(G) A shift in genera Blautia-Oscillospira dynamics, and their respective clusters. Thus far

genus Oscillospira has been noted for two ADHD-exclusive negative correlations, with taxa

only ranked in ADHD: family Enterobacteriaceae and genus Streptococcus. Enterobacteriaceae-

Oscillospira was the only correlation to ever change sign from Control (positive) to ADHD

(negative). Streptococcus was noted for its correlation with genus Blautia, the sole positive cor-

relation between the largest Bacteroidetes-dominant cluster (BB) and Firmicutes-dominant

clusters (FL/FR) in any MCN.

Previous studies have indicated butyrate-producing Oscillospira as a healthy gut taxon

[149], specifically associated with leanness [150]. Blautia is actually a taxon that has been asso-

ciated with obesity [151]. And interestingly in the Control MCN (Fig 10(C) and 10(E)) Blautia
and Oscillospira are negatively correlated, but not in ADHD (Fig 10(D) and 10(F)).

Since obesity has been associated with ADHD [152], the shift in Enterobacteriaceae (Oscil-
lospira cooperation in Control, competition in ADHD) and Streptococcus (Blautia cooperation

and Oscillospira competition in ADHD) correlations become interesting, favoring Blautia
cooperation and Oscillospira competition. Indeed correlation can never imply causation and

further experimental verification is required. But ATria results (Table 26) also support this,

ranking Blautia higher in ADHD and Oscillospira in Control.

In fact our heatmap (Fig 11(C)–11(F)) shows by intersecting Oscillospira’s row (small green

rectangle) with the columns of Blautia’s cluster (gold rectangles, Control FL3, ADHD FL1)

that Oscillospira is negatively correlated with Blautia’s entire cluster in Control, and these cor-

relations are completely absent in ADHD.

The lowest level MCNs (Fig 10(E) and 10(F)) also show Blautia’s cluster as larger in

ADHD, and Oscillospira’s cluster as larger in Control. Table 27 contains members of these

clusters. Blautia and Oscillospira each belong to a cluster dominated by its respective family:

Lachnospiraceae (FL), and Ruminococcaceae (FR). Oscillospira is a core FR member and at the

lowest level, we see the Control FR cluster (with family Enterobacteriaceae now a member).

Blautia is consistently a member of the same cluster as both family Lachnospiraceae taxa in

ADHD, comparably larger than its FL3 Control cluster.

Table 25. Streptococcaceae/Streptococcus rankings.

Phylum Class Order Family Genus Lowest Possible

Firmicutes (#2/#T2) Bacilli (NR/NR) Lactobacillales (NR/NR) Streptococcaceae (NR/#T12) Streptococcus (NR/#T23)

ATria rankings of family/genus Streptococcaceae/Streptococcus. Dark orange = only ranked in Control, dark purple = only ranked in ADHD, light orange = higher

ranked in Control, light purple = higher ranked in ADHD, grey = evenly ranked. Bold taxa are ranked #1.

https://doi.org/10.1371/journal.pone.0273890.t025

Table 26. Blautia and Oscillospira rankings.

Phylum Class Order Family Genus Lowest Possible

Firmicutes (#2/#T2) Clostridia (#T3/#T3) Clostridiales (#T2/#3) Lachnospiraceae (NR/NR) Blautia (#T16/#13) Blautia 1* (NR/#19)

Ruminococcaceae (#4/#T8) Oscillospira (#3/#10) Oscillospira (#5/#9)

Blautia and Oscillospira ATria rankings (plus lineages). Dark orange = only ranked in Control, dark purple = only ranked in ADHD, light orange = higher ranked in

Control, light purple = higher ranked in ADHD, grey = evenly ranked. Bold taxa are ranked #1. * = The lowest level had two Blautia taxa; we assumed the more

abundant (Blautia 1, overall 9.3% relative abundance vs 0.6%, composing 93% of the Blautia population).

https://doi.org/10.1371/journal.pone.0273890.t026
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Heatmaps also indicate increased participation of Oscillospira’s cluster (FR) in Control

(large green rectangle, Fig 11(C)–11(F)), including negative correlations with cluster BB that

are absent in ADHD, yet another example of reduced ADHD cluster BB competition. In the

MCNs, Fruchterman-Reingold places cluster FR (green) in a much more central position in

Control (Fig 10(C) vs 10(D), and 10(E) vs. 10(F)). The negative correlations between Oscillos-
pira and Blautia’s entire cluster FL3 (Figs 10(C) and 11(E)) are also evident, almost separating

FL3 from the MCN. In ADHD Blautia’s cluster FL1 (gold) occupies a much more central

Table 27. Blautia and Oscillospira clusters.

