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SUMMARY
VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a pleiotropic, severe auto-
inflammatory disease caused by somatic mutations in the ubiquitin-like modifier activating enzyme 1 (UBA1)
gene. To elucidate VEXAS pathophysiology, we performed transcriptome sequencing of single bone marrow
mononuclear cells and hematopoietic stem and progenitor cells (HSPCs) from VEXAS patients. HSPCs are
biased toward myeloid (granulocytic) differentiation, and against lymphoid differentiation in VEXAS. Activa-
tion of multiple inflammatory pathways (interferons and tumor necrosis factor alpha) occurs ontogenically
early in primitive hematopoietic cells and particularly in the myeloid lineage in VEXAS, and inflammation is
prominent inUBA1-mutated cells. Dysregulation in protein degradation likely leads to higher stress response
in VEXAS HSPCs, which positively correlates with inflammation. TCR usage is restricted and there are
increased cytotoxicity and IFN-g signaling in T cells. In VEXAS syndrome, both aberrant inflammation and
myeloid predominance appear intrinsic to hematopoietic stem cells mutated in UBA1.
INTRODUCTION

VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, so-

matic) syndrome is a recently identified inflammatory disease

caused by somatic mutations in UBA1, an X chromosome

gene encoding the ubiquitin-like modifier-activating enzyme 1

(UBA1).1 VEXAS is an example of an emerging class of disorders

with overlapping rheumatologic and hematologic manifestations

caused by acquired mutations. VEXAS in particular may be rela-

tively frequent, as the mutation has been identified in about 1 in

4,269 men older than 50 years.2 VEXAS features cytopenias,

bone marrow (BM) dysplasia, and striking vacuolization of BM

precursors, and patients have fever and a variety of organ-spe-

cific inflammatory manifestations.1,3–7 Following our initial

report, UBA1 mutations have been discovered in such common

clinical diagnoses as giant cell arteritis, relapsing polychondritis,

polyarteritis nodosa, Sweet syndrome, and myelodysplastic

syndrome (MDS).3–21 However, the pathophysiology of VEXAS

remains unclear, especially the relationship between a genetic
This is an open access article und
defect in a hematopoietic stem cell and such diverse abnormal-

ities of immunologic signaling, BM failure, myeloid neoplasm,

and plasma cell dyscrasias.

Acquired mutations are age related and are originally impli-

cated in cancer; they have now been recognized as key drivers

of ‘‘benign’’ diseases across medical subspecialties.22 Benign

(in the sense of not cancer) somatic mutation diseases are

familiar to hematologists: paroxysmal nocturnal hemoglobinuria,

a thalassemia-like syndrome in MDS, and histiocytoses are ex-

amples. Somatic mutations may also contribute to other com-

plex multifactorial processes such as atherosclerosis and clonal

hematopoiesis of indeterminate potential (CHIP).23

VEXAS is an example of a non-malignant disease secondary to

acquired mutations. UBA1 ‘‘knockout’’ causes inflammation in

zebrafish, but animal models of VEXAS are limited by germline,

rather than somatic, loss of UBA1,1 and VEXAS cells are unusu-

ally fragile, intolerant of minimal in vitromanipulation, and poorly

proliferative in culture. For these reasons, it has remained un-

clear how a specific genetic defect in hematopoietic cells results
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in refractory inflammation, marrow failure with dysplasia, and

plasma cell dyscrasias. Alternatively, analogous to somatic mu-

tations that are frequent in hematopoietic diseases, positive

selection of clones containing somatic mutations by environ-

mental factors might drive clonal dominance of mutated cells.21

Identification of differences between wild-type and mutant cell

populations would be useful to understand pathologic mecha-

nisms and to select and design treatments. Due to absent

cellular and animal models, direct observation of patient cells

is both advantageous and immediately relevant to elucidating

the pathogenesis of VEXAS.

Single-cell genomic methods are appropriate to a disease like

VEXAS: they require little sample manipulation, avoid culture ar-

tifacts, and allow for detection of rare cell types. Associated

computational analyses are largely free of a priori bias in utilizing

open-ended approaches to data collection and processing. Sin-

gle-cell studies can directly detect genotypes and transcrip-

tomes within cells and disclose altered pathways involved in

disease.24–34

Here, we performed single-cell RNA sequencing (scRNA-seq)

