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Abstract

Since its first identification in 1894 during the third pandemic in Hong Kong, there has 

been significant progress of understanding the lifestyle of Yersinia pestis, the pathogen that is 

responsible for plague. Although we now have some understanding of the pathogen’s physiology, 

genetics, genomics, evolution, gene regulation, pathogenesis and immunity, there are many 

unknown aspects of the pathogen and its disease development. Here, we focus on some of the 

knowns and unknowns relating to Y. pestis and plague. We notably focus on some key Y. pestis 
physiological and virulence traits that are important for its mammal-flea-mammal life cycle but 

also its emergence from the enteropathogen Yersinia pseudotuberculosis. Some aspects of the 

genetic diversity of Y. pestis, the distribution and ecology of plague as well as the medical 

countermeasures to protect our population are also provided. Lastly, we present some biosafety 

and biosecurity information related to Y. pestis and plague.
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Human plague, caused by Yersinia pestis, a bacterium which first and foremost occurs in 

wildlife rodent species but occasionally spills over to people: hence the title “Plague and 

Yersinia pestis”. Plague has brought about three pandemics in history, including the first 

pandemic Justinian plague (from around 541 CE), the second Black Death (from around 

1347 CE), and the third modern plague (from around 1880 CE). Since the identification 

of etiological agent for plague by Dr. Alexander Yersin during the third pandemic in Hong 

Kong of China in 1894[1], more than 120 years have passed, and we have, to some extent, 

understood the physiology, pathogenesis and evolution of Y. pestis. We have developed 

technologies for plague diagnosis and treatment. Plague is effectively controlled in most 

endemic regions except some parts of Africa. However, the wide distribution of natural 

plague foci in Asia, Euroasia, Africa and the Americas, with occasional occurrences in both 

rodents and humans or following long-distance travel of plague infected individuals, into 

large cities reminds us of the threat of a plague outbreak. In this review, we will summarize 

what we have known and what we have not known about plague and its causative agent, Y. 
pestis. The key issues need to be solved in future were also proposed (Box).

BOX

Key issues to be solved for Yersinia pestis and plague

1. Improved understanding of sensing and adapting of Y. pestis to temperature 

shifts during its invasion from flea to animals;

2. Improved understanding of survival of Y. pestis in host innate immune cells 

during the early stage of infection;

3. Improved understanding of heavy growth of Y. pestis in host blood by potent 

immuno-suppression for flea transmission;

4. Improved understanding of the driving force shaping Y. pestis’ ancestry and 

the detailed dynamics during its evolution;

5. Improved understanding of ecological interactions of Y. pestis, the hosts and 

natural environments for long-term survival of natural plague foci;

6. Improved understanding of molecular mechanisms behind complex 

interaction between Y. pestis and fleas;

7. Improved understanding of molecular mechanisms of early interactions 

between Y. pestis and the host cells;

8. Development of on-site diagnostic techniques and precision treatment 

strategies;

9. Development of effective and safe vaccine for long-term protection;
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10. Effective preparedness for Y. pestis bioterrorism.

Known 1: Physiology of Y. pestis

Growth properties and cellular structures

Y. pestis is a Gram-negative, nonsporulating and nonmotile coccobacillus, which grows in 

broth culture. It often exhibits bipolar staining with Giemsa or Wayson dye. Y. pestis grows 

on a variety of media under aerobic or facultatively anaerobic conditions at temperatures 

between 4 to 40 °C (optimum at 26–28 °C) and can survive within a pH range from 5.0 to 

9.6 (optimum approximately 7.5) [2].

It typically grows as grey-white translucent, non-hemolytic colonies within 24 h on blood 

or chocolate agar and as yellow and opaque colonies with irregular, ‘fried egg’ shiny 

appearance after 48 h. In some but not all broth culture, it aggregates with flocs typically 

attached to the sides of the tube, often projecting stalactite shape and leaving a clear broth at 

48 h [3].

Y. pestis has typical cell structures and antigen compositions like other enteric bacteria 

and produces a short-chain, rough lipopolysaccharide (referred as lipo-oligosaccharide) that 

lacks the O antigen due to the absence of some genes from the O-antigen cluster [4]. 

This unique feature might be an adaptive evolution that contributes to systemic infection of 

this pathogen. Y. pestis lacks a true capsule but frequently produces a unique glycoprotein 

envelope known as the surface capsule at temperature above 33°C [5].

Genomic composition

The deadly pathogen, Y. pestis, is a clone that emerged from the self-limiting gastroenteric 

pathogen Y. pseudotuberculosis [6–9]. About 97% similarity is shared at the chromosomal 

DNA level [6] and like other pathogenic Yersiniae, Y. pestis contains the plasmid pCD1 

(70–75 kb) [10]. During evolution, Y. pestis horizontally acquired two additional plasmids, 

pMT1 (100–110 kb) and pPCP1 (9.5kb), and a high pathogenicity island consisting by 32 

chromosomal genes are unique to Y. pestis. Some determinants encoded by plasmids pMT1 

and pPCP1 facilitate Y. pestis-specific tissue invasion, survival in flea vectors or possibly its 

heavy growth in host blood[11–15].

Gene modification and loss are attributed to modifications of cellular structural or regulatory 

networks or elimination of activities no longer required for Y. pestis new lifecycle [16]. 

For example, mutation or interruption of yadA, inv and ail encoding adhesin or invasin 

makes it attenuate the activities usually attributed to enteropathogenic virulence [17–19]. 

Urease is essential for pathogenesis in other members of Yersinia spp. (Y. enterocolitica 
and Y. pseudotuberculosis) [20] but Y. pestis does not exhibit ureolytic activity due to a 

premature stop codon of the ureD gene [21]. Even though the ure operon is transcriptionally 

upregulated at 26°C, this locus might not be directly involved in the Y. pestis life cycle but 

likely reduces the toxicity to fleas, increasing the chances of maintaining an infection in a 

larger population [22].
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Nutrition & metabolism traits

Almost all Y. pestis strains require media supplementation with isoleucine, valine, 

methionine, phenylalanine, and glycine (or threonine) for successful growth but the nutrient 

requirements differ depending on the temperature with additional nutrients such as biotin, 

thiamine, pantothenate, and glutamate required at 37 °C.

Y. pestis strains have different abilities to ferment glycerol and arabinose and reduce nitrate. 

Based on this, they have been classified into five biovars (antiqua, mediaevalis, orientalis, 

microtus and Intermedium) [23, 24]. The strains of the former three biovars are highly 

virulent to animals or humans, while the biovar microtus strain, including ‘pestoides’ one, is 

avirulent or opportunistic to larger mammals but virulent to small rodents [25].

Y. pestis has a complete Embden-Meyerh pathway but no functional pentose-phosphate 

pathway due to missense mutations in the glucose 6-phosphate dehydrogenase-encoding 

gene zwf. Unlike Y. pseudotuberculosis, the glyoxylate bypass pathway is constitutively 

expressed in Y. pestis due to de-repression from the IclR transcriptional repressor [26] which 

may explain its ability to metabolise acetate and fatty acids provided by the host.

Unknown 1: the regulation of physiology of Y. pestis in vitro and in vivo

In contrast to its ancestor Y. pseudotuberculosis, a self-limiting gastroenteric pathogen, Y. 
pestis has evolved to be a deadly pathogen occupying different niches [6, 7]. This organism 

circulates only within a narrow host range between rodent reservoir hosts and flea vectors 

in nature. The first challenge for Y. pestis survival in its lifecycle is sensing and adapting to 

temperature shifts but avoiding host innate immune cells during the early stage of infection 

and in host blood after releasing from innate immune cells including macrophages [27] is 

problematic as Y. pestis develops into a systemic infection. During its complex life cycle, 

the intense or even life-threatening environmental changes are concomitant with a series of 

dynamic regulatory physiological responses which we are still far from understanding in 

terms of Y. pestis physiology and pathogenesis at the transcriptional and posttranscriptional 

level [28].

Key physiological traits

Temperature sensing—Y. pestis alternatively grows in the flea or in warm-blood 

mammalian hosts during its lifecycle. Fleas are often infected with Y. pestis by sucking 

blood of a bacteremic mammal. The bacteria form a biofilm mass in the flea foregut 

at temperatures below 25°C [29]. Obviously, Y. pestis distinguish the temperature shift 

between environmental temperatures and the body temperatures of hosts during the 

transmission process. Intriguingly, most of the putative virulence factors are transcriptionally 

regulated by temperature shifts and active at either 26°C or 37°C. Under the control of a 

fourU RNA thermometer switch[30], the histone-like regulator YmoA negatively modulates 

the virulence effectors of the type III secretion system (T3SS) through the transcriptional 

activator LcrF [31]. This thermosensing pattern is quickly responsive and energy-efficient to 

match the changing temperature environments encountered by Y. pestis.
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Low-calcium response—The low-calcium response (LCR) in Y. pestis can be induced 

in vitro under low Ca2+ or Ca2+-free condition at 37 °C but not 26 °C, where growth 

cessation was coordinated with upregulating the T3SS [32]. The phenomenon of triggering 

the expression and secretion function of the T3SS is used to stimulate the in vivo signal of Y. 
pestis contact with host cells during infection [33]. However, growth cessation might be an 

artifact that only occurs in vitro. Expression of components of the T3SS encoded on pCD1 

shared among all three pathogenic Yersiniae initiates the secretion of Yersinia outer proteins 

(Yops) into host cell cytoplasm, which prevents macrophage phagocytosis and inhibits the 

host immune response [34].