Control ADHD

Level Community Cluster Type Cluster Taxon Phy Cluster Taxon Phy

Lowest Firmicutes-dominant, Lachnospiraceae-dominant (FL) FL3 Blautia 1* FL1 Lachnospiraceae 1

FL3 Dorea 2 FL1 Lachnospiraceae 2*
FL3 Bifidobacterium longum FL1 Coprococcus

FL1 Ruminococcus [L]
FL1 Blautia 1

FL1 Dorea 2

FL1 Faecalibacterium prausnitzii
Ruminococcaceae-dominant (FR) FR Ruminococcaceae* FR Ruminococcaceae

FR Ruminococcus [R] FR Ruminococcus [R]

FR Oscillospira FR Oscillospira

FR Clostridiales 1 FR Clostridiales 1*
FR Coprobacillus FR Bifidobacterium adolescentis
FR Enterobacteriaceae
FR Lachnospira

Clusters involving Blautia and Oscillospira. Phylum: purple = Bacteroidetes, yellow = Firmicutes, brown = Actinobacteria, blue = Proteobacteria.

https://doi.org/10.1371/journal.pone.0273890.t027

Table 28. Lachnospiraceae and Ruminococcaceae rankings.

Phylum Class Order Family Genus Lowest Possible

Firmicutes (#2/#T2) Clostridia (#T3/#T3) Clostridales (#T2/#3) Lachnospiraceae (NR/NR) Anaerostipes (#T19/NR) Anaerostipes (#6/#T26)

Blautia (#T16/#13) Blautia 1 (NR/#19)

Blautia 2 (#9/#T22)

Coprococcus (NR/#5) Coprococcus (#T21/#6)

Dorea (#T14/#12) Dorea 2 (#13/NR)

Lachnospira (NR/#16) Lachnospira (#T27/#5)

Lachnospiraceae 1 (#19/#15) Lachnospiraceae 1 (#17/#2)

Lachnospiraceae 2 (#7/NR) Lachnospiraceae 2 (#8/#14)

Roseburia (NR/NR) Roseburia 1 (NR/#T28)

Roseburia 2(#T25/#T22)

Ruminococcus (#1/#11) R. gnavus (NR/#12)

Ruminococcaceae (#4/#T8) Faecalibacterium (#T16/#2) F. prausnitzii (#11/NR)

Oscillospira (#3/#10) Oscillospira (#5/#9)

Ruminococcaceae (#8/#9) Ruminococcaceae (#4/#18)

Ruminococcus (#2/NR) Ruminococcus (#T21/NR)

ATria rankings of Lachnospiraceae and Ruminococcaceae taxa. Dark orange = only ranked in Control, dark purple = only ranked in ADHD, light orange = higher

ranked in Control, light purple = higher ranked in ADHD, grey = evenly ranked. Bold taxa are ranked #1.

https://doi.org/10.1371/journal.pone.0273890.t028
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position (Fig 10(D) and 10(F)), with increased ADHD size particularly noticeable at the lowest

level (Fig 10(F)).

ATria (Table 28) indicates a general increased importance of Blautia’s family (Lachnospira-
ceae) in ADHD, and Oscillospira’s family (Ruminococcaceae) in Control. A couple of notewor-

thy taxa follow this trend. Species Faecalibacterium prausnitzii (Ruminococcaceae), an anti-

inflammatory bacterium [153] touted as a next-generation probiotic [154], is only ranked in

Control. Species Ruminococcus gnavus (Lachnospiraceae), known to produce an inflammatory

polysaccharide [155], is only ranked in ADHD.

Summary. Four clusters were consistently present in both Control and ADHD MCNs.

