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Abstract

In cross-coupling reactions, dihaloheteroarenes are usually most reactive at C─halide bonds 

adjacent to a heteroatom. This selectivity has been previously rationalized. However, no 

mechanistic explanation exists for anomalous reports in which specific ligands effect inverted 

selectivity with dihalopyridines and -pyridazines. Here we provide evidence that these ligands 

uniquely promote oxidative addition at 12e− Pd(0). Computations indicate that 12e− and 14e− 

Pd(0) can favor different mechanisms for oxidative addition due to differences in their HOMO 

symmetries. These mechanisms are shown to lead to different site preferences, where 12e− Pd(0) 

can favor oxidative addition at an atypical site distal to nitrogen.
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Heteroarenes are common motifs in high-value small molecules such as pharmaceutical 

drugs and agrochemicals.1 A popular method for their elaboration involves employing 

halogenated heteroarene substrates in cross-coupling reactions. Dihaloheteroarenes bearing 

two identical halides typically react with predictable selectivity at a C─X bond α to a 

heteroatom, when present (Scheme 1A).2 However, the ability to invert selectivity can 

open up underexplored synthetic space. Because of the importance of dihaloheteroarene 

cross-coupling reactions, the origin of their innate selectivity has been thoroughly studied. 

Houk and Merlic rationalized the typical selectivity with a distortion-interaction model.3 

Relevant to the current work, oxidative addition of 6-membered nitrogen-containing 

dihaloheteroarenes takes place at the weaker C─X bond, which is the bond adjacent to 

nitrogen. Because this bond is weaker, it is easier to distort into the transition state geometry. 

Leitch et al. recently demonstrated that conventional selectivity is also correlated with more 

positive electrostatic potentials at the ipso carbon and with more negative potentials at an 

ortho atom.4

Although current models explain the conventional selectivity of 6-membered 

dihaloheteroarenes, there exist rare reports in which the use of specific ligands leads 

to inverted selectivity, resulting in cross-coupling at a site distal to nitrogen. The use 

of QPhos gives modest C4-selectivity with 2 and high C5-selectivity with 5 (Scheme 

1B).5 Bulky NHC ligands (6 and IPr) can promote C4-selectivity with 2 and 3 and C5-

selectivity with 5 (Scheme 1C-D).6,7,8,9 There is currently no mechanistic rationale for these 

ligand-controlled deviations from the conventional selectivity.10 The absence of mechanistic 

understanding precludes rational catalyst design, and thus cross-coupling reactions at distal 

C─X bonds remain unexplained curiosities. Here, we communicate the key discovery that 

two competing mechanisms for oxidative addition display different site preferences. Due to 

its HOMO π symetry, 14e− Pd(0) prefers to react with halogenated heteroarenes through a 

nucleophilic displacement mechanism at an α C─X bond. Conversely, 12e− Pd(0) prefers a 

concerted three-centered transition state due to its HOMO σ symmetry, and this mechanism 

is biased toward a distal C─X bond. As such, accessing 12e− Pd(0) is critical to achieving 

oxidative addition at the atypical site.

RESULTS AND DISCUSSION

The reported C4- and C5-cross-couplings of 2, 3, and 5 employ very sterically hindered 

electron-rich monodentate ligands.5,6,7 To further evaluate ligand effects, we screened a 

number of monodentate phosphines and NHC ligands for the Suzuki coupling of 2 using 

Pd(cod)(CH2SiMe3)2 (Table 1).11 There is a clear correlation between ligand sterics and 

the C4:C2 ratio for triarylphosphines (entries 1-4), alkylphosphines (entries 5-13), and 

NHCs (entries 14-18). Bulky alkyl phosphines are more C4-selective than bulky triaryl 

phosphines, and unsaturated NHC ligands are more selective than their saturated analogues. 