and single-cell T cell receptor/B cell receptor sequencing

(scTCR/BCR-seq) of BM mononuclear cells (BMMNCs) and en-

riched hematopoietic stem and progenitor cells (HSPCs) from

nine patients included in the original VEXAS report1 as an explor-

atory cohort. Myeloid dominance and inflammation (especially,

tumor necrosis factor alpha [TNF-a] and interferon gamma

[IFN-g]) originated early in lineage-restricted progenitors and

myeloid precursors in VEXAS. These findings were then vali-

dated in an independent cohort of patients using functional

immunologic assays. UBA1-mutated (mtUBA1) myeloid cells ex-

hibited upregulated inflammatory pathways and immune activa-

tion comparedwith wild-typeUBA1 (wtUBA1). We implicate line-

age bias toward myeloid, and granulocytic differentiation in

particular, intrinsic increased cell cycling of mtUBA1 myeloid

cells, and increased apoptosis of mtUBA1 lymphoid progenitors

(LymPs) in clonal dominance ofmyeloid cells and loss of lympho-

cyte populations, respectively. Dysregulated protein degrada-

tion and therefore increased stress response were observed,

and stress responses positively correlated with the VEXAS in-

flammatory signature. We also profiled cell-cell interactions of

marrow myeloid cells with HSPCs and TCR and BCR repertoires

in VEXAS. Our work presents detailed description of single he-

matopoietic cells in VEXAS, and our results should facilitate

our understanding of hematopoiesis, clonal dominance, cell-

cell interactions, and TCR/BCR repertoires in this newly defined

syndrome. Furthermore, they suggest potential utility of TNF and

IFN blockades in the treatment of VEXAS syndrome.

RESULTS

Patient characteristics
An exploratory cohort composed of nine patients (all males and

median age 65 years, and reported earlier) with confirmed UBA1

mutations underwent scRNA-seq, scTCR/BCR-seq, flow cytom-

etry profiling, and colony formation. For validation, we enrolled

another 11 patients (all males and medium age 67 years) for im-

munoassays and flow cytometry profiling (Figure 1A). Patient

clinical characteristics are summarized in Table S1.
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A distinct transcriptional profile of BM cells in VEXAS
We first sought to study gene expression of hematopoietic cells

using scRNA-seq. After quality control, 84,401 single BMMNCs

from nine patients and 36,425 from four healthy individuals

were retained for further analyses.

Sequences from single BMMNCs were visualized in Uniform

Manifold Approximation and Projection (UMAP). Cells formed

clusters, imputed from similarity among transcriptomes with a

graph-based approach,35 from which BMMNC subpopulations

could be assigned computationally: CD34+ HSPCs, erythro-

blasts, neutrophils (a sum of neutrophil lineages at different dif-

ferentiation stages), monocytes (a sum of monocytic lineages

at different differentiation stages), CD4+ T cells, CD8+ T cells,

B cells, plasma cells, natural killer (NK) cells, dendritic cells,

and platelets (Figures 1B and S1A). By deconvoluting single cells

of a heterogeneous BMMNC population, we determined that pa-

tients had increased myeloid cell (particularly granulocyte) pro-

portions in their marrows (Figure 1B).

Gene expression of BMMNCs in patients was compared with

that in healthy individuals: many genes were differentially ex-

pressed in VEXAS. By gene ontology (GO) analysis, aberrantly

expressed genes were mainly involved in functions related to

the immune response, leukocyte activation, cell communication,

and protein metabolism (Figure S1B). IFN signaling, TNF-a

signaling, and inflammatory response were upregulated in

various cell types (Figures 1C and S1C) but predominately in

myeloid cells (Figure 1D). These data were consistent with tran-

scriptome changes described for peripheral blood cells.1 Cell

cycling genes (e.g., E2F targets) were downregulated while

apoptosis genes were upregulated in VEXAS. In an independent

validation cohort (11 VEXAS patients and 8 healthy donors), we

confirmed heterogeneous patterns of abundant TNF-a and

IFN-g secretion by VEXAS BMMNCs (Figures 1E and S1D).

Myeloid bias and activation of the inflammation
pathways in VEXAS HSPCs
To characterize early hematopoiesis in VEXAS, flow cytometry

using an established panel of cell surface markers36 was per-

formed to profile BM stem cells and progenitors. The numbers

of CD34+ HSPCs, CD34+CD38� stem cells, andmultipotent pro-

genitor cells were not different between patients and controls,

but there was a marked reduction in LymP numbers and thus a

significantly decreased lymphoid/myeloid cell progenitor ratio

in VEXAS samples (Figures 2A and 2B), consistent with myeloid

cell dominance in BM and peripheral blood in this disease.1,3

This result was confirmed in an independent cohort of patients

(Figures S2A and S2B).