Three are Firmicutes-dominant (FL, FR, FT) and one is Bacteroidetes-dominant (BB).

Table 29 shows their attributes, and summarizes observations we made about each.

Table 30 summarizes correlations between members of these clusters. Other than the one

exception in ADHD involving genera Streptococcus and Blautia: FT is the only Firmicutes-

dominant cluster with taxa positively correlated with Bacteroidetes-dominant cluster (BB)
members, and all correlations involving FL/FR (largest Firmicute-dominant clusters) and BB
taxa are negative. FT is completely disconnected from FL/FR except some ADHD competition.

FL-FR competition only happens in Control.

Finally, we summarize taxa (Table 31) and relationships (Table 32) that we noted through-

out our analyses.

Discussion

Traditional analysis methods (i.e. diversity and composition) prevalent in current ADHD gut

microbiome literature provide a macroscale representation of a complex ecosystem.

Table 29. Largest, consistently present clusters.

Cluster Attribute Observation

BB Largest Bacteroidetes-dominant cluster Larger in ADHD, with more internal cooperation and less

external competition.

FL
(1,2,. . .)

Multiple Firmicutes, family

Lachnospiraceae-dominant clusters

One large, centrally located cluster emerges in ADHD (FL1).

Others are small, about the same size, and more disconnected

(all are this way in Control).

FR Firmicutes, family Ruminococcaceae-

dominant

Smaller and less centrally located in ADHD.

FT Firmicutes, core member genus

Turicibacter
Slightly larger in ADHD.

Clusters that we note as being consistently present in Control and ADHD MCNs, and observations.

https://doi.org/10.1371/journal.pone.0273890.t029

Table 30. Cluster member interactions.

Cluster 1 Cluster 2 Observation

BB FL Always (-), with one exception in ADHD (Streptococcus-Blautia)

BB FR Always (-)

BB* FT Always (+)

FL FR Generally (+). Some (-) in Control (all involve either Ruminococcus (FL) or Oscillospira (FR))

FL FT Generally disconnected. Some (-) in ADHD (all involve Phascolarcobacterium (FT))

FR FT Always disconnected.

Interactions between taxa from Table 29 clusters (* = In Control, this took place with BM1 after the BB “split”).

https://doi.org/10.1371/journal.pone.0273890.t030
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Table 31. Taxa noted throughout our analysis.

Level Taxon Observation

Genus Adlercruetzia Role change from Control (Bacteroidetes cooperation) to ADHD (E. dolichum cooperation). Competition with different Firmicutes

(in ADHD,).

Genus Bacteroides Centroid (with nearly 100% connectivity) of cluster BB in ADHD.

Genus Bifidobacterium Higher participation in Control (mostly competition). Competition with all Bacteroidetes or Proteobacteria taxa is entirely exclusive

to Control, including multiple members and centroid of cluster BB. Cooperation (small amount) is entirely exclusive to ADHD.

Ranked higher in Control than ADHD nearly 100% of the time, including a #1 ranking at the lowest taxonomic level.

Genus Coprobacillus DESeq2-elevated ADHD taxon, and ranked #1 for ADHD in two MCNs (genus and lowest possible). Competes with multiple

Lachnospiraceae taxa, including the most abundant.

Family Enterobacteriaceae Involved with Firmicutes-Proteobacteria shifts. Only ranked in ADHD.

Species F. prausnitzii Probiotic species only ranked in Control

Family Lachnospiraceae Most abundant family, generally ranked higher in ADHD

Genus Phascolarctobacterium Only FT member connected to another Firmicute-dominant cluster (competition). Only ranked in ADHD.

Family Porphyromonadaceae #1 ADHD family, only cluster BB member to compete with FL/FR.

Family Rikenellaceae Previously reported as ADHD-elevated. Ranked by ATria as important in all six lower level MCNs, and always higher in ADHD.

Genus Ruminococcus [L] #1 Control genus, involved in FL-FR competition (only observed in Control).