Survival within macrophage—It is generally considered that the survival inside 

macrophage vacuoles is critical in the early stages of the Y. pestis lifestyle within warm-

blooded hosts [35–37]. However, there are reports that Y. pestis isolated from fleas showed 

resistance to phagocytosis[38] and the host innate immune cells demonstrated different 

responses to flea-transmitted and needle-inoculated Y. pestis [39]. This reminds us that 

we should be prudent to explain the experimental results from needle-injected challenge 

of laboratory animals for understanding the natural infection through flea feeding. The 

intracellular microenvironments of macrophage may provide a temporary shelter for the 

organism and meanwhile induce the synthesis of antiphagocytosis factors to be ready for the 

subsequent release into the extracellular environment [40]. PhoP/PhoQ, a two-component 

regulatory system, is probably important for Y. pestis survival within macrophage via its 

pleiotrophic effects on gene expression [41].

Counteraction of biometal sequestration—During Y. pestis infection, the host’s 

microenvironments are thought to sequester key biometals such as iron, zinc and 

manganese. Y. pestis utilizes an iron-scavenging siderphore Yersiniabactin (Ybt) and iron 

transporters Yfe and Feo to overcome the iron deprivation [42–45]. Besides the zinc 

transporter ZnuABC, Ybt siderophore also contributes to zinc acquisition as the second 

zinc transporters in both the mammalian and flea hosts during infection [45–47]. Two Mn 

transporters,Yfe and MntH, that are functional in Y. pestis, play an important roles in 

bubonic plague progression [48].

Regulation of physiological stress response in vitro and in vivo—The complex 

lifestyle requires Y. pestis to monitor environmental cues and regulate stress-responses 

accordingly to ensure environmental adaptation in their hosts or vectors.

The stressful conditions in vitro stimulating intracellular or external microenvironments 

encountered by Y. pestis during its infection and life cycle were used in studies on regulation 

of stress responses. The research on stimulons (temperature, osmolarity, ion, oxidative, acid 

and nutrition) and regulons (Fur, PhoP, OmpR and OxyR) refines the regulatory responses 

and identify the differentially regulated genes that are important for Y. pestis physiology and 

pathogenesis [49]. The integrated analysis showed that the expression of putative virulence 

locus in Y. pestis (hms, caf1, T3SS and psa) is responsive to a wide range of environmental 

stresses and multiple regulatory proteins. Other genes responsible for cellular metabolism 

were also active upon exposure to multiple stresses, including energy metabolism, sulfur 
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metabolism, ribosome protein biosynthesis, iron uptake, heme synthesis and utilization to 

chemotaxis and motility [49].

The virulence-associated genes or loci such as the T3SS, pgm locus, pH6 antigen and 

pla encoded by pPCP1 were found to be regulated in established bubonic or pneumonia 

plague. Iron deprivation and NO-induced stress are speculated to be more reactive based 

on the regulation of the corresponding pathways in the rat bubo [50]. In the intracellular 

Y. pestis, the genes associated with antioxidant stresses were strongly induced [51]. In flea 

transmission model, the regulation of genes involving in innate immunity and pathogenicity 

might facilitate survival of Y. pestis during the period of transmission from flea to the host 

[38].

Although we understand some details relating to regulatory networks and their physiological 

consequences there is still much to uncover. For example, Y. pestis can escape from innate 

immunity defense by inhibiting cytokine production or the LPS-induced inflammatory 

response [52, 53] but more comprehensive analysis of (epi)genomic comparison should 

be performed on Y. pestis strains with different host ranges, to further reveal the 

physiological basis to this extraordinary aspect of its lifestyle. The interactions either 

between chromosome and plasmids, especially the horizontal acquired plasmids, or between 

plasmids or the contribution of small open reading frames (sORFs) [54], would strengthen 

our understanding of this phenomenon.

Known 2: Genetic diversity of Y. pestis

Y. pestis has been known as a genetically monomorphic species since the advent of 

molecular genotyping [6, 55]. By using Multilocus Sequence Typing (MLST) methods [56], 

which is frequently used in pathogen genotyping and spread analysis, it is apparent that 

within-species diversity cannot be determined, i.e, all strains of Y. pestis had an identical 

sequence type based on the sequences of six house-keeping genes [6].

To determine the genetic diversity of Y. pestis before the appearance of next generation 

sequencing technology (NGS), researchers investigated multiple types of genomic variations 

including different regions (DFRs), variable number of tandem repeats (VNTRs) and 

clustered regularly interspaced short palindromic repeats (CRISPRs) whilst developing 

corresponding genotyping methods. The DFR method was built on presence/absence of 

23 genome fragments and could distinguish 909 Y. pestis natural isolates into 32 genotypes 

[57]. According to Platonov (2001) [58], DFR-Typing of 275 Y. pestis strains from the 

CIS Natural Foci found 56 novel genomovars, indicating that the discriminatory power of 

this method is high enough to distinguish between subspecies, populations and even strains 

circulating in certain natural plague focus. There are three CRISPR spacer arrays in the Y. 
pestis chromosome. According to the composition of spacers in these CRISPR loci, 125 Y. 
pestis representative isolates from China, the former Soviet Union and Mongolia, could be 

classified into 12 types [59]. Multiple loci VNTR analysis (MLVA) methods provide quite 

high discrimination power, as integrated variation information of multiple VNTR loci have 

high mutation rates, and therefore could be used in outbreak investigation to provide clues 

on source-tracing [60]. However, the rapidly mutated VNTR loci are prone to parallel or 
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reverse changes, which makes the deep branches of the phylogeny less robust, hence it is not 

suitable for inferring long-term evolutionary dynamics of the bacterial population.

Advances in NGS technology have reduced the cost and speed of bacterial whole genome 

sequencing resulting in hundreds of Y. pestis genomes of natural isolates being deciphered, 

and their robust high-resolution genealogy was rebuilt based on genome-wide variations 

through population genetic methods. Results from whole genome sequencing verified that 

Y. pestis is a young and monophyletic species, which evolved from Y. pseudotuberculosis 
between 2,600–28,000 years ago, and the average pairwise genetic distance among any two 

natural isolates of Y. pestis is 126 SNPs [61]. It was reported that Y. pestis has a decay 

genome which resulted from adapting to the nutrient-rich environment of its new survival 

niche, the blood of rodent hosts. The genome content composition supports this hypothesis: 

compared with other species, Y. pestis has a relatively closed pan-genome with a length of 

5.4 Mb but a rapidly reduced core genome size of 3.5 Mb, based on genomes of 133 Y. 
pestis global isolates with average genome size of 4.6 Mb.

Currently, 33 phylogroups in five main branches of Y. pestis are identified (Fig. 1). Branch 0 

is a root lineage of Y. pestis, which contains several ‘untypical’ groups: the 0.PE2 and 0.PE5 

groups that have been recognized as subspecies of Y. pestis and termed ‘pestoides’ [62]; 

strains of the 0.PE4 group are assigned to biovar microtus that are known as highly virulent 

for their main hosts (Microtus spp.) and laboratory mice, but attenuated in larger mammals 

such as guinea pigs and humans; the 0.PE3 group contains only the Angola strain that has 

the largest number of strain-specific SNPs (n=437), compared with the average number of 

126 SNPs across all species, although the reason for this is currently unknown [61, 63]. The 

0.PE7 group represents the oldest group among all modern Y. pestis natural isolates and 

includes two strains that were both isolated from Qing-Tibet plateau of China in the 1960s 

[61]. One 0.PE7 strain was isolated from a human plague case, suggesting Y. pestis acquired 

pathogenicity to humans in the very early stages of its evolution, which has subsequently 

been confirmed by aDNA sequencing analysis[9].

The Justinian Plague was the first plague pandemic to be described in historical records 

and was most likely caused by an extinct lineage, 0.ANT4 (Fig. 1) [64]. Then after the 

appearance of the other three 0.ANT lineages (0.ANT2, 3 and 5), a ‘Big Bang’ node of Y. 
pestis emerged between 1330–1340, with Branch 1–4, radiated from it [64, 65]. According 

to synthesized analysis of archaeological, historical and ancient genomic data, Spyrou et 

al found that ancient Y. pestis from tombs of the Kara-Djigach (the Tian Shan region of 

North Kyrgyzstan), exactly located at the Big Bang node [66]. Concerned with the fact that 

after the Big Bang, one SNP accumulated along Branch 1 in a Laishevo ancient genome 

(LAI009), and one more SNPs after LAI009 were observed from the remnants of the Black 

Death strain originating at the beginning of the 2nd Pandemic [65, 67, 68], the Big Bang 

event occurred immediately preceding the Black Death. Because the Kara-Djigach genomes 

come from a region, in which 0.ANT - including 0.ANT3, the closest old ‘cousin’ of the 

Big Bang – are currently circulating, it has been inferred that the Big Bang itself must have 

occurred in one of marmot reservoirs of the Tian Shan region. Thus, the spatio-temporal 

origins of the Big Bang have been established. One of the newly born lineages out of the Big 

Bang was Branch 1, whose strains are associated with both the 2nd Pandemic (commencing 
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with the Black Death) and the 3rd Pandemic (commencing in Yunnan in 1772 and becoming 

global in 1894). Branch 1 is currently most widely distributed lineage of Y. pestis that 

currently thrives in natural plague foci in Asia, Africa, and America, and most likely also 

thrived in Europe in the late-medieval and possibly early modern periods [69]. In particular, 

the 2nd Pandemic waves were caused, with one exception, by now-defunct Branch1A and 

its sub-lineages, while the 3rd Pandemics was spread by 1.ORI lineage strains (deriving 

from Branch 1B, which appears to have left Europe in the 1360s) across the globe through 

steamship transportation at the end of the 19th century [70]. There are 90 SNPs and about 

380 years separating the Big Bang and the Great Plague of Marseille (1720–2), implying 

about one mutation in 4.2 years within Branch 1A. Branch 2 is split into 2.ANT and 2.MED 

lineages, with the strains of the former are circulating in Nepal, China and Mongolia, while 

2.MED is found all over Asia, all the way from Caucasus, Caspian, Volga-Ural region 

in the west, via western Kazakhstan, Turkmenistan, northern Kyrgyzstan, into China and 

Mongolia. The reported number of genomes of Branch 2 was the second largest in Y. pestis, 

only less than that of Branch 1. Strains of Branch 3 were only found in Gansu Province 

and Qinghai Province of China and Mongolia, with 12 genomes being reported (as of April 

2022). And strains of Branch 4 were only found in Russia and Mongolia, with 11 genomes 

being reported (as of April 2022) [61, 71, 72].