We next queried whethermyeloid dominance and activation of

inflammatory gene programs originated from HSPCs. We exam-

ined transcriptomes of enriched Lineage�CD34+ HSPCs by

scRNA-seq; after quality control, 62,103 single HSPCs from pa-

tients and 52,272 from healthy individuals were retained for

further analyses. From published cell type signatures,40 we de-

convoluted single cells as stem cells andmultipotent progenitors

(HSCs), megakaryocyte-erythrocyte progenitors (MEPs), granu-

locyte-monocytic progenitors (GMPs), and LymPs (Figures 2C

and S2C). When the hematopoietic hierarchy was reconstructed

by pseudotemporal ordering, we observed the anticipated three



Figure 1. Myeloid dominance and activa-

tion of the inflammatory pathways in

VEXAS BMMNCs

(A) Experimental workflow. BMMNC samples from

patients and healthy donors were subjected to

multi-color flow cytometry to profile hematopoi-

etic stem and progenitor cell (HSPC) sub-

populations, and to ELISpot assay to quantify

BMMNCs secreting TNF-a or IFN-g. BMMNCs

and FACS-sorted Lineage�CD34+ cells were

subjected to colony forming assay and single-cell

RNA sequencing (scRNA-seq) using the 10x Ge-

nomics platform. scRNA-seq libraries were

sequenced on the Illumina NovaSeq system

before data analysis, including single-cell tran-

scriptome profiling (gene expression, gene muta-

tion, and cell-cell interaction) and single-cell T cell

receptor/B cell receptor (scTCR/BCR) profiling.

(B) A Uniform Manifold Approximation and Pro-

jection (UMAP) plot of single-cell gene expression

in BMMNCs of all patients and healthy donors.

Cells are colored by types (HSPC, erythroblast,

neutrophil, monocyte, T cell, NK cell, B cell,

plasma cell, eosinophil, and dendritic cell). A bar

chart shows percentages of these cell populations

in individual patients and healthy donors. The co-

lor legend is the same as that in the UMAP plot. A

dot plot showing a myeloid (erythroblast, neutro-

phil, monocyte, and dendritic cell) vs. lymphoid (T

cell, B cell, NK cell, and plasma cell) ratio in pa-

tients and healthy donors. Data are presented as

mean values ± standard error of themean (SEM). p

values with the two-sided unpairedMann-Whitney

test are shown.

(C) Heatmap showing expression of representa-

tive differentially expressed genes grouped by

their functional pathways in IFN-g and IFN-a

signaling, TNF-a via NF-kB signaling, inflamma-

tory response, E2F targets, and apoptosis, be-

tween BMMNCs from VEXAS patients (n = 9) and

healthy controls (n = 4). Values are presented as

log2 fold-changes (log2FC).

(D) Gene set enrichment analysis (GSEA) of ex-

pressed genes in BMMNC subpopulations of

VEXAS patients, including neutrophils, mono-

cytes, erythroblasts, T cells, B cells, and NK cells.

Normalized enrichment scores for the GSEA

pathways are plotted, showing higher enrichment

of the inflammatory pathways in neutrophils and

monocytes than those in lymphoid cells.

(E) Representative ELISpot wells showing TNF-a

secretion by BMMNCs from two VEXAS patients

and two healthy donors in a second batch of the

validation cohort, in triplicate. Bottom, quantifi-

cation of TNF-a-, IFN-g-, and TNF-a/IFN-g-posi-

tive spots in BMMNCs plated (VEXAS patients n =

5 and healthy donors n = 2, in triplicate). Data are

presented as mean values ± standard error of the

mean (SEM). p values with the two-sided unpaired

Mann-Whitney test are shown.
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major differentiation trajectories: fromHSCs toMEPs, tomyeloid

cells, and to lymphoid cells (Figure 2D). Similar to flow cytometric

phenotyping, there were markedly reduced LymPs in all VEXAS

patients (Figure 2E).

Many differentially expressed genes were identified based on

gene expression in stem cells and lineage-committed progeni-

tors from patients with VEXAS syndrome. Gene set enrichment

analysis was employed to characterize skewed gene sets.

Genes involved in the immune response mediated by IFN-a,

IFN-g, and TNF-a, and the general inflammatory response,

observed to be upregulated in VEXAS BMMNCs, were highly en-

riched in patients’ HSPCs (Figures S2D and S2F). Similar to

BMMNCs, cell cycling genes (e.g., E2F targets) were downregu-

lated and apoptosis genes were upregulated in HSPCs. From

these striking changes, we inferred global effects ofUBA1muta-

tions on early hematopoiesis, resulting in myeloid dominance

and inflammatory gene pathway activation.