Species R. gnavus Produces inflammatory biosaccharide, only ranked in ADHD

Family Ruminococcaceae Second-most abundant family, generally ranked higher in Control

Genus Turicibacter Reported as differentially abundant (Control) by three methods (LEfSe, DESeq and ALDEx2), core member (centroid in ADHD) of

FT.

Summary of notable taxa throughout our ecological analyses, and observations.

https://doi.org/10.1371/journal.pone.0273890.t031

Table 32. Relationships noted throughout our analyses.

Taxonomic

Level

Relationship(s) Reason

Genus Bacteroides-Sutterella (+, both) Only core correlation consistent across both sample sets at all levels (12 MCNs).

Genus Bacteroides-Prevotella (-, ADHD) Only competition involving two Bacteroidetes taxa.

Genus Bacteroides-Streptococcus (+, ADHD) Streptococcus is one of only two Firmicutes genera to join cluster BB, through this connection.

Genus Butyricimonas-Clostridium (+, ADHD) Butyricimonas was only ranked by ATria in ADHD, and reported as ADHD differentially abundant by two

methods (LEfSe and ALDEx2). Clostridium is one of only two Firmicutes to join cluster BB, through this

connection.

Family-Genus Clostridiaceae-Odoricibacter (-, ADHD) Odoribacter was reported as ADHD-elevated by LEfSe. In ADHD competes with Clostridiaceae taxa that

compete with multiple cluster BB members (including its centroid). Clostridiaceae was reported as ADHD-

reduced (Control-elevated) by ALDEx2.

Family-Genus Enterobacteriaceae-Oscillospira (+,

Control; -, ADHD)

Only correlation ever to change sign from Control to ADHD. Taxa involved are in the same cluster in

Control.

Genus Blautia-Oscillospira (-, Control)

Streptococcus-Blauta (+, ADHD)

Streptococcus-Oscillospira (-, ADHD)

Blautia is associated with obesity and Oscillospira with leanness. Oscillospira (FR) competes with every

member of Blautia’s cluster (FL3) in Control. FL-FR competition only happens in Control.

In ADHD Streptococcus cooperates with Blautia (obesity) and competes with Oscillospira (leanness)

Streptococcus-Blautia is the only time a cluster BB member (largest Bacteroidetes-dominant) ever

cooperates with taxa from FL or FR (largest Firmicutes-dominant, collectively over 70% of the population).

Streptococcus is only ranked in ADHD, Blautia is ranked higher in ADHD, Oscillospira is ranked higher in

Control.

Blautia’s cluster (FL1) is larger and more central in ADHD.). Oscillospira’s (FR) is larger and more central

in Control.

Summary of notable relationships throughout our ecological analyses, and observations.

https://doi.org/10.1371/journal.pone.0273890.t032
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Conducting some of these approaches on equal-sized, gender-balanced undergraduate Control

and ADHD gut microbiome datasets produced many results that corresponded with this liter-

ature, plus a potentially new Control-elevated genus, Turicibacter (reported by LEfSe, DESeq2

and ALDEx2). Current literature, as well as our results, suggest this macroscale perspective

leaves a largely incomplete picture due to its neglect of underlying complexity. Our goal was to

complete more of this picture by venturing deeper, by analyzing two-way ecological relation-

ships (cooperation and competition), plus community detection, and centrality.

Our results provide a deeper meaning to those from the macroscale. Previous differential

abundance studies have reported collectively inconclusive results with respect to Bifidobacter-
ium [65, 66] and Bacteroides [59, 65, 70]. We experienced similar issues with our taxa plots,

where anomalous results involving elevated genus Bifidobacterium and reduced genera Bacter-
oides and Sutterella at ASRS extremes (high and low) imposed significant challenges when

interpreting results. Our MCNs estimate that a Bacteroidetes-dominant community (cluster

BB) forms in both microbiomes, with Bacteroides and Sutterella both core members, that in

ADHD is larger and resides in conditions that favor its cooperation, as opposed to competition

in Control. Several cluster BB members have previously been reported as ADHD-elevated,

including Butyricimonas (reported by two of our differential abundance methods), Parabacter-
oides (for hyperactivity, [59]), Bacteroides uniformis [60], Rikenellaceae [66], and Odoribacteria-
ceae [68], plus two member descendants (Bacteroides ovatus and Sutterella stercoricanis, [60]),

making its increased size, tightness, and more favorable environment observed in our ADHD

MCN interesting. Moreover our MCNs estimate a shift in roles played by Bacteroides and Bifi-
dobacterium between Control and ADHD microbiomes. In ADHD, Bacteroides was estimated

as the centroid (driver) taxon for cluster BB, having cooperative with nearly every member.