Based on these trends, we hypothesized that sterically hindered strong σ-donor ligands favor 
unconventional selectivity by promoting oxidative addition at a low-coordinate species (i.e., 

12e− PdL). Smaller ligands or ones that are better π-acceptors, such as PAr3 and saturated 

NHCs, would be more likely to favor coordination of a second ligand.14,15,16 Notably, 

among trialkylphosphines, selectivity switches near the %Vbur(min) threshold previously 

reported to determine whether PdL or PdL2 dominates as the active species for oxidative 
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addition.17,18 Nevertheless, it was unclear why 12e− PdL might react at the stronger C4─X 

bond. To evaluate this question, we used density functional theory (DFT) calculations 

to closely examine the mechanisms of oxidative addition at 12e− and 14e− Pd(0) using 

a simple model system comprising PhCl and Pd(PMe3)n (n = 1 or 2). Three oxidative 

addition transition structures were located with Pd(PMe3) (Figure 1A). Two of these (TS7a 
and TS7b) represent classic 3-centered concerted mechanisms, wherein Pd simultaneously 

interacts with the ipso carbon and the chloride. The third structure is better described as 

a nucleophilic displacement mechanism (TS7c). In this mechanism, Pd interacts with both 

the ipso and the ortho carbons of the aromatic ring, as evidenced by the short Cortho---Pd 

distance (2.49 Å). Conversely, the long Pd---Cl distance indicates that there is no significant 

interaction between Pd and Cl. This type of mechanism has also been referred to as a 

nucleophilic substitution (SNAr-type) mechanism19 or a dissociative process.20

For monoligated Pd(PMe3), the lowest energy transition structure is the concerted 

mechanism TS7a. In contrast, a nucleophilic displacement mechanism (TS8b) is favored 

over a concerted mechanism (TS8a) for bisligated Pd(PMe3)2 (Figure 1B).23,24,25 This 

difference in the preferred mechanisms for PdL and PdL2 may be explained by frontier 

molecular orbital interactions. The HOMO of Pd(PMe3) is a σ-type orbital, so its symmetry 

is suited to the concerted mechanism in which Pd donates only into the ipso carbon (via 

overlap with chlorobenzene's lowest energy unoccupied orbital without a node through the 

ipso carbon, LUMO+1).26 In contrast, the HOMO of Pd(PMe3)2 has π-symmetry (Figure 

1C), and thus can backbond into two carbons of PhCl during oxidative addition via a 

displacement mechanism. Notably, simple model ligands like PMe3 are not always adequate 

for describing the behavior of more complex ligands.27 Furthermore, Maseras and coworkers 

have shown that ligand identity and solvent can influence the predicted mechanism of 

oxidative addition at 14e− PdL2 with the substrate bromobenzene.19,28 However, in this case, 

our calculations using Pd(PMe3)n and PhCl prove to be consistent with those obtained using 

Pd(IPr) and 2,4-dichloropyridine (2).

The LUMO of 2,4-dichloropyridine has π-symmetry, with nodal planes on either side of 

nitrogen and of C4 (Figure 2, inset). The LUMO coefficient at C4 is substantially larger 

than at C2, with C4 accounting for 26% of the LUMO density and C2 contributing only 

8%. Thus, it becomes apparent why PdL2 and PdL might exhibit different site-selectivity. 

Because the π-type HOMO of PdL2 would donate into two atoms of the pyridine ring during 

a nucleophilic displacement mechanism, strong orbital overlap can be achieved during 

reaction at C2 despite the small LUMO coefficient at that carbon, and bond dissociation 

energies become more important to selectivity. However, the σ-type HOMO of PdL can 

only donate into one atom of the pyridine ring. As such, the larger LUMO coefficient at 

C4 versus C2 is important during the reaction of PdL because it dictates the strength of the 

HOMO(Pd)/LUMO(substrate) overlap.