The genomes of ancient DNA (aDNA) could provide genetic information for historically 

extinct populations and therefore are important in bacterial evolutionary research as a 

molecular fossil [73]. Following the successful sequencing of the first whole aDNA genome 

from the Black Death victims in London (1349) in 2011, there have been more than 

110 publicly available ancient genomes of Y. pestis (as of April 2022) and 7 extinct 

lineages have been identified (Fig. 1) [65, 74]. This extends our knowledge of human 

plague infection to the Neolithic and Bronze Age and onwards to early and later medieval 

periods across Euro-Asia. Furthermore, studies of ancient genomes have yielded valuable 

information on the early adaptive evolution of this bacterium, such as the development of 

flea-borne transmission, and also revealed changes of genomic profiles during pandemics 

such as convergent evolutionary signals, the 49-kb deletion and pla decay at the end of the 

first two pandemics (Fig. 1) [65, 75].

Unknown 2: evolutionary dynamics and driven force

Although the genealogy of Y. pestis has been well defined based on population genomic 

studies, the driving force shaping such genealogy and the detailed dynamics during its 

evolution are still vague. Whole-genome wide SNP analysis suggested the evolutionary 

process of Y. pestis was generally neutral, i.e., most of the observed mutations were 

accumulated randomly [61]. However, after considering multiple types of variation such 

as indels and gene gain/loss, it might change our current understanding as was the case 

with Salmonella enterica serovar Paratyphi A. The population genetic analysis combining 

variations of SNPs, indels and accessory genomes provided evidence of transient Darwinian 

selection during its evolution [76]. In addition, by using SNPs and indels five mutation 

hotspots have been identified with strong selection signals in 78 Y. pestis isolates [77]. 

Mutations at one hotspot, the rpoZ gene, might affect the vector behaviors and were proved 

to be closely related with climate changes. There were 19 out of all 130 mutations (14.6%) 
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involved in mutation hotspots showing selection signals [77], which suggested natural 

selection might play a more important role than previously thought.

Therefore, reconstructing the evolutionary dynamics using combined variations, including 

SNPs, indels, gene gain/loss etc., is still a challenge. Another challenge is the association 

between genetic variations and niche factors, including climate, soil components, hosts, and 

vectors etc., for inferring natural selection forces. By understanding how Y. pestis interacts 

with the environment, we can begin to understand its natural survival strategies and learn 

how the genome is shaped, hence promoting the development of novel countermeasures for 

plague prevention and control.

The evolution of virulence in Y. pestis is also an important and unsolved issue. Y. pestis is 

a clone that derives from its ancestor species Y. pseudotuberculosis with few intermediate 

lineages between these two species, and therefore it is difficult to infer the step-by-step 

evolutionary scenario. Through comparative genomic analysis, we know that Y. pestis 
acquired two plasmids (pMT1 and pPCP1) including a subsequent gain of Yersinia murine 

toxin (ymt) gene in pMT1 plasmid and meanwhile inactivated numerous functional genes 

(ureD, rcsA, flhD, pde2, and pde3) (Fig. 1) [7, 75, 78, 79]. However, in what order these 

events occurred and their fitness advantages during the evolution are not clear. Additionally, 

there is still no satisfactory explanation for the distinct animal virulence across different 

phylogroups of Y. pestis, except for few clues which relate selection pressures with fine 

genomic changes, such as frameshift indels and copy number variations [80].

Known 3: Distribution and ecology of natural plague foci

The existence of plague natural foci has long been recognized and as far back as 1910–

1911 during the Manchurian plague epidemic, which resulted in 50,000 to 60,000 deaths. 

Zabolotny D. K. proposed that the epidemics were caused by a spillover of the Y. pestis 
population from the natural Marmota sibirica plague foci [81].

Natural foci would consist of Y. pestis, hosts, vectors and the local environment and would 

be based on the food chain and spatial interaction between Y. pestis, hosts and vectors 

which then form the biomes of plague in evolution and finally establish the biogeographic 

community suited to the specific local environment [82]. The global distribution of plague 

is extensive and has been observed on all continents except Antarctica with natural foci 

distributed widely in Asia, Africa and the Americas (Fig.2) and covering wet and dry 

regions, grasslands, deserts, plateaus and plains[83–86].

In Asia, the active foci distribute in Central Asia (mainly in the Lake Balkhash region of 

Kazakhstan), Mongolia, China and Vietnam [83, 87, 88] and in Africa, the natural foci exist 

in broad areas mainly in the southern and eastern regions but is particularly prevalent in 

Madagascar, Tanzania, and the Democratic Republic of Congo [83]. In the Americas plague 

is endemic in Brazil, Bolivia, Ecuador, Peru and the United States [83] and in Europe and 

Oceania, there are no natural plague foci today, but most European countries were severely 

affected during the Second and third pandemics [89].
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Mammals are the most common host species with 351 species globally that can act as hosts 

[90]. Among all these species, 279 species of rodents have been identified as plague carriers. 

According to the strong adaptability to a wide variety of lifestyle and environments and high 

reproductive capacity, rodents have a worldwide distribution (excluding Antarctica) and play 

an integral role in the Y. pestis circulation processes [84, 91]. Y. pestis circulation within 

natural foci is thought to be guaranteed with the existence of hosts through 3 processes: 

preservation, accumulation, and dissemination [84]. The primary rodent hosts that persist 

in the region are generally resistant to the bacteria and experience low level bacteremia 

when infected and results in the preservation process of pathogen. The accumulation process 

occurs when Y. pestis transmit to sensitive secondary and tertiary rodent hosts from primary 

rodent hosts via fleas and the secondary and tertiary rodent hosts generate a high level of 

bacteremia in their blood. Rodent overcrowding is a key contributing factor to dissemination 

of Y. pestis [92].

Due to geographical and climatic diversity host distribution varies globally with 

approximately 70 species known as main reservoir species concentrated in the regions 

corresponding to current plague foci, such as the western North America, eastern South 

America, eastern Africa, Central Asia and Southeast Asia[84].

In natural foci of plague, only fleas are its main vectors. Under natural conditions, the plague 

pathogen has been detected in 280 species and subspecies of fleas belonging to 62 genera 

[93].

Except the indispensable roles of hosts, vectors and Y. pestis for developing natural plague 

foci, environmental and ecological parameters also play key roles in this process. At the 

end of last century, some scholars proposed that global climate dynamics are responsible 

for outbreaks of infectious diseases, and others warn that long-term global warming could 

increase the risks of acquiring such diseases. Parmenter et al (1999) proposed the trophic 

cascade model in ecology and hypothesized that increased precipitation during the winter-

spring period in arid and semi-arid regions would increase the ecosystem productivity, 

and further gave rise to greater population of mammal plague hosts and insect vectors 

[94]. Subsequent articles related to the trophic cascade model proved the validity of the 

hypothesis [95], and found additional complexity between the elements of the model, such 

as the lag effect of precipitation, bottom-up regulation and immediate climate effects on 

plague prevalence [96, 97].

Maintenance of plague foci depends on a whole suite of rodent hosts and their associated 

fleas [98] and climate affects the occurrence of plague by affecting rodent distribution, 

vector burden, population density, and ultimately susceptible population exposure to Y. 
pestis [99–101]. Unfavorable climatic conditions or extreme weather events due to climate 

change can lead to reduced productivity and famine, leading to human migration followed 

by rodents in search of water and food, which elevates human-rodent interactions and finally 

increase the risk of human plague [102, 103]. Additionally, climate can also influence 

replication cycles of pathogens or alter the mode of transmission, which in turn can lead to 

changes in the prevalence of plague [104].
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The patterns of climate change differ from local to regional and ultimately to the global 

level with humidity, rainfall, temperature, etc. studied in detail at the local scale. Studies 

investigating climate and plague epidemiology in India during 1898 and 1949 revealed that 

the timing of plague outbreaks was associated with seasonal changes in humidity [105] 

while work examining the climate drivers of plague in the West Nile Region of Uganda 

found that the number of suspected cases in this region were negatively associated with dry 

season rainfall and positively with rainfall prior to the plague season. At high elevations, 

plague risk was positively associated with rainfall during winter and spring and negatively 

associated with rainfall throughout June [106, 107]. Conversely, environmental predictors 

of plague in Vietnam found that the risk of plague increased during the dry season when 

rainfall was low [108]. In addition, a study investigating the factors influencing global 

transmission velocity of plague during the Third Pandemic found that temperature exhibited 

a nonlinear, U-shaped association with spread speed [109].

There are also studies at the regional scale. The research on the human plague in the 

USA found that the Pacific Decadal Oscillation, together with previous plague levels and 

above-normal temperatures, explained much of the plague variability [110]. The research on 

the connection between the North Atlantic Oscillation (NAO) and plague in pre-industrial 

Europe found that the pathway from climate change to plague incidence is distinctive in its 

spatial, temporal, and non-linear patterns. The NAO-plague correlation in Atlantic-Central 

Europe primarily remained positive, while the correlation in Mediterranean Europe switched 

between positive and negative alternately [111].