And Bifidobacterium shifted from exclusively competitive relationships with cluster BB mem-

bers (including its most abundant and centroid) in Control, to exclusively a cooperative rela-

tionship in ADHD—with Bacteroides uniformis, one of the taxa previously reported as ADHD-

elevated [60]. In addition to these relationships with cluster BB our MCNs estimated Bifidobac-
terium and its lineages to be much more active in Control gut ecology (24 relationships) com-

pared to ADHD (9 relationships), with ATria ranking Bifidobacterium higher in Control more

than 85% of the time. Overall, these results suggest potentially significant differential roles

played by both Bifidobacterium and Bacteroides in the Control and ADHD gut ecosystems.

Potential roles played by taxa reported by our differential abundance analysis also became

observable. Our MCNs estimated genus Odoribacter, reported by our analysis and another

[68] as ADHD-elevated, to also compete with two family Clostridiaceae taxa, one of which

(Clostridiaceae 1) was reported by ALDEx2 as ADHD-reduced (subsequently we found, by a

factor of two). Clostridiaceae 1, in turn, was estimated to compete with multiple taxa from clus-

ter BB (much larger in ADHD) in both of our MCNs. Exploring candidate metabolic reactions

involved within this triangle may therefore also be important for future experimentation.

Butyricimonas, reported by two of our differential analysis methods (LEfSe and ALDEx2) as

ADHD-elevated, joined cluster BB in ADHD and provided the sole cooperative relationship

with Clostridium, a taxon otherwise completely disconnected from both MCNs. Coprobacillus,
reported by DESeq2 as ADHD-elevated, was ranked #1 twice by ATria in the ADHD MCN,

which estimated competitive relationships with abundant Lachnospiraceae taxa, reported by

another study as Control-elevated [68].

New interesting taxa and communities also emerged. Cluster FT (cooperative with cluster

BB) was larger in ADHD. Cluster FR (Family Ruminococcaceae-dominant, competitive with

cluster BB) was smaller in ADHD. Ruminococcaceae taxa (previously reported as ADHD-

reduced [68]) were also almost universally less central in ADHD, including the probiotic Fae-
calibacterium prausnitzii (only ranked by ATria in Control), which was also reported as
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ADHD-reduced in two other studies [61, 68]. Our MCNs also showed inflammatory polysac-

charide Ruminococcus gnavus (only ranked by ATria in ADHD), to have ADHD-exclusive

competition with F. prausnitzii. Ruminococcaceae member genus Oscillospira was also esti-

mated to have ADHD-exclusive competition, with Proteobacteria family Enterobacteriaceae
(cooperative and fellow FR member in Control), and cluster BB member Firmicute Streptococ-
cus. In particular, the shift in relationship between Enterobacteriaceae and Oscillospira from

cooperation (Control) to competition (ADHD), as well as the dynamic involved in the triangle

composed of genera Streptococcus, Blautia, and Oscillospira (Table 32, last row), emerged as

noteworthy potential targets for further exploration.

This exploration can add deeper meaning to these results through pursuit of additional

studies targeting some of these taxa and relationships, including multi-omics [156] and/or

physical laboratory experiments. Fundamentally, ecological relationships manifest through

internal interplay within the underlying web of interactions [157]. Cooperation could take

place for example if two taxa produce a nutrient that the other consumes; competition could

take place if two taxa consume a nutrient that neither produces. Coupling taxa to metabolites

they produce and consume and analyzing pathways can help elucidate underlying mechanisms

behind these ecological relationships. These pathways can then be searched for neurotransmit-

ters to establish ADHD connections. Clustering could also be performed by functional path-

way, enabling a more direct association between microbial genes and specialized biological

pathways involving neurotransmitters that influence ADHD.