VEXAS syndrome shares overlapping clinical features with

other hematologic diseases (such as MDS, chronic myelomono-

cytic leukemia [CMML], and chronic myeloid leukemia [CML]),

including BM proliferation and dysplasia, myeloid cell domi-

nance, and frequent co-occurrence of inflammatory or autoim-

mune disorders. CMML features Sweet syndrome and other in-

flammatory manifestations, and MDS has historically been

associated with inflammation and frank autoimmunity in various

organs.41–47 To investigate whether inflammation observed in

early HSPCs was present in these other diseases, we integrated

our scRNA-seq data from sorted Lineage�CD34+ cells with pub-

lished data of HSPCs in MDS, CMML, and CML patients.37–39

We batch-corrected and integrated across samples, and then

compared relative expression levels of the inflammatory path-

ways (activity scores of the IFN-g response, TNF-a response,

and inflammatory response pathways) in VEXAS patients with

those in patients with the other three diseases; inflammation

was indeed present in these myeloproliferative and MDSs but

more extreme in VEXAS (Figure 2G).

mtUBA1HSPCs exhibit active cell cycling and increased
inflammatory gene expression
Within the scRNA-seq data, we were able to identify mtUBA1

single cells from their mRNA sequences. Due to ‘‘dropout’’ and
Figure 2. Myeloid bias and activation of the inflammatory pathways in

(A) Phenotypes of HSPCs in healthy donors and VEXAS patients by flow cytomet

CMP/MEP, Lineage�CD34+CD38+CD10�CD45RA�; GMP, Lineage�CD34+CD38
stem cells and multipotent progenitors; CMP, multipotent common myeloid pro

monocytic progenitors; LymP, lymphoid progenitors.

(B) Proportions of progenitor populations were compared between VEXAS patien

values with the two-sided unpaired Mann-Whitney test are shown.

(C) A UMAP plot of single-cell gene expression in HSPCs of all patients and health

(HSC with lymphoid differentiation potential), and HSC_Mye (HSC with myeloid d

(D) Reconstruction of hematopoietic hierarchy pseudotime ordering with Palantir

(E) Percentages of LymPswere compared between VEXAS patients (n = 9) and hea

two-sided unpaired Mann-Whitney test are shown.

(F) Heatmap showing expression of representative differentially expressed genes

NF-kB signaling, inflammatory response, E2F targets, and apoptosis, between

presented as log2FC.

(G) Relative inflammatory pathway scores (TNF-a signaling, IFN-g signaling, and

patients.37–39 p values with the two-sided unpaired t test are shown.
other limitations of the platform, mtUBA1 transcripts were only

captured in a fraction of total cells (�9% of BMMNCs and 20%

of CD34+ HSPCs) and preferentially in some patients (better in

UPNs 14–17 [with 50 capture] than in UPNs 1, 6, 10, 11, and 13

[with 30 capture]). Captured UBA1 mutations were identical to

concomitant Sanger sequences of bulk samples (Figure S3A).

UBA1 transcripts were detected more readily in CD34+ cells

than in BMMNCs, presumably due to higher UBA1 mRNA

expression early in hematopoietic ontogeny (Figures S3B and

S3C); there was higher frequency of mtUBA1 transcripts in

CD34+ cells than in BMMNCs (Table S2), consistent with digital

PCR data in our original report.1 As the UBA1 gene is located

on the X chromosome and all patients were male, there is only

a single UBA1 allele; we denoted single cells containing at least

one mtUBA1mRNA transcript as mtUBA1 cells, single cells with

only wtUBA1mRNA transcripts as wtUBA1 cells, and single cells

with no UBA1 mRNA transcripts as ‘‘unknown.’’48

To correlate UBA1 mutations with transcription, we first over-

laid mutation data on a UMAP plot by highlighting mtUBA1 and

wtUBA1 cells, assuming thatUBA1was expressed ubiquitously,

and therefore that nonuniform distribution of mtUBA1 cells on

UMAP would indicate distinct contributions of gene mutations

to gene expression. mtUBA1 cells were most enriched in

myeloid cells of BMMNCs and myeloid progenitors in HSPCs

(Figures 3A and 3B), suggesting contributions of UBA1 muta-

tions to myeloid dominance. We compared mtUBA1 and

wtUBA1myeloid cell gene expression to stratify potential effects

of cell type distribution. Genes involved in the inflammatory path-

ways were upregulated in both mtUBA1 BMMNCs and mtUBA1

HSPCs; cell cycling genes also were upregulated in mtUBA1

cells (Figures 3C, S3D, and S3E; Table S2). A higher proportion

of mtUBA1 cells were in S phase than were wtUBA1 (and un-

known cells; Figure 3D). In summary, from a comparison be-

tween mtUBA1 cells with wtUBA1 cells, we inferredUBA1muta-

tions linked to immune activation,myeloid dominance, active cell

cycling in stem cells and early progenitor cells, and myeloid line-

age precursors in VEXAS BM.