Unknown 3: Ecological interactions of Y. pestis, the hosts and natural 

environments for long-term survival of natural plague foci.

Because of the scarcity or complete absence of controlled studies before the turn of the 

last century, there are obstacles in seeking the associations between the global scale climate 

drivers and plague outbreaks. However, the research on the relationship between volcanism 

and global plague pandemics suggested that all three pandemics coincided with periods of 

significant volcanic activity, and a series of connections between volcanism and plague are 

possible [112].

The ability of Y. pestis to colonizes and propagates in the flea gut prior to transmission 

to a new host is well established [113, 114] and within an inveterate rodent population, 

enzootic (maintenance) plague episodes ensure Y. pestis is passed through a partially 

resistant enzootic host population by fleas and upon transmission into epizootic (amplifying) 

hosts plague rapidly spreads [115]. Plague is therefore circulating in associated hosts prior to 

re-emergence in the human population [116, 117]. However, although this rat/flea model has 

endured as the plague reservoir for transmission to humans, it is likely to constitute only one 

mode of transmission since the general picture has been hugely oversimplified [118].

A remarkable aspect of epizootic plague biology is the fact that Y. pestis displays 

interepizootic cryptic periods of quiescence [119, 120] between plague outbreaks in rodents 

or humans. In locations where there have been no human cases or mass rodent die-offs [116, 

121] plague often re-emerges decades later, such as in Algeria, Libya, Madagascar, and 
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India 57, 25, 60 and 30 years respectively. In China, in Xinjiang province the Junggar Basin 

plague focus was discovered in 2005 following continuous surveillance and this plague 

focus was in the cryptic quiescence period since the year of 1949 [122].

Reports of long interepizootic periods during which time Y. pestis is absent from host 

and vector populations have largely been overlooked, possibly due the fact that it has 

been suggested that once Y. pestis evolved to colonize insect and mammalian vectors 

it became host dependent [123]. However, it is more likely that Y. pestis adopts a ‘sit 

and wait’ lifestyle [124] in the environment where it can survive under highly diverse 

ecological conditions which would compare favorably with the lifestyle of the near identical 

(~98% DNA identity) free-living soil borne gastrointestinal pathogen ancestor, Yersinia 
pseudotuberculosis from which it evolved [6, 125–127].

Where then does Y. pestis persist during these quiescent periods and which factor(s) result 

in epizootics? There are several hypotheses to explain this phenomenon, including spill-over 

of plague from its primary hosts to highly susceptible rodents with high mortality [128]. 

This would exacerbate transmission from low level and undetectable epizootics within the 

main host by changes in ecological and environmental conditions resulting in unexpected 

fluctuations of host/vector abundance and/or behavior [115, 128, 129]. There may also be 

the formation of the non-culturable L-form of Y. pestis in soil or survival in protozoa or 

biofilm formation either abiotically or biotically on the surface of nematodes [130–133]. A 

number of microorganisms are resistant to soil-dwelling free-living amoebae predation [134] 

and this is also true for Y. pestis [135]. Markman et al., [136] and Benavides-Montaño 

and Vadyvalooa, [137] showed that Y. pestis is resistant to trophozoite predation and 

can survive and replicate intracellularly in Dictyostelium discoideum and Acanthamoeba 
castellani respectively. Y. pseudotuberculosis and Y. enterocolitica can also survive in A. 
castellani trophozoites and cysts. However, there is a need for field-based investigations to 

corroborate these hypotheses [138–141].

Another facet of interaction between Y. pestis, hosts, vectors and environmental/ecological 

parameters is which natural drivers select the variants of the bacterium and how the gene 

mutations in these variants impact the persistence of plague foci. For example, colder and 

drier winters may select for rpoZ mutants which rapidly form biofilms and subsequently 

promote rapid transmission by infected fleas [77]. Further works need to initiate to elucidate 

the existence mechanisms of natural plague foci.

Knowns 4: Transmission of Yersinia pestis by fleas

Bubonic plague as a vector-borne disease and the key role of the flea in its transmission 

were recognized soon after the discovery of Y. pestis. Several possible transmission 

mechanisms were considered, initially using a model in which groups of fleas were allowed 

to feed on a rodent dying of septicemic plague and then transferred to naïve rodents 

[142]. Transmission resulted if the fleas were transferred within a few days after their 

infections blood meal but waned rapidly beyond that. This is now referred to as early-phase 

transmission. A few years later, a second mode of transmission was discovered– the well-

known “blocked flea” transmission model [114].
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Both modes of transmission stem from the marked propensity of Y. pestis to rapidly 

autoaggregate in the flea digestive tract. Large masses of bacteria can form in the midgut and 

localize to the proventricular valve in the flea foregut within a few hours after an infectious 

blood meal [143, 144]. Initially, the bacteria appear to be associated with a semi-fluid, 

serous matrix, and in some fleas an aggregate can extensively occupy the lumen of the 

proventriculus within a few days. Although long assumed to be mechanical (transmission 

via contaminated mouthparts), the infected foregut is the more likely source of bacteria 

transmitted during the early phase. According to this model, a heavy proventricular infection 

is sufficient to transiently impede blood flow, resulting in some backflow of contaminated 

blood into the bite site [143, 145]. Because the early proventricular aggregates are relatively 

soft and fragile, however, they are readily dislodged and washed back into the midgut by 

the incoming blood pressure, terminating early-phase transmission. The second mode of 

transmission, the well-described blocked flea mechanism, is phenomenologically the same 

(regurgitation from the foregut) except in this case the proventricular aggregate is more 

cohesive and firmly entrenched in the proventriculus such as it severely impedes the passage 

of blood into the midgut.

Fundamentally, the flea-borne transmission phases reflect a continuum of Y. pestis biofilm 

development in the proventriculus. Maturation of the biofilm over the following days 

notably involves production of a polysaccharide extracellular matrix that acts to stabilize 

the Y. pestis aggregates, making them more cohesive and firmly fixed to the proventriculus 

[146]. A transmission-competent partially blocked stage develops first [147]. At the end 

stage of complete blockage, proventricular biofilm prevents feeding, but continuous probing 

and feeding attempts by a blocked flea result in more efficient regurgitative transmission.

Biofilm development is a common strategy of many bacteria to adapt to nutrient-limited 

moist environments and is characterized by the formation of surface-adherent dense 

microcolonies that are embedded within an extracellular polymeric matrix. Metabolic 

adaptation of Y. pestis to the protein- and lipid-rich but carbohydrate-poor flea gut induces 

biofilm. The regulatory and development pathways underlying this process are complex 

(reviewed recently in [148]), but culminate in upregulation of the Hms genes, which act 

to produce the aforementioned polysaccharide component of the biofilm matrix [143, 149]. 

Y. pestis mutants lacking the hmsHFRS operon are unable to block fleas because unable 

to synthesize the polysaccharide extracellular matrix stabilizing Y. pestis aggregates in the 

proventriculus [144, 150]. However, a hmsR mutant is transmissible by the early-phase 

mechanism [151, 152].

Differential biochemical characteristics of vertebrate blood and the speed at which it is 

digested can strongly affect the ability of Y. pestis to colonize the flea gut and be transmitted 

[145, 153]. For example, rodent fleas infected using rat blood are much better early-phase 

transmitters than fleas infected using mouse blood [145]. Furthermore, an augmenting effect 

of Hms-dependent biofilm formation on transmission (corresponding to evidence of partial 

or complete blockage) can be seen as early as three days after an infectious rat blood 

meal, suggesting that early-phase and proventricular blockage-dependent transmission can 

overlap temporally. The initial bacterial aggregates following an infected rat blood meal are 

associated with a viscous mixture of undigested hemoglobin and red blood cell components 
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that results in a much more tenacious proventricular colonization as well as reflux of the 

infected mixture into the esophagus [145]. This condition enhances transmission in the early 

phase.

Reliance on flea vectors for transmission between mammalian hosts is an evolutionary 

recent adaptation, arising within the last 3,000 to 6,000 years since Y. pestis emerged 

from its closely related progenitor, Y. pseudotuberculosis. This abrupt switch to arthropod-

borne transmission was possible because it required just a few, discrete genetic changes 

[75]. Pseudogenization and functional loss of three genes extended the pre-existing biofilm 

capability of the Y. pseudotuberculosis progenitor to the flea gut environment because their 

loss resulted in increased intracellular levels of cyclic-di-GMP, a universal bacterial inducer 

of biofilm development. Two other genetic changes were also important. One was another 

gene loss that eliminated an enzyme activity (urease) that is toxic to fleas [22], but it 

is not related to flea blockage. The other was the acquisition of a new gene, present on 

the Y. pestis-specific plasmid, that encodes a phospholipase D enzyme (Ymt) that protects 

Gram-negative bacteria from a toxic product produced by the flea [154, 155]. Making these 

same five changes in a modern Y. pseudotuberculosis strain was sufficient to enable it to 

block fleas [75].

The evolutionary road to flea-borne transmission was a stepwise process. The earliest Y. 
pestis strains, characterized by genome sequencing from infected human skeletal remains 

dating from the Stone Age, already had most if not all the plague-related virulence factors. 

However, most of the Stone Age strains had only one of the three biofilm-enhancing genetic 

changes, still had urease, and had not yet acquired Ymt [156]. This led to the conclusion 

that these strains could be transmitted by fleas but to an extent that was not compatible 

to sustain a vector borne cycle for a long period of time, at least in relation to blockage. 