While results from our analysis could be used as guidance for more in-depth analysis of any

ADHD dataset (present or future), it is of course possible (and likely) that changes within attri-

butes of the target population can impact ecological relationships. We are merely laying the

groundwork, and with very few studies even attempting this level of analysis [66], an enor-

mous breadth of knowledge remains and many future improvements to our analyses are possi-

ble. Published metadata for this dataset was somewhat limited. Future studies involving

ADHD and the gut microbiome should account for factors such as BMI [158], demographics

[159], ethnicity [160], use of medication/probiotics [61], use of antibiotics [161], diet [162]

and gastrointestinal issues [163], age [164], and official diagnosis (beyond ASRS). Additionally

although we did strenghten the threshold of our p-value for correlations in our MCNs, future

work could incorporate multiple hypothesis corrections and sensitivity analysis for ATria for

more thorough statistical relevance validation. More meaning to relationships in our MCNs

can also be uncovered, through causality studies. Causality would give direction to edges,

enabling detection of both two- and one-way (i.e. commensalism [139], amensalism [140])

relationships. This can be achieved through for example Bayesian Networks [165], which

detect relationships where a taxon is conditionally dependent on another. Conditional depen-

dence also eliminates spurious edges that can occur with correlations; for example, two entities

that co-occur with a mutual entity will naturally tend to co-occur [116] (this was also a depen-

dency removed by ATria after finding a central node). Sazal et al. [166] have already verified

such networks as a predictor for oral microbiome colonization order. Time can also factor into

ecological relationships because while sometimes these relationships are constant in micro-

biomes [167], they can also be transitive [168] or even time-varying [169]. DBNs that account

for time have already been used to predict long-term infant gut behavior [170]. Higher-level

network metrics such as modularity [171] and vulnerability [172] would provide another

potential avenue for comparing and contrasting Control and ADHD MCNs. Amplicon

Sequence Variants (ASVs, [173]) can be used in place of the current Operational Taxonomic

Units (OTUs) that are generated by similarity-based clustering. ASVs exhibit more reliability

at lower levels of the taxonomic tree and can improve the granularity of our MCNs, achieving

more species- and sometimes even strain-level classifications.
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Also given that ASRS does not offer an official diagnosis and this metadata did provide

ASRS scores, an immediate future goal should be a migration from case-control to continuous

data analysis with respect to ASRS. Our taxa plots, which observed abundances of core taxa

with respect to ASRS score, have already started this process. Some of our other analysis proto-

cols (i.e. alpha- and beta-diversity) will trivially propagate. While differential abundance analy-

sis will ultimately be difficult without explicit sample classifications, networks have potential

given some of the strategies mentioned above. For example, multi-omic network techniques

such as marginal correlation analysis have already proven useful for correlating heterogeneous

datasets [174], making them potentially applicable to estimating correlation between microbial

abundance and ASRS scores. Applying Bayesian techniques to such networks could assist in

estimating the conditional presence or absence of a microbe-microbe correlation on another

dependence (i.e., high or low ASRS score).

A more complete understanding of ADHD and the gut microbiome will best equip the

community to make the right decisions when administering treatment(s). Our results, coupled

with those in the literature, suggest that the gut microbiota cannot afford to be ignored when it

comes to ADHD, and treatments directly targeting the gut microbiome have potential.

Encouraging results have been uncovered for gluten and casein-free diets [53], Microbiota

Transfer Therapy (MTT, [175, 176]), and probiotics [177] with ASD. Our results also indicate

that the gut microbiome is an ecosystem, and any changes to one single element will likely

impact other members. Additionally since the human gut microbiome is widely varied across

individuals [178], personalized medicine should be used when developing such treatments.

Supporting information

S1 Fig. Class-level taxa plot. Bar plot of taxa relative abundance, at the class level. Samples are

ordered on the x-axis by increasing ASRS score.

(PNG)

S2 Fig. Order-level taxa plot. Bar plot of taxa relative abundance, at the order level. Samples

are ordered on the x-axis by increasing ASRS score.

(PNG)

S3 Fig. Family-level taxa plot. Bar plot of taxa relative abundance, at the family level. Samples

are ordered on the x-axis by increasing ASRS score.