To obtain direct evidence that loss of wtUBA1 resulted in ma-

jor alterations in transcription, we ‘‘knocked down’’ in vitro UBA1

expression in two myeloid (U937 and THP1) and two lymphoid

(Raji and Jurkat) cell lines (Figures 3E and S4A). Expression of
VEXAS HSPCs

ry. Cell populations were defined as reported36: HSC, Lineage�CD34+CD38�;
+CD10�CD45RA+; LymP, Lineage�CD34+CD38+CD10+; HSC, hematopoietic

genitor; MEP, megakaryocytic-erythrocytic progenitors; GMP, granulocytic-

ts (n = 9) and healthy donors (n = 4). Data are shown with mean values ± SEM. p

y donors. Cells are colored by cell types as HSC, MEP, GMP, LymP, HSC_Lym

ifferentiation potential).

. The color legend is the same as in (C).

lthy donors (n = 4). Data are presented asmean values ±SEM. p valueswith the

grouped by their functional pathways in IFN-g and IFN-a signaling, TNF-a via

HSPCs from VEXAS patients (n = 9) and healthy controls (n = 4). Values are

inflammatory response signaling scores) in VEXAS, CMML, CML, and MDS
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Figure 3. UBA1-mutated HSPCs exhibit increased inflammation and active cell cycling

(A) A UMAP plot of single-cell gene expression in BMMNCs of VEXAS patients, as in Figure 1B. Cells with expressed mutated UBA1 (mtUBA1) and wild-type

UBA1 (wtUBA1) are colored red and blue, respectively, and all the other cells in gray. Lymphoid precursors are circled on the UMAP plot.

(B) A UMAP plot of HSPCs of VEXAS patients, the same as Figure 2C. Cells with expressed mtUBA1 and wtUBA1 are colored red and blue, respectively, and all

the other cells in gray.

(legend continued on next page)
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inflammation genes, including genes involved in the TNF-a and

IFN-g pathways, increased in all four perturbed myeloid and

lymphoid cell lines (Figure 3F; Table S3). These results supported

a cell-autonomousmechanism of hyperinflammation due to defi-

ciency of wtUBA1.

DNMT3A somatic mutations are frequent in myeloid neo-

plasms such as acute myeloid leukemia and MDS, and they

are observed at unusually high frequency in VEXAS.18–21 UPN1

and UPN5 had DNMT3A mutations at variant allele frequency

40%–50%. To understand DNMT3A-mutated (mtDNMT3A)

clones in the context of VEXAS syndrome, we identified single

cells expressing DNMT3A mutations from mRNA sequencing

(Figure S4B). As there are two alleles of the DNMT3A gene, we

denoted single cells with at least one mtDNMT3A mRNA tran-

script as mtDNMT3A cells, single cells with only wild-type

DNMT3A (wtDNMT3A) mRNA transcripts as wt-likely DNMT3A

cells, and single cells with no DNMT3AmRNA transcripts as un-

known.48 As forUBA1mutations, expressedDNMT3Amutations

were mainly in myeloid cells (Figures S4C–S4F). In both

BMMNCs and HSPCs, the immune response- and inflamma-

tion-related pathways were upregulated, but the cell-cycle-

related pathways were downregulated in mtDNMT3A cells

compared with wt-likely DNMT3A cells (Table S4).

Perturbed protein degradation and unfolded protein
response in VEXAS
An unfolded protein response gene set was upregulated only in

the CD34+ HSPC compartment in VEXAS BMMNCs (Figure 4A).

To assess functional changes in protein degradation (the

protein ubiquitination/proteasome pathway and the autophagy

pathway), we compared the expression of these genes in

VEXAS HSPCs with that in healthy HSPCs; there was decreased

expression of the protein ubiquitination/proteasome pathway,

no significant changes of the autophagy pathway, but a marked

increase of ER stress response genes (Figure 4B). Upregulation

of unfolded protein response genes (including CALR, HSP90B1,

XBP1, BANF1, and HSPA5) was observed in HSPC subtypes

(Figure 4C). With observation of consistent upregulation of the

IFN-g response, TNF-a response, and inflammatory response

pathways in BMMNCs, HSPCs, and mtUBA1 cells in VEXAS,

we provisionally defined expression of genes involved in these

four pathways as a ‘‘VEXAS inflammatory signature’’ and sought

correlation of a VEXAS inflammatory score with ER stress in

HSPCs. There was a strong positive correlation of the VEXAS in-

flammatory score with ER stress at a single-cell level (Figure 4D,

left), and the same trend for individual patients (Figure 4D, right).