However, it is now known that the importance of Ymt for bacterial survival in the flea 

gut is host-blood-dependent. Ymt-negative Y. pestis survives well in fleas infected using 

blood of the brown rat (Rattus norvegicus) [155]. This new finding, together with the 

increased early-phase transmission efficiency associated with brown rat blood infections 

and the biofilm-enhancing effect of the one genetic change, suggests that a rudimentary rat 

flea-brown rat transmission cycle was possible. Interestingly, the northern China habitat of 

R. norvegicus overlaps geographically with the emergence of Y. pestis. Acquisition of Ymt 

and accumulation of the remaining gene losses described above occurred by the Bronze Age, 

fully enabling flea-borne transmission, and significantly extending the host range in which it 

could occur [155, 157].

Unknowns 4: Complex interaction between Yersinia pestis and fleas

While much has been learned, many gaps remain in our understanding of Y. pestis 
transmission. The general transcriptional responses of Y. pestis in adapting to the flea gut 

and of the flea to infection have been characterized [38, 158], but specific gene induction 

steps and molecular mechanisms required to produce a transmissible infection have yet 

to be fully elucidated. Key factors at the flea-Y. pestis-mammalian dermal interface that 

determine successful transmission have not been well characterized. Vector competence 

differences between flea species and how this relates to enzootic and epizootic plague are 
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not well understood. Thus, questions ranging from individual Y. pestis-flea interactions to 

the complex ecology of plague, involving many flea vectors and hosts, are still ripe fields for 

further research.

A prime topic is biofilm formation in the flea. What is the molecular and biophysical basis 

for the rapid aggregation of Y. pestis upon entering the flea gut and what is the makeup of 

the extracellular matrix that surrounds these aggregates? These features of its vector-specific 

life stage may protect Y. pestis from antibacterial factors in the lumen of the flea digestive 

tract, which is a hostile environment for Gram-negative bacteria. Furthermore, Y. pestis 
is transmitted in association with the extracellular matrix. There are clear differences in 

pathogenesis following flea-bite transmission versus intradermal injection of in vitro culture-

grown Y. pestis. For example, a chronic intradermal infection often follows transmission by 

fleas but is not seen following intradermal injection [159]. Differences in antigenic makeup 

between flea- and culture-derived bacteria as well as the presence of extracellular matrix 

may be responsible. Flea saliva is also injected into the bite site but its effect on nascent 

infection and immunity have not been thoroughly investigated. Mice and rats mount an 

immune response to flea salivary components, but this does not appear to significantly affect 

productive transmission [160].

How the biochemical characteristics of host blood can so strongly influence infectivity and 

transmission is another unknown. The rate at which a particular type of blood is digested 

by the flea and the concomitant generation of antibacterial digestion products appear to 

be important, but the molecular mechanisms are yet to be discovered. For example, the 

importance of the protective effect of Ymt varies with blood meal source [155], but the 

identity of the relevant target(s) of this phospholipase D in the flea gut remains elusive.

Y. pestis is a generalist, able to produce a transmissible infection in many different flea 

species by the same mechanism. However, fleas vary widely in their vector competence and 

transmission efficiency by both early-phase and blockage mechanisms [161]. The reasons 

for this are not clear, although differences in digestion kinetics and processing of host 

blood, feeding frequency and excretion rates, and foregut anatomy are likely influencing 

factors [143]. The incidence and rate of complete blockage development are much lower 

for some fleas than for others, leading to proposals that early-phase transmission is more 

ecologically important in certain flea-rodent transmission cycles. However, blockage rate 

comparisons between different fleas have been based on few studies, small sample sizes, and 

variable experimental conditions, making conclusions tentative and sometimes discordant or 

misleading [162].

Quantitative evaluation of the relative efficiency of the early-phase and blockage-

dependent transmission modes for different flea merits systematic reexamination, using 

more standardized protocols with appropriate controls [142, 161]. The infectious blood 

source should also be taken into account. For example, recent early-phase transmission 

comparisons have all been based on fleas infected using brown rat blood. As described 

above, this blood source induces an initial severe foregut infection highly favorable 

for early-phase transmission, which is not seen with other host bloods. Ideally, future 

studies would start with a single cohort of fleas infected using their usual blood source, 

Yang et al. Page 15

Zoonoses (Burlingt). Author manuscript; available in PMC 2023 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which would then be monitored for early-phase transmission, blockage development, and 

blockage-dependent transmission at different times after infection. These studies would 

provide more reliable vector competence data for mathematical models of enzootic and 

epizootic plague.

Known 5: virulence factors and their roles in pathogenesis of Y. pestis

Three pathogenic yersiniae share several virulence mechanisms, among which type III 

secretion system (T3SS), encoded by a 70-kb plasmid (pCD1 in Y. pestis and pYV in 

Y. enterocolitica and Y. pseudotuberculosis), is essential for full virulence in all three 

pathogens. Although closely related in terms of evolution, these pathogens are extremely 

diversified in clinical symptoms, ecological niches, and typical infection routes. Y. pestis 
is an etiological agent of plague that has caused more than 200 million deaths in the past 

three pandemics, whereas the other two cause only self-limited gastrointestinal diseases. In 

addition to acquisition of two virulence-associated plasmids of pMT1 and pPCP1, massive 

gene losses played more important roles than gene acquisitions in the virulence evolution of 

Y. pestis from its acknowledged ancestor Y. pseudotuberculosis [163].

5.1 Type III secretion system (T3SS)

Gram-negative bacterial T3SS assembles a macromolecular device called injectisome 

capable of delivering virulence effectors into eukaryotic cells. Yersinia T3SS is temperature 

and contact dependent, and the secretion of effectors are triggered at mammalian 

temperature only when contacts with host cells occurs. Virulence factors of Y. pestis exhibit 

various enzymatic activities that can disrupt eukaryotic cytoskeleton and host immune 

singling to promote the bacterial survival and replication.

LcrV is the component of needle tip structure of T3SS injectisome, and it also induces the 

production of suppressive interleukin (IL)-10 [164]. YopH is a potent tyrosine phosphatase 

that dephosphorylates a variety of functionally distinct substrates. YopH inhibits T cell 

and B-lymphocyte activation via dephosphorylation of Lck and ZAP70, the major signal 

transducer for the T cell antigen receptor (TCR), enabling the blockage of the first step of 

TCR and suppress immune response against Yersinia [165]. YopE, YopT, and YpkA, all 

of which belong to a large family of bacterial toxins that target the Rho family of small 

GTP-binding proteins (Rho GTPases), inhibit phagocytosis by professional phagocytes. 

YopE inactivates multiple Rho GTPases, including RhoA, Rac1, and Cdc42 [166, 167]. 

YpkA is inactive in bacteria and is activated by binding to the coactivator actin in eukaryotic 

cells [168]. Upon activation, YpkA undergoes autophosphorylation and phosphorylates Gαq 

(the α subunit of heterotrimeric G proteins) [169], vasodilator-stimulated phosphoprotein 

(VASP)[170], otubain-1, among others, to disrupt actin cytoskeleton. YopT acts as a papain-

like cysteine protease that removes the prenyl group from RhoA, RhoG, Rac1, and Cdc42, 

which releases these GTPases from the membrane and lead to their inactivation [171]. YopT 

has been shown to contribute to the anti-phagocytic activity of bacteria but not essential for 

the virulence of pathogenic Yersinia. This may be due to the fact that YopT is functionally 

redundant in the presence of YopE and YpkA [166].
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Recognition of Y. pestis by host nod-like receptors (NLRs), including NLRC4, NLRP3 

and Pyrin, induces the formation of inflammasomes, leading to the caspase-1 activation, 

IL-1β processing and secretion and cell death. YopM enables bacteria to avoid this host 

innate immunity strategy by directly binding caspase-1 to inhibit caspase-1 activation 

and inflammasome maturation [172]. Furthermore, YopM interacts with Pyrin and kinases 

RSK1 and PKN1, the negative regulators of Pyrin, to inhibit the activation of the Pyrin 

inflammasome that is triggered by the RhoA-inactivating enzymatic activities of YopE and 

YopT [173, 174]. YopM has a nuclear localization signal at its carboxyl terminus [175] 

and Y. pestis infections cause a systemic depletion of natural killer cells in mice in YopM-

dependent manner [176].

YopJ functions as an acetyltransferase that inactivates nuclear factor kappa B (NF-κB) and 

mitogen-activated protein kinase (MAPK) pathways by acetylating MAPK kinase [177]. 

Once translocated into host cells, Yop effectors act in a finely tuned and coordinated manner 

to hijack various host signaling pathways to thwart the innate immune response [166]. It has 

also been reported that YopJ showed deubiquitination activity towards molecules in NF-κB 

signaling pathway including TRAF2, TRAF6, and IκB to inhibit the inflammatory response 

[178]. Mutation of yopJ in Y. pestis showed no obvious virulence attenuation, although 

greater virulence attenuations have been observed in enteropathogenic Yersinia [179–181].

YopK plays important regulatory roles in Yop translocation and controls both the rate and 

fidelity of Yop injection into host cells, and a yopk mutant exhibits Yops-translocation 

phenotype [182, 183]. This regulatory mechanism is partially exerted by interaction of 

YopK with the YopB-YopD translocon, which prevents the recognition of the Yersinia T3SS 

and inhibit the NLRP3 and NLRC4 inflammasome activation [184]. YopK inhibits the 

attachment of Y. pestis to the host cells by binding to the extracellular matrix protein 

MATN2 and disruption YopK-MATN2 interaction results in Yops hyper-translocation 

phenotype in similar to the yopk mutant [185]. YopK also interacts with the receptor for 

activated C kinase (RACK1) and that this interaction promotes the phagocytosis resistance 

of Y. pseudotuberculosis [186].