(PNG)

S4 Fig. Taxa plot: lowest possible classification level. Bar plot of taxa relative abundance,

using the lowest possible classification level. Samples are ordered on the x-axis by increasing

ASRS score.

(PNG)

S5 Fig. Bifidobacterium abundances. Relative abundance plot of Bifidobacterium. Samples are

ordered on the x-axis by increasing ASRS score.

(PNG)

S6 Fig. Bacteroides abundances. Relative abundance plot of Bacteroides. Samples are ordered

on the x-axis by increasing ASRS score.

(PNG)

S7 Fig. Sutterella abundances. Relative abundance plot of Sutterella. Samples are ordered on

the x-axis by increasing ASRS score.

(PNG)
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S1 Table. Experimental and lab methods. Data obtained from the openly available BioProject

(PRJNA656791), along with cited protocols [90–92].

(DOCX)

S2 Table. Data quality table. Average number of sequences retained after every preprocessing

step.

(DOCX)

S3 Table. All correlations, all MCNs. Every correlation in all MCNs, grouped by taxonomy.

Orange = only found in Control, purple = only found in ADHD, grey = found in both.

+(green) = positive correlation, -(red) = negative correlation.

(DOCX)

S4 Table. All rankings, all MCNs. ATria rankings of all taxa over all MCNs, grouped by tax-

onomy. Dark orange = only ranked in Control, dark purple = only ranked in ADHD, light

orange = higher ranked in Control, light purple = higher ranked in ADHD, grey = evenly

ranked. Bold taxa are ranked #1.

(DOCX)

S5 Table. All family-level clusters. Communities within Control and ADHD family-level

MCNs. Phylum: purple = Bacteroidetes, yellow = Firmicutes, brown = Actinobacteria,

blue = Proteobacteria.

(DOCX)

S6 Table. All genus-level clusters. Communities within Control and ADHD genus-level

MCNs. Phylum: purple = Bacteroidetes, yellow = Firmicutes, brown = Actinobacteria,

blue = Proteobacteria.

(DOCX)

S7 Table. All clusters, lowest possible taxonomic classification. Communities within Con-

trol and ADHD MCNs using the lowest possible level of taxonomic classification. Phylum:

purple = Bacteroidetes, yellow = Firmicutes, brown-Actinobacteria, blue = Proteobacteria.

(DOCX)
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132. Zavaglia AG, Kociubinski G, Pérez P, De Antoni G. Isolation and Characterization of Bifidobacterium

Strains for Probiotic Formulation. Journal of Food Protection. 1998 Jul 1; 61(7):865–73. https://doi.org/

10.4315/0362-028x-61.7.865 PMID: 9678171

133. Invernici MM, Salvador SL, Silva PHF, Soares MSM, Casarin R, Palioto DB, et al. Effects of Bifidobac-

terium probiotic on the treatment of chronic periodontitis: A randomized clinical trial. J Clin Periodontol.

2018 Oct; 45(10):1198–210.

134. Usta-Gorgun B, Yilmaz-Ersan L. Short-chain fatty acids production by Bifidobacterium species in the

presence of salep. Electronic Journal of Biotechnology. 2020 Sep; 47:29–35.

135. Wexler AG, Goodman AL. An insider’s perspective: Bacteroides as a window into the microbiome. Nat

Microbiol. 2017 May; 2(5):17026.

136. Mason BL, Li Q, Minhajuddin A, Czysz AH, Coughlin LA, Hussain SK, et al. Reduced anti-inflamma-

tory gut microbiota are associated with depression and anhedonia. Journal of Affective Disorders.

2020 Apr; 266:394–401. https://doi.org/10.1016/j.jad.2020.01.137 PMID: 32056905

137. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Increased abundance of

Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol

Autism. 2013; 4(1):42.

138. Craig F, Lamanna AL, Margari F, Matera E, Simone M, Margari L. Overlap between Autism Spectrum

Disorders and Attention Deficit Hyperactivity Disorder: Searching for distinctive/common clinical fea-

tures: Overlap between ASD and ADHD. Autism Research. 2015 Jun; 8(3):328–37.
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