More broadly, there was a positive correlation of a more general

inflammatory score49,50 with ER stress in VEXAS HSPCs (Fig-

ure 4E). These results suggest a dysregulated protein ubiquitina-
(C) A heatmap showing expression of representative differentially expressed gene

NF-kB signaling, inflammatory response, and cell cycling, between mtUBA1 and

are presented as log2FC.

(D) Bar plots showing percentages of BMMNCs (left) and HSPCs (right) in G1, G2

patients.

(E) Immunoblotting results showing knockdown efficiency of UBA1 in cell lines (U

(F) A dot plot showing top GO terms enriched in upregulated genes inUBA1 knock

control cell lines.
tion/proteasome pathway due to UBA1 mutations, and a lack of

the compensatory autophagy pathway for protein degradation

leads to an increased unfolded protein stress, which likely con-

tributes to enhanced inflammation in VEXAS HSPCs.

Biased lineage specification, increased apoptosis in
mtUBA1 LymPs, and progressive loss of lymphocytic
cells
To determine whether loss of lymphoid cells occurred early or

late in differentiation, we plotted the ratios of patients’ versus

healthy donors’ cells along pseudotime differentiation trajec-

tories of different lineages. There was progressive loss of

lymphoid cells with differentiation in comparison with normal

hematopoiesis, while the numbers of GMP and MEP were sta-

ble (Figure 5A). Indeed, a potential of HSC differentiation to

lymphocytes progressively decreased; a differentiation poten-

tial to myeloid cells remained stable and equivalent to normal

hematopoiesis, while a potential to erythroid/megakaryocytes

varied but was lower than in normal hematopoiesis (Figure 5B);

results were consistent with frequent anemia and lymphocyto-

penia in VEXAS. We next assessed expression of master tran-

scription factors in hematopoietic lineage specification in

VEXAS. At the first lineage specification from stem cells and

multipotent progenitors, GATA1 (to MEP) appeared equivalent

to healthy donors, while SPI1 (encoding PU.1, to GMP) re-

mained higher than in healthy donors, and PAX5 (to LymP) pro-

gressively decreased and was much lower than in normal he-

matopoiesis (Figure 5C). In the second lineage specification

from GMP, CEBPA (to G) progressively increased to a level

higher than normal, while IRF8 (to M) appeared normal. Indeed,

expression of PAX5 and GATA1 were decreased while SPI1

increased in VEXAS HSCs, and expression of IRF8 was lower

and CEBPA higher in VEXAS GMP compared with healthy do-

nors (Figures S4G and S4H). These results indicate biased line-

age specification in VEXAS HSPCs toward myeloid and against

erythroid and lymphoid differentiation, and relative dominance

of neutrophil over monocyte differentiation (Figure 5D). Sin-

gle-cell results were consistent with clinical and laboratory ev-

idence of myeloid dominance and normal neutrophil number,

but monocytopenia in VEXAS.

mtUBA1 frequency also decreased in lymphoid cells with dif-

ferentiation (Figure 5E), but was stable or increased in myeloid

and erythroid/megakaryocytic lineages (Figure 5F). Upregulation

of apoptosis genes occurred in almost all lineages in patients’

HSPCs and BMMNCs (Figures 1C and 2F). To correlate mtUBA1

and wtUBA1 cells in myeloid and lymphoid lineages with loss of

lymphoid cells and myeloid dominance in VEXAS, we compared

ratios of apoptosis gene expression in mutated compared with

wild-type cells. mtUBA1 lymphoid cells had a higher ratio than
s grouped by their functional pathways in IFN-g and IFN-a signaling, TNF-a via

wtUBA1 BMMNCs (top) and HSPCs (bottom) in VEXAS patients (n = 9). Values

/M, and S phases of cell cycle in mtUBA1, wtUBA1, and NULL cells in VEXAS

937 and Raji).

down cell lines (U937, THP1, Raji, and Jurkat) compared with those in wild-type
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Figure 4. Dysregulated protein degradation and stress response in VEXAS HSPCs

(A) A GSEA enrichment plot for a hallmark_unfolded protein response gene set for differentially expressed genes of mtUBA1 HSPCs compared with wtUBA1

HSPCs in VEXAS patients. GSEA was based on the Kolmogorov-Smirnov test.

(B) Expression levels of pathways (protein ubiquitination, proteasome, autophagy, and response to ER stress) in HSPCs of VEXAS patients (n = 9) and healthy

controls (n = 4). p values with the two-sided unpaired t test are shown.

(C) Bubble plot showing expression of genes in the unfolded protein response pathway in HSPC subsets in VEXAS patients. Dot sizes correspond to percentages

of cells expressing genes, and dot colors correspond to expression levels of genes.