5.2 Lipopolysaccharide and Pla

Y. pestis produces a short-chain, rough lipopolysaccharide (LPS) that lacks the O antigen 

due to mutations of genes involved in LPS biosynthesis. The O antigen confers resistance 

to complement- mediated phagocyte bacterial killing and is important for virulence of Y. 
enterocolitica and Y. pseudotuberculosis. Pla is a pPCP1-encoded protein protease that 

can cleave plasminogen to plasmin, which further degrades extracellular matrix proteins to 

promote the bacterial dissemination. The proteolytic activities of Pla require rough LPS, 

but are inhibited by the O antigen, highlighting the selective advantage of rough LPS for 

Y. pestis [187]. Pla is also an adhesin that is specific for laminin and heparan sulfate 

proteoglycan and cleaves the C3 component [15, 188]. However, Pla is not required for 

serum resistance. As the temperature shifts from 26 °C to 37 °C, lipid A of Y. pestis 
switches from a hexa-acylated to tetra-acylated form due to the loss of lpxL that is 

responsible for adding of the secondary acyl chains to the tetra-acylated lipid A precursor 

[53]. The tetra-acylated lipid A is poorly recognized by Toll-like receptor 4 (TLR4), which 
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render much lowered toxic compared to the other Enterobacteriaceae grown at 37 °C [52] 

and facilitates the pathogen to escape the host immune surveillance [189].

5.3 F1 Capsule

The F1 capsule is composed of linearly polymerized Caf1 subunit that is encoded by the 

pMT1 plasmid. F1 appears to have some role in anti-phagocytosis although the primary 

Y. pestis virulence factor that blocks uptake by phagocytosis is T3SS [190], and strains 

with spontaneous mutations or deletion of caf1 are still virulent [191, 192]. The F1 

antigen contributes to virulence in naturally acquired bubonic plague but is not essential for 

pneumonic plague in mouse or guinea pig infection model [13, 190, 193–196]. An anti-F1 

antibody provides high protection against F1-positive but not F1-negative strains [197].

5.4 Adhesion and invasion

Y. pestis is lymphophilic and prefers to attack certain type of cells, such as innate 

immune cells including macrophages, neutrophiles and dendritic cells (DC) [198] as well 

as the lung alveolar epithelial cells. The pH6 antigen (PsaA) adhesin contributes to the 

cell-type preference of Y. pestis. Two major receptors for Psa were found to be β1-linked 

galactosyl residues in glycosphingolipids and phosphocholine and phosphatidylcholine in 

phospholipids, which are present on alveolar epithelial cells [199, 200]. However, an in 
vitro cell infection assay showed that PsaA promotes resistance to phagocytosis rather than 

adhesion to mouse macrophages [201]. PsaA facilitates the delivery of Yops by T3SS by 

mediating intimate contacts between host cells and bacteria, as do other adhesions, such 

as the attachment invasion locus (Ail) and Pla [202]. Mutation of psaA locus results in a 

100-fold increase in LD50 via intravenous challenge, but no attenuation by subcutaneous 

route of infection [203, 204].

Ail is a chromosomally encoded small-membrane protein common to all three pathogenic 

Yersinia. The major adhesins YadA and Inv in Y. pseudotuberculosis are inactivated in Y. 
pestis, thus Ail is the primary adhesin of Y. pestis. An ail negative mutant of the KIM5 

(pgm−) was attenuated over 103-fold in intravenously challenged mice and deletion of ail in 

CO92 resulted in approximately 105-fold attenuation in rat model of bubonic and pneumonic 

plague [205–207]. Ail binds to the ECM components fibronectin, laminin, and heparin [208, 

209], and is critical for invasion and Yop delivery into host cells. Ail also binds to the 

complement inhibitor C4b-binding protein and vitronectin, a host protein that is critical 

in cell attachment, fibrinolysis, and inhibition of the complement system [207, 210, 211]. 

Y. pestis Ail shows higher binding affinity to ECM substrates than Y. pseudotuberculosis 
Ail because of two amino acid differences, and the rough LPS of Y. pestis increases the 

accessibility of Ail to eukaryotic cells.

5.5 Yersiniabactin

Iron utilization by Y. pestis predominately relies on the yersiniabactin (Ybt), which is 

encoded in a high-pathogenicity island within 102-kb pigmentation (pgm) chromosomal 

locus common to the pathogenic Yersinia species. The ybt locus includes genes for Ybt 

siderophore synthesis (high-molecular-weight protein 1 (HMWP1), HMWP2, YbtD, YbtE, 

YbtS, YbtT, and YbtU) and Ybt uptake (YbtQ, YbtP, and Psn). Ybt has high affinity for 
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ferric iron and is necessary for acquiring iron from transferrin and lactoferrin by yersiniae 

[212]. The pgm− mutant or specific Ybt synthesis or uptake mutants are avirulent in 

subcutaneously challenged mice but are fully virulent in intravenously challenged mice 

[45, 213–215]. In a natural context of infection (i.e. fleabite) a Ybt-negative mutant is also 

attenuated in virulence but remains capable to cause fatal disease in some mice [45].

Unknown 5: Early interactions between Y. pestis and the host cells: still 

largely a mystery

Y．pestis is a facultative intracellular pathogen that predominantly lives an extracellular 

life. In a typical fleabite transmission, Y. pestis bacilli are readily engulfed by professional 

phagocytes when initially entering the host. Those taken up by PMNs can temporally 

survive and replicate within 3 days post infection (dpi); however, the living Y. pestis bacilli 

can only be found in macrophages at 5 dpi [216]. The released bacteria from the disrupted 

host cells embark on an extracellular life thereafter. Thus, rapid adaption to the adverse 

mammalian host environments is critical for Y. pestis through arming itself with a variety 

of virulence factors, including F1 capsule and the T3SS to avoid phagocytosis and to 

paralyze the host immune response. An impressive feature of plague infection is that Y. 
pestis replicates massively without evoking a significant host innate immune response during 

the initial period of infection, termed as pre-inflammatory phase. Studies of bubonic plague 

rodent models revealed that Y. pestis can replicate rapidly in draining lymph nodes (dLNs) 

near the infection sites with no detectable inflammation at the early stage (6–36 hours post 

infection (hpi)) of infection, and then escape from the bubo and disseminate via lymph 

circulation to establish systemic infections [50, 217, 218]. Pathology studies on mouse 

primary pneumonic plague confirmed the biphasic feature, in which the infection begins 

with an immune-suppressive state in the first 24–36 hpi and rapidly progresses to a highly 

proinflammatory state by 48 hpi [219].

Although the rapid adaption to the adverse mammalian host environments is critical for 

the pathogenesis Y. pestis, reports on the early interactions between the bacteria and the 

host immune cells are limited and remains to be clarified. It has been shown that Y. 
pestis preferentially targets host immune cells during infections. Dendritic cells (DCs), 

macrophages and neutrophils are the most frequently injected cells; however, T and B 

lymphocyte are less selected [198], even though it delivers Yop effectors to almost all types 

of cells in tissue cultures [198, 220]. In an intradermal (i.d.) infection of Y. pestis, a larger 

number of PMNs were shown to be recruited by 4 hpi and the majority of cell-associated 

bacteria were associated with PMNs but very few bacteria interact with DCs [221]. 

Neutrophil depletion and CCR7 knockout mouse experiments indicated that dissemination 

of Y. pestis from the dermis to the dLNs may not rely on DCs and PMNs. Another study 

showed that intracellular Y. pestis bacteria can survive and replicate in cultured human 

PMNs, and a high percentage of the infected PMNs underwent apoptosis within 12 hpi. The 

PMNs containing Y. pestis can be recognized and internalized by autologous macrophages, 

in which Y. pestis survives and replicates following efferocytosis [222].
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Recently, in order to describe the critical events occurring during the initial interactions 

between Y. pestis and the host innate immune cells, single-cell RNA sequencing (scRNA-

seq) was utilized to characterize the composition and alterations of immune cells in the 

functional dynamics of dLNs during the early stages of bubonic plague which revealed a 

dynamic immune landscape at single-cell resolution of murine dLNs in the response to Y. 
pestis infection [223]. The data suggested that DCs responded to the presence of Y. pestis 
within 2 hpi, followed by the activation of Mφs/Mons and recruitment of polymorphonuclear 

neutrophils (PMNs) to dLNs at 24 hpi. PMNs could be recruited to lymph nodes by CCL9 

secreted by Mφs/Mons through CCR1–CCL9 interaction. When mice were treated with 

BX471, a CCR1 antagonist, prior to infection, the number of PMNs in dLNs at 24 hpi 

decreased significantly in comparison to the untreated mice, suggesting PMN recruitment 

by Mφs/Mons through CCR1 is important for host defense against plague. It is critical 

important to confirm these finding based on the scRNA-seq study in an animal bubonic 

model in future investigations.

Y. pestis biovar microtus strains are highly virulent to mice but avirulent to humans and 

other larger mammals. The underlying mechanisms responsible for this unique host-specific 

pathogenesis is far from clear and difficult to investigate due to biosafety and ethics issues. 

In vitro infection studies showed that human macrophages could clear intracellular Y. pestis 
microtus 201, more efficiently than the murine macrophage RAW264.7 cells [224]. Given 

that the survival in macrophages at the early stage is critical for the later establishment of 

infection of Y. pestis, it is possible that the key events occurring during this period could 

lead to the host-specific pathogenesis of biovar microtus strains. Higher bactericidal activity 

of human macrophages to Y. pestis 201 could partially explain the virulence attenuation 

of biovar microtus strains in humans. Biovar microtus strains of Y. pestis is more closely 

related to its progenitor Y. pseudotuberculosis than the strains of other biovars based on 

the phylogenetic studies [70]. The products of the biovar-specific genome contents could 

be involved in either the direct bacteria-host interactions or control of the adaptions to the 

hostile environments inside the host to contribute to the variation in virulence in different 

mammalian hosts.