Using monoligated Pd(IPr), a 3-centered mechanism for oxidative addition at C2 (TS10a-
IPr, Figure 2A) is preferred over a displacement mechanism (see SI). Only a 3-centered 

mechanism could be located for oxidative addition at C4 (TS10b-IPr). DFT predicts that 

reaction at C4 via TS10b-IPr should be favored over C2 by 1.7 kcal/mol (C4:C2 = 18:1) 

using Pd(IPr). This prediction is in good agreement with the experimentally reported C4-
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selectivity with IPr (typically ~10:1),7 and stands in stark contrast to the prediction with 

bisligated Pd(IPr)(L). Unsurprisingly, considering the sterics of IPr, we were unable to 

find transition structures involving Pd(IPr)2. However, nucleophilic displacement transition 

structures were located with bisligated Pd(IPr)(L) where L is a second substrate molecule 

(2).29 With the bisligated complex, reaction at C2─Cl via TS13a-IPr is strongly favored 

over reaction at C4 (TS13b-IPr). Overall, the lowest energy path in Figure 2A is C4-

oxidative addition at monoligated Pd(IPr) via TS10b-IPr, consistent with experimental 

selectivity with this ligand.

For comparison, analogous DFT calculations were performed with PtBu3, another bulky 

monodentate ligand that favors reaction at C4 but to a lesser extent than IPr (see Table 1, 

entry 12). Consistent with experiment, the DFT calculations predict worse C4-selectivity 

with Pd(PtBu3) (Figure 2B, predicted C4:C2 = 1:5, experimental C4:C2 = 1:2). The 

enhanced selectivity of IPr compared to PtBu3 is likely due to the stronger σ-donation 

by IPr,14d,30 which could enhance the PdL(HOMO)→2(LUMO) interaction (see SI for further 

discussion). Like IPr, PtBu3 is too bulky for a bisligated transition state to contribute 

significantly to the reaction mechanism.

DFT calculations with IMes reveal similar trends as seen with IPr: PdL favors reaction at 

C4 (Figure 2C, TS10b-IMes), while PdL2 favors reaction at C2 (TS13a-IMes). However, 

unlike IPr, the calculations with IMes predict that the bisligated path via TS13a-IMes, 

involving oxidative addition at C2, is energetically competitive with the monoligated path 

(C4:C2 = 1:13 based on TS10b-IMes and TS13a-IMes). This prediction is consistent with 

the experimental observation that IMes is much less C4-selective than IPr, and supports the 

hypothesis that smaller ligands lead to a higher proportion of bisligated active catalyst. The 

calculations do not quantitatively reproduce the experimentally observed 1.6:1 selectivity 

with IMes (Table 1 entry 14). However, the energy of the crowded transition structure 

TS13a-IMes was found to be extremely sensitive to DFT method (see SI), likely due in part 

to differences in how dispersion interactions are handled. This suggests the possibility of 

considerable error in quantitative analysis when comparing mono- to bisligated structures. 

Furthermore, these calculations cannot take into account the ability of 2 to coordinate to 

other acids that are present in higher concentrations than Pd under the catalytic conditions 

(e.g., boron, K+, H2O). Equilibria involving coordination of 2 to these species would detract 

from the overall concentration of Pd(IMes)(2).

The calculations suggest that IMes gives worse C4-selectivity than IPr due to a higher 

proportion of bisligated active catalyst. Experimental data support the hypothesis that 

an N-bound dichloropyridine group could serve as the second ligand on Pd in Suzuki 

couplings catalyzed by Pd/IMes. C4-selectivity is significantly enhanced for 15 compared 

to 2 (Scheme 2A), where 15 should be a worse ligand for Pd due to sterics.31 Furthermore, 

increased reaction is observed at C2 at higher substrate concentrations (Scheme 2B). The 

increased C2-selectivity at high [2] is consistent with a higher probability for reaction at 

bisligated Pd(IMes)(2).

Based on the calculations, we anticipated that, under conditions that promote oxidative 

addition at 12e− PdL using IPr, selectivity should trend with the difference between 

Norman et al. Page 4

ACS Catal. Author manuscript; available in PMC 2023 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LUMO coefficients at the two sites of a dihaloheteroarene. Indeed, this prediction bears 

out for the substrates in Scheme 2B. The best selectivity for the site remote to nitrogen 

is achieved with the substrate displaying the largest difference in LUMO coefficients (5), 

while preferential reaction at C2 is observed when the two sites have nearly identical LUMO 

coefficients (4).32,33 To our knowledge, this is the first report of C3-favored cross-coupling 

of 1 supported by spectroscopic characterization, although diarylation is competitive with 

monoarylation (see SI).