(D) Correlation of a VEXAS inflammatory score (calculated based on a gene list of IFN-g and IFN-a signaling, TNF-a via NF-kB signaling, and the inflammatory

response pathways) and ER stress on single-cell levels (left, each dot indicates one cell) and in individual patients (right, each dot indicates one patient). p values

and R value estimated using a Pearson correlation test are shown.

(E) Correlation of an inflammatory score49,50 and ER stress on single-cell levels. Each dot indicates one cell. p values and R value estimated using a Pearson

correlation test are shown.
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did mtUBA1 myeloid cells (Figure 5G), suggesting that mutated

lymphoid cells were more susceptible to apoptosis than were

mutated myeloid cells. Expression of cell apoptosis genes,

including BCL2, JUN, CASP10, PARP1, and ATM, was higher

in mtUBA1 cells.
8 Cell Reports Medicine 4, 101160, August 15, 2023
Enhanced cell-cell interactions between activated
myeloid cells and HSPCs
We first examined interactions among cell types in BMMNCs.

Among149 ligand-receptor pairs expressed inVEXASand healthy

donors, there were in total 2,488 cell type ligand-receptor pairs



(legend on next page)
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among BMMNC cell populations in VEXAS and 2,014

in healthy donors. In general, cell-cell interactions among

populations of BM were higher in VEXAS (Figure 6A). The most

differentially present ligand-receptor pairs included TNFSF13-

TNFRSF1A, TNFSF13-TNFRSF14, CD47-SIRPG, APP-FPR2,

TNFSF13-FAS, HLA-F-KIR3DL1, and HLA-A-KIR3DL1. Among

them,most were uniquely present in VEXAS and absent in healthy

donors (Figure 6B). The most frequent ligand receptors were

among immune cells including neutrophils, monocytes,

dendritic cells, NK cells, and T cells. HSPCs appeared to interact

frequently with diverse immune cells, and interactions of HSPCs

with most cell types were higher in VEXAS than in healthy donors

(Figure 6C).

NicheNet is a novel algorithm that employs gene expression

data to impute ligand-receptor interactions that mediate down-

stream transcriptional changes by integrating pre-existing

knowledge of signaling and regulatory networks.53 NicheNet

was applied to model interactions between monocytes/neutro-

phils and CD34+ HSPCs, which could potentially induce differ-

ential expression of target genes in VEXAS (Figure 6D). For

monocyte/neutrophil (ligand)-HSPC (receptor) interactions, top

predicted ligands expressed by monocytes/neutrophils were

ADAM17, SEMA4D, HLA-DRA, and TNFSF13B, and top recep-

tors expressed by HSPCs were P2RY13, ITGA4, and PLXNB2;

IL-6R and IL-1B also were highly expressed in monocytes/neu-

trophils in interactions with HSPCs. From a map of predicted

target genes that were differentially expressed in HSPCs in

VEXAS patients to a ligand-receptor activity heatmap (Fig-

ure 6E), ligand-receptor interactions between immune cells

and HSPCs were consistent with upregulation of genes

including STAT1, TNFAIP3, ITGAL, and GZMA involved in

inflammation in HSPCs. In summary, cell-cell interaction anal-

ysis revealed enhanced interactions of myeloid cells with

HSPCs and across most cell types in the BM, and involving

frequent IFN and TNF interactions with their receptors. Interac-

tion scores of HSPCs with myeloid cells were elevated in

VEXAS (Figure 6F). Inflammatory scores and cytokine

scores49,50 for each cell were calculated to evaluate inflamma-

tion in single progenitor cells: HSPCs with higher interaction

scores with myeloid cells had higher inflammatory and cytokine

scores (Figure 6G).
Figure 5. Lineage bias, increased cell apoptosis in mtUBA1 LymPs, an

(A) Dynamic changes of LymP, GMP, and MEP ratios in VEXAS patients and heal

HSCs to LymP, GMP, and MEP, respectively, estimated by Palantir. y axis: Log2

corresponding cells in healthy donors).

(B) Dynamic changes of lineage priming of HSCs to LymP, GMP, and MEP, along

restricted progenitors estimated by Palantir. y axis: Log(lineage signature gene

Lineage signature gene expression represented area under the receiver operatin

(C) Dynamic changes of expression levels of transcription factors (GATA1, SPI1,

ordering from HSCs to MEP, GMP, and LymP, respectively, estimated by Palan

healthy donors.