Known 6: Diagnosis and treatment of plague

The diagnosis of plague depends on epidemiological information, clinical manifestations, 

physical and laboratory examination. Plague patients usually have contact history with 

infected animals or patients. In the clinic Y. pestis infections usually present either as 

bubonic plague with regional lymphadenopathy, primary pneumonic plague following 

direct inhalation of infectious respiratory droplets or aerosolized Y. pestis and primary 

septicemic plague resulting from cutaneous exposure [225]. Some other less common 

forms of plague, include local cutaneous ulcers at the entry site of Y. pestis in humans, 

plague pharyngitis, plague endophthalmitis, meningeal plague, secondary septicemia plague 

and secondary pneumonic plague. Isolation and identification of Y. pestis from clinical 

specimens are critical for accurate diagnosis in the laboratory (https://www.cdc.gov/

plague/healthcare/clinicians.html) [226]. F1 capsular antigen and its antibody are usually 

targets for immunological detection methods [227], including F1 antigen hemagglutination 

inhibition test, passive hemagglutination test, enzyme-linked immunosorbent assays and 
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direct fluorescent antibody testing. Polymerase chain reaction (PCR) is often used for 

directly detecting Y. pestis in clinical specimens. Some point-of-care testing such as 

immunochromatographic assays (ICA) have been developed for on-site detection of Y. pestis 
or its antibody.

The WHO (Plague Manual: Epidemiology, Distribution, Surveillance and Control) [225] and 

WHO guidelines for plague management [228] recommend the treatment scheme for the 

different form of plague.

U.S. centers for disease control and prevention recommended a new guideline for 

antimicrobial treatment and prophylaxis of plague [229]. This guideline gave detailed 

treatment schemes for different types of plague. To treat pneumonic plague [229], the 

first-line antibiotics for adults include fluoroquinolone (ciprofloxacin, levofloxacin, and 

moxifloxacin) and aminoglycoside (gentamicin and streptomycin), while the alternatives 

are tetracycline (doxycycline), amphenicol (chloramphenicol), some fluoroquinolone 

(ofloxacin and gemifloxacin), aminoglycoside (amikacin, tobramycin, and plazomicin) 

and sulfonamide (trimethoprim-sulfamethoxazole). For children aged ≥1 month to 

≤17 years, the recommended first-line antibiotics are fluoroquinolones (ciprofloxacin 

and levofloxacin) and aminoglycosides (gentamicin and streptomycin). Alternatives 

are tetracycline (doxycycline), chloramphenicol, fluoroquinolones (moxifloxacin and 

ofloxacin), aminoglycosides (amikacin and tobramycin) and sulfonamides (trimethoprim-

sulfamethoxazole). Further recommendations for treatment of bubonic plague and other 

less common forms of plague in adults and children including prophylaxis for pre- and 

post-exposed adults and children have also described[229].

However, Y. pestis isolates with multiple drug resistance by a transferable plasmid 

have previously been reported in Madagascar [230, 231]. Y. pestis is also considered 

to be a category A agent with bioengineered multi-drug resistant Y. pestis with 

the potential to be used as a bioterrorism weapon [232, 233]. There is therefore a 

need to develop precision treatment schemes using antibiotic combinations or other 

biotherapeutics, including monoclonal antibodies [234]. A potent inhibitor, targeting LpxC 

(uridine diphosphate-3-O-(R-3-hydroxymyristoyl)-N-acetyl-D-glucosamine deacetylase), 

was reported to be potentially effective for treating plague [235–238]. Other potential 

drugs, including cationic antimicrobial peptides, antivirulence drugs, predatory bacteria, and 

phages and phage endolysins etc., and immunotherapies are also under exploration [237].

Unknown 6: On-site diagnostic techniques; precision treatment using 

different kinds of antibiotics or other biotherapeutics.

Although we have comprehensive immunological and nucleic acid-based techniques for 

plague diagnosis in the laboratory, we still lack rapid, sensitive and specific point-of-

care testing for on-site detection and ultrasensitive assays in the laboratory for detecting 

traces of Y. pestis. Single molecule detection methods are being developed [239, 240]. 

A microsphere labeled with carbon dots (CDs) and a colloidal gold-based lateral flow 

immunochromatographic assay combined with CRISPR/Cas-based nucleic detection for 

highly specific and sensitive detection of bacterial pathogens has been developed[241, 242]. 
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These highly sensitive techniques are also easily developed as a point-of-care testing for 

onsite screening of potential pathogens.

Known 7: Live attenuated vaccines and subunit vaccines

Attempts to create effective plague vaccines started soon after the microorganism was 

first identified. Most approaches involved inactivation of bacterial culture of wild-type 

isolates and the result was a commercial preparation of USP vaccine composed of 

formaldehyde-killed Yersinia pestis 195/P that was used in the West for several decades. 

The major contributor to immunity elicited by this vaccine was likely provided by significant 

expression of the capsular antigen F1; however, this vaccine was reactogenic with short-term 

immunity. Importantly, it did not convey robust defense against pulmonary exposure to Y. 
pestis. Currently, it is not available [243].

The live plague vaccine (LPV) introduced by Girard and Robic via selection of attenuated 

variant EV76 was a breakthrough event, and it saved numerous lives in Madagascar when 

it was first tested during the 1930 plague epidemic. Derivatives of this vaccine were widely 

used as the LPV prototype in many countries. This vaccine was never approved in the West 

due to the safety concerns but was widely used in the USSR [244] where it was administered 

to millions of individuals without any serious complications. LPV is currently in use in 

several counties of the former Soviet Union to immunize plague workers, or those living 

in plague endemic territories when plague is active [245]. The LPV in lyophilized form is 

easy to produce, store and utilize. However, its major disadvantage is short-term protection 

that requires an annual booster. The reason for this phenomenon is not well understood, as 

live vaccines often elicit prolonged or even life-time immunity. Unraveling the mechanism 

of this LPV deficiency in human vaccination will be crucial for the development of an 

improved version of LPV, and likely for the development of a novel subunit plague vaccine 

[245]. Of note, a study of humans vaccinated with EV NIIEG (EV76 version) by using a 

panel of highly pure recombinant Y. pestis antigens showed that both humoral and cellular 

immune responses to LcrV were generally poor. This was true even for donors who received 

multiple annual boosters over a long period of time [246]. Since LcrV is a major protective 

antigen of Y. pestis (section 5.1), it is speculated that modification of LPV to elicit an 

enhanced response to LcrV may increase the level and length of protection.

Since the first publication demonstrating that recombinant LcrV could provide protection in 

mice against infection with Y. pestis [247], there were several hundred articles published that 

described successful use of this antigen alone or in combination with F1 in development of 

plague subunit vaccines (PSV) [248]. The LcrV provided most of the protection, while the 

addition of F1 further increased the level of immunity. The LcrV/F1 vaccines were proven 

to work well in a number of formulations, such as purified antigens with different adjuvants, 

micro- and nanoparticles, viral and bacterial vectors and plants. [248]. The most common 

animal models to test the protective properties of this specific PSV against bubonic and 

pneumonic plague were mice, rats, guinea pigs, and non-human primates. However, this 

subunit vaccine still needs optimization for human use, mostly with regard to selecting the 

most efficient adjuvant and/or the method of expression of these antigens. The different 

versions of LcrV/F1 subunits vaccines have undergone (or are in the process) phase 1 
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and 2 clinical trials; however, no phase 3 clinical trials have been conducted on them 

thus far (https://clinicaltrials.gov/ct2/show/NCT00246467; https://clinicaltrials.gov/ct2/

show/NCT00332956; https://clinicaltrials.gov/ct2/show/NCT01381744; https://

clinicaltrials.gov/ct2/show/NCT05330624).

Unknown 7: Effective vaccine for long-term protection; immune correlates

The EV76-based LPV is attenuated mostly due to the lack of pigmentation locus 

(Pgm), containing a high pathogenicity island. Therefore, some efforts were focused on 

improvement of such vaccines by introducing additional mutations. For example, the lpxM 
(msbB) mutant of EV NIIEG affecting the lipid A structure was less reactogenic for animals 

and provided prolonged multiplication in lymphoid tissue. These characteristics potentially 

could improve both protective properties and immunity longevity of the existing LPV [249]. 

However, the usefulness of this approach should be verified in clinical trials. Mutations in 

many other genes have also been evaluated in attempts to rationally attenuate Y. pestis for 

vaccine use, both alone and in combination with the Pgm-negative variants [244, 250]. The 

most promising variant was a triple deletion mutant of Y. pestis CO92 impaired in lpp, 

msbB, and ail [251]. This mutant not only elicited strong humoral and cellular immune 

responses and robust protection in different animal models but was safe enough for Centers 

for Disease Control and Prevention to remove it from the select agent list.

Overall, the central advantage of live vaccines compared to other vaccine types is their 

ability to elicit strong immune responses to several antigens, including those expressed 

in vivo, mimicking to some extent the initial course of natural infection. In addition, live 

vaccines are known to stimulate robust T cell immunity that contributes to protection 

against plague [252]. While capsular antigen F1 is a well-established protective antigen, the 

response to this polymeric abundant protein is overwhelming, and might be detrimental to 

the overall immunity. To increase the contribution of other antigens in the LPV, it might be 

beneficial to reduce the expression of F1 to decrease its immunodominance.

