Table 9.
Performance comparisons of different methods on the C-MAPSS dataset characterized by RMSE.
C-MPASS sub-dataset | FD001 | FD002 | FD003 | FD004 |
---|---|---|---|---|
Neural network (NN)15 | 14.80 | 25.64 | 15.22 | 25.80 |
Deed neural network (DNN)15 | 13.56 | 24.61 | 13.93 | 24.31 |
Convolutional neural network (CNN)49 | 18.45 | 30.29 | 19.82 | 29.16 |
Long short-term memory networks (LSTM)15 | 13.52 | 24.42 | 13.54 | 24.21 |
BiLSTM50 | 13.65 | 23.18 | 13.74 | 24.86 |
Similarity-based51 | 16.43 | 23.36 | 17.43 | 23.36 |
CNN with AFICv | 11.7 | 23 | 14.4 | 22.8 |
Proposed MLPRegressor with AFICv | 11.8 | 23 | 14.6 | 22.3 |
Significant values are given in bold.