Skip to main content
. 2023 Jul 24;4(8):101131. doi: 10.1016/j.xcrm.2023.101131

Table 2.

Metrics details of the different models for predicting BI-RADS scores

Accuracy Precision Recall F1 score (weighted)
RNN-ATT 0.823 (0.802, 0.843) 0.741 (0.703, 0.781) 0.656 (0.625, 0.686) 0.811 (0.790, 0.833)
RNN-ATT_TF 0.836 (0.744, 0.816) 0.780 (0.744, 0.816) 0.678 (0.649, 0.709) 0.825 (0.805, 0.847)
RadioLOGIC 0.850 (0.832, 0.869) 0.811 (0.778, 0.844) 0.692 (0.662, 0.722) 0.838 (0.817, 0.859)
RadioLOGIC_TF 0.906 (0.890, 0.921) 0.871 (0.846, 0.896) 0.819 (0.791, 0.846) 0.903 (0.887, 0.919)

Note: values in parentheses are 95% confidence intervals. BI-RADS, breast imaging-reporting and data system; TF, transfer learning; RNN, recurrent neural network; ATT, attention mechanism; RadioLOGIC, radiological repomics-driven model incorporating medical token cognition.