Currently, plague subunit vaccines in clinical trials consist of the F1/LcrV antigens. Taking 

into account that capsule negative Y. pestis strains are fully virulent, found in nature, or 

can be easily created, the LcrV is an essential component of the vaccine. However, existing 

natural polymorphisms of LcrV [253, 254] may require the addition of different variants 

of this antigen in vaccine formulations. Moreover, there are engineered versions of LcrV 

that can avoid cross-protection [255]. Therefore, identification and inclusion of additional Y. 
pestis antigens, particularly those eliciting robust T cell response, should be an immediate 

priority for development of PSVs. There are several candidates with limited ability to elicit 

protective immunity, for example, YopD and YopE. The most reliable antigen is likely to be 

YscF, a polymeric subunit of the Type 3 Secretion System (T3SS) apparatus. The inclusion 

of YscF into Adenovirus 5-based vaccine in addition to F1 and LcrV (Ad5-YscF-F1-LcrV) 

contributed to enhanced protection provided by this tri-valent PSV alone or in combination 

with purified antigens or LPV. This vaccine candidate provided a high level of protection 

against bubonic and pneumonic plague even after a single dose, while both homologous 

and heterologous boosting conferred 100% efficacy in different animal models [256–258]. 

Moreover, a hybrid combination YscF-F1-LcrV (YFV) in Ad5, where the antigens were 
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separated with the linker GGGS with the expression optimized for humans, can already 

serve as a prototype candidate for the mRNA vaccine.

Another important aspect to consider during vaccine design and testing is immune correlates 

of protection, particularly in humans although thus far this issue is not well determined for 

the candidate plague vaccines. This will likely be particularly important during optimization 

of PSV formulations, development of novel LPVs or for development of other types of 

vaccines such as mRNA vaccines. The rubric defining the parameters of humoral and 

cellular immunity, results of direct protection studies in different animal models, the 

longevity of immunity and the evaluation of safety for the candidate plague vaccines remains 

to be determined for human use. Nevertheless, one quantitative characteristic was introduced 

for the testing of LcrV-based PSV. The LcrV protein is located at the tip of the T3SS needle 

guiding the injection of virulence effectors and impairing this function of LcrV disables 

the T3SS that is essential for virulence. The ability of anti-LcrV antibodies to block T3SS 

function can be evaluated with different reporters injected by T3SS to the host cell [259] 

although this approach has not yet been standardized. Moreover, LcrV is a multifunctional 

virulence factor, which besides its involvement with translocation of effectors via T3SS, 

contributes to immunomodulatory activity of Y. pestis [260, 261]. Therefore, focusing 

strictly on titers of antibodies capable of diminishing T3SS translocation function may 

miss the other important features of anti-LcrV antibodies related to the neutralization of 

immunomodulatory properties of secreted LcrV. The contribution of this part in protection 

against plague is totally unknown.

Overall, as outlined in recent WHO recommendations, plague vaccines should have not 

more than two doses of administration, provide long-lasting protection in both humoral 

and cellular immunity categories, not require cold chain storage, be injected by a needle-

free method and have robust safety profiles including for immunocompromised individuals 

[262]. While these criteria remain an aspiration, a prime-boost regimen involving LPV as the 

initial vaccination followed by PSV boost could represent an effective, rapid solution in case 

a significant plague outbreak suddenly occurs.

Known 8: biosafety and biosecurity of plague

Plague as a bioweapon:

The earliest documented use of bioweapons date back to the middle of 14th century. During 

1343 to 1347, the Genoese’s city Caffa (now Feodosiya, Ukraine) was besieged by Mongol 

(Tartars) troops. An epidemic of plague struck the Tartars and caused severe mortality in 

their camps. The Tartars then catapulted their deceased plague infected compatriots into 

Caffa causing plague outbreaks in the city [263].

In the 1930s, a secret branch of the Imperial Japanese Army known as the Kwantung Army 

Epidemic Prevention and Water Supply Department (known as Unit 731), had developed 

Y. pestis as bioweapons. They airdropped clay vessels filled with infected fleas or Y. pestis 
contaminated food into populated areas in China with an attack on Ningbo City in 1940 

killing112 civilians [264].
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In April 10, 1972, 78 nations signed the Convention on the Prohibition of the Development, 

Production and Stockpiling of Bacteriological (Biological) and Toxin Weapons and on Their 

Destruction (BWC). The enforcement of BWC legally terminated the offensive plans of 

bioweapons around the world. However, some countries such as the former USSR had 

earlier weaponized Y. pestis but their offensive bioweapon programs was officially closed in 

1992 [265, 266].

Y. pestis as a bioterrorism agent:

After the anthrax letter attacks in USA[267], pathogens-based bioterrorism has become an 

immediate threat to the global security. Bioterrorism is defined as “the deliberate release of 

viruses, bacteria or other agents used to cause illness or death in people, animals, or plants. 

It is aimed at creating casualties, terror, societal disruption, or economic loss, inspired 

by ideological, religious or political beliefs” [268]. Contrary to biological warfare, in a 

bioterrorism attack, biological agents are intentionally released against a civilian population.

The US Department of Health and Human Services and Department of Agriculture have 

identified certain ‘Select Agents’ or ‘Biological Agents’, which are pathogens and toxins 

having the potential to pose a severe threat to public health and safety. As Y. pestis is easy 

to disseminate and transmit, and causes a high mortality rate in humans, it is designated as 

category A ‘select agents’ [269]. Y. pestis has been tagged as a high priority agent which 

might be on the top of the list of potential bioterrorism agents and could pose great risk to 

national and international biosecurity.

Biosafety regulations for Y. pestis:

Several laboratory-acquired infection cases have been reported in the United States, some 

of which were fatal. The most recent lethal case was due to an attenuated strain KIM D27 

infecting a laboratory researcher. The condition of hereditary hemochromatosis coupled with 

diabetes in the researcher is believed to have contributed to the fatal course of the disease 

[270]. Occupational infections of plague have also been reported in veterinary staff, pet 

owners and marmot hunters [271, 272].

Due to the risk of laboratory-acquired infection approved local laboratory containment 

practices are recommended for all manipulations of suspect cultures, animal necropsies, and 

for experimental animal studies. Characterized strains of reduced virulence such as Y. pestis 
strain A1122 and KIM can be manipulated at lower containment levels [273]. However, 

these general recommendations in the U.S. Department of Health and Human Services for 

example are not fully accepted by other countries. For example, in France suspected plague 

samples are first dealt with at a lower containment level but all culture must be work at the 

higher level. For avirulent/vaccinal strains (with long history) could be handle in BSL1 with 

strict respect of the regulation of BSL1 to avoid the dissemination of the bacteria (e.g. lab 

coat, gloves, overshoes).
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Unknown 8: Rapid recognition and control of plague in deliberate release of 

Y. pestis

Deliberate release of Y. pestis:

Theoretically, deliberate release of Y. pestis can be categorized as biological warfare, 

bioterrorism and biocrime. According to BWC of 1972, nations are prohibited to undertake 

research to produce biological weapons or to produce and stockpile them. Although BWC 

has no inspection mechanism, it is unlikely that any soverign nation would now pursue 

a bioweapon program. However, Y. pestis related biocrime has been documented and in 

1933, Dr. Taranath Bhatacharyna, a physician with bacteriology knowledges in Calcutta 

together with Benoyendra Chandra Pandey, injected a lethal dose of Y. pestis in the arm of 

Amarendra Pandey (Benoyendra’s half-brother). Three years after, both perpetrators were 

convicted and sentenced to death [269].

Possible ways of deliberate release of Y. pestis:

The release of fleas infected with Y. pestis could be a viable method of releasing plague. 

Assuming it was successful, an attack with fleas would primarily cause bubonic plague 

[264]. Due to the low mortality rate of bubonic plague, infected fleas will not be an efficient 

way to deliberately release Y. pestis. However, such an attack might potentially generate a 

plague wild-life reservoir in a plague-free region and may result in long-term ecological and 

economic consequences, in addition to being a public health issue.

Pneumonic plague related dispersal would be an ideal way to intentionally spread Y. pestis. 

An aerosol release of 50 kg of Y. pestis over a city of 5 million people would result in 

150,000 initial clinical cases, and 36,000 deaths [274]. However, this previously modelled 

scenario should be revisited according to our increment of experiences against epidemics 

and diagnostic and treatment tools in hands [275, 276].

Another potential dispersal method for deliberate release of Y. pestis would be through a 

suicide attacker which would lead to an explosion in cases of pneumonic plague originating 

from a single source or multiple sources with secondary infections. Without adequate 

precautions modern transportation systems could then readily deliver plague rapidly across 

the globe [277].

Countermeasures for deliberate release of Y. pestis:

The most important issue combating deliberate release of Y. pestis is timely and effective 

responses of public health systems. As to the identification, scientists are obligated to 

develop assays to identify wild-type and genetically modified strains rapidly and accurately. 

The third-generation genome sequencing platform like NanoPore will be of great value in 

this respect.

However, in the hypothetical scenario of the deliberate release of Y. pestis, timely and 

accurate recognition of the pathogen would be extremely difficult due to the overall 

complexity of the outbreak. In this case, symptoms surveillance system will be of help 

to identify potential patients as early as possible. Any unusual and clustered symptoms will 
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trigger alerts and subsequent investigations and reduce the response time for combating the 

possible intentional release of Y. pestis.
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Fig. 1. 
Schematic phylogenetic tree of Y. pestis with Y. pseudotuberculosis at the root representing 

the ancestor of Y. pestis. Five major branches (Branch 0–4) are shown in different colors 

with ancient DNA related lineages colored in red (see color legend at the bottom-right 

corner). The “Big Bang” node giving rise to Branch 1–4, is marked by a star. Shaded 

areas indicate phylogroups associated with prehistoric plague or three historically recorded 

pandemics. The key events of plasmid acquisition and gene gain/inactivation/loss during 

evolution of Y. pestis are also displayed.
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Figure 2. 
Map of the observed plague reservoir around the world during the last 50–80 years. This 

figure was adapted with modifications from Liu et al.[86]
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