CONCLUSION

This work shows that 12- and 14-electron Pd(0) can favor different mechanisms for 

oxidative addition due to differences in their HOMO symmetries. The HOMO σ-symmetry 

of 12e− PdL means that LUMO coefficients at individual sites of dihaloheteroarenes are 

particularly important for determining selectivity. Conversely, the HOMO π-symmetry of 

14e− PdL2 enables Pd to backbond into two atoms of the substrate during oxidative addition, 

rendering LUMO coefficients at individual atoms less important, and allowing selectivity to 

be dominated by other factors including C─X bond strengths. This work has implications 

for understanding oxidative addition reactivity trends and for rational design of site-selective 

catalysts. A systematic evaluation of the factors influencing the preferred mechanisms of 

oxidative addition will be reported in due course.
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Figure 1. 
Calculated transition structures for oxidative addition of chlorobenzene at (A) Pd(PMe3) and 

(B) Pd(PMe3)2. Differences in Gibbs free energies of activation are listed in units of kcal 

mol−1 relative to the lowest-energy structure in each set (defined as ΔΔG‡ = 0.0).21 (C) Key 

frontier molecular orbitals of the relevant species, where Pd(PMe3)2 is distorted into a bent 

geometry as adopted in the arene—Pd(PMe3)2 pre-oxidative addition π complex.22
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Figure 2. 
Calculated free energy diagrams illustrating the oxidative addition of 2,4-dichloropyridine at 

Pd(NHC) or Pd(NHC)(2), where NHC = IPr (A) or IMes (B).21,22,34
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Scheme 1. 
Ligands that Give Unconventional Selectivity
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Scheme 2. 
(A) Influence of 6-Substituent on the Selectivity of Cross-Coupling Catalyzed by Pd/IMes; 

(B) Influence of Substrate Concentration on the Selectivity of Cross-Coupling Catalyzed by 

Pd/IMes; (C) With Pd/IPr, Selectivity Trends with Difference in LUMO Coefficients.
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Table 1.

Evaluation of Monodentate Ligands for the Suzuki-Miyaura Coupling Using Pd(OAc)2
a

entry ligand
(mol %)

%Vbur

(min)b
2a
(%)

2b
(%)

2a : 2b

1 PPh3 (5) (28.2) 84.2 0.6 >99 : 1

2 PPh3 (10) 81.6 0.4 >99 : 1

3 P(o-tol)3 (5) (34.4) 42.0 21.5 2.0 : 1

4 P(o-tol)3 (10) 30.3 17.0 1.8 : 1

5 PMe3 (5) (22.1) 18.5 2.2 8.4 : 1

6 PMe3 (10) 9.9 0.9 11.0 : 1

7 P(n-Bu)3 (5) (24.2) 20.0 7.6 2.6 : 1

8 P(n-Bu)3 (10) 0.8 0.3 3.2 : 1

9 PCy3 (5) (30.2) 27.9 44.9 1 : 1.6

10 PCy3 (10) 27.2 39.9 1 : 1.5

11 PAd2(n-Bu) (5) (32.8) 24.1 51.8 1 : 2.2

12 PtBu3 (5) (36.3) 27.0 47.3 1 : 1.8

13 Q-Phos (5) (47.6) 24.1 50.1 1 : 2.1

14 IMes (5) 36.5 32.5 52.0 1 : 1.6

15 SIMes (5) 36.9 27.9 22.0 1.3 : 1

16 IPr (5) 44.5 9.5 66.8 1 : 7.0

17 IPrc 6.6 68.4 1 : 10.4

18 SIPr (5) 47.0 9.5 36.4 1 : 3.8

a
GC yields calibrated against undecane as the internal standard. Average of two trials. 0–6.5% diarylation observed in all entries (see SI). PMP = 

p-methoxyphenyl.

b
Values in parentheses are minimum percent buried volumes obtained from the Kraken database.12 Percent buried volumes of NHCs reported for 

LAuCl complexes at a L–Au distance of 2.00 Å from reference 13.

c
With (η3-1-tBu-indenyl)Pd(IPr)(Cl) (3 mol %) as catalyst, 15.5 h.
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