Table 2.
Metrics details of the different models for predicting BI-RADS scores
| Accuracy | Precision | Recall | F1 score (weighted) | |
|---|---|---|---|---|
| RNN-ATT | 0.823 (0.802, 0.843) | 0.741 (0.703, 0.781) | 0.656 (0.625, 0.686) | 0.811 (0.790, 0.833) |
| RNN-ATT_TF | 0.836 (0.744, 0.816) | 0.780 (0.744, 0.816) | 0.678 (0.649, 0.709) | 0.825 (0.805, 0.847) |
| RadioLOGIC | 0.850 (0.832, 0.869) | 0.811 (0.778, 0.844) | 0.692 (0.662, 0.722) | 0.838 (0.817, 0.859) |
| RadioLOGIC_TF | 0.906 (0.890, 0.921) | 0.871 (0.846, 0.896) | 0.819 (0.791, 0.846) | 0.903 (0.887, 0.919) |
Note: values in parentheses are 95% confidence intervals. BI-RADS, breast imaging-reporting and data system; TF, transfer learning; RNN, recurrent neural network; ATT, attention mechanism; RadioLOGIC, radiological repomics-driven model incorporating medical token cognition.