(D) A schematic diagram showing hematopoietic lineage specification and relativ

(E) Dynamic changes of wtUBA1 LymP and mtUBA1 LymP ratios in HSPCs in VE

lineage-restricted progenitors estimated by Palantir. y axis: ratios of wtUBA1 Lym

(F) Dynamic changes of mtUBA1 cell ratios in LymP, GMP, and MEP in VEXAS pa

restricted progenitors estimated by Palantir. y axis: Log(cell numbers of mutant/

(G) Apoptosis gene expression scores (calculated by the AddModuleScore func

lymphoid BMMNCs were compared. y axis: normalized expression levels of apo

shown on the right.
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Lymphocyte clonal expansion in VEXAS
We unexpectedly observed clonal TCR rearrangements in UPNs

14–17, despite patients in our cohort not manifesting clinical ev-

idence of T cell clonal expansion. Skyscraper plots showed TCR

Vb/Va and matching Jb/Ja in UPNs 14–17 (Figure 7A). The Gini

index measures equality of distribution,54,55 and, for TCR/BCR

diversity, the Gini index correlates positively with T/B cell clonal-

ity. We calculated Gini indexes of distribution of Vb sequence

clone sizes to quantify TCR clonality in UPNs 14–17, and

compared them with published data.56 Gini indexes of TCRs in

UPNs 14–17 were higher than in healthy donors (Figure 7B), indi-

cating restricted TCR usage in UPNs 14–17, but there was little

sharing of TCR clones among these four VEXAS patients, nor

with healthy donors or T-large granular lymphocytic leukemia

patients (Figure S5).56 T cell clonal expansion was mainly among

CD8+ T cells compared with CD4+ T cells (Figures 7B and 7C).

Cytotoxicity and IFN-g response in VEXAS T cells were

increased (Figure 7D) and predominantly in CD8+ T cells (Fig-

ure 7E). Using GLIPH2, we sought similar TCRs among these

four patients, and the top TCR clusters were composed of

TCR sequences from the patients, suggestive of common anti-

gens in VEXAS, but this analysis was limited by a the small sam-

ple size.

We examined BCR rearrangement in UPNs 14–17 (Figure 7G):

UPNs15 and 16 had plasma cell myeloma and a small CD5+ B

cell clone, respectively. B cell clonal expansion was

observed in VEXAS (Figure 7H) but to a similar level as in

healthy donors. Gini indexes of BCRs in UPNs 14 and 17

were not different from those in healthy donors57 and Gini in-

dexes of BCRs in UPNs 15 and 16 were not higher than those

in UPNs 14 and 17, despite clinical evidence of plasma cell or B

cell dyscrasia (Figure 7I). We examined BCR usage in UPNs

14–17: there was no overlap among UPNs 14–17 nor with

BCRs of healthy individuals57 (Figure S6). When we linked

UBA1 mutation information with BCR sequences in the same

cell, BCR expression was detected in hundreds of cells in

UPNs 14 and 17, but expressed wtUBA1 and mtUBA1 tran-

scripts were present in only a few cells, due to the low mutation

frequency in lymphoid cells and technical dropout. mtUBA1

and wtUBA1 cells were present in the same BCR clones

(Figures 7J and S7).
d progressive loss of lymphocytic cells with differentiation

thy donors along pseudotime differentiation. x axis: pseudotime ordering from

(percentages of corresponding cells in VEXAS patients) � log2(percentages of

pseudotime differentiation. x axis: pseudotime ordering from HSCs to lineage-

expression in patients/lineage signature gene expression in healthy donors).

g characteristic curve (AUC) values calculated with AUCell.

PAX5, CEBPA, and IRF8) along pseudotime differentiation. x axis: pseudotime

tir. y axis: expression of transcription factors in patients normalized by that in

e quantity of cell types in VEXAS patients and healthy donors.

XAS patients along differentiation. x axis: pseudotime ordering from HSCs to

P or mtUBA1 LymP in HSPCs.

tients along differentiation. x axis: pseudotime ordering from HSCs to lineage-

all HSPCs).

tion in Seurat) of mtUBA1 cells normalized by wtUBA1 cells in myeloid and

ptosis genes. A heatmap of apoptosis genes upregulated in mtUBA1 cells is



Figure 6. Enhanced cell-cell interactions of

activated myeloid cells with HSPCs in

VEXAS patients

(A) Ligand-receptor pairs among cell types in

BMMNCswere estimated byCellPhoneDB.51 Color

legends for cell types are the same as in Figure 1B.

Thickness of lines connecting cell types indicates

total number of ligand-receptor pairs between two

cell types estimated by CellPhoneDB.52 In general,

there were more ligand-receptor interactions be-

tween cell types in BMMNCs of VEXAS (bottom)

than in those of healthy donors (top). CD8T, CD8+

T cell; CD4T, CD4+ T cell; NK, natural killer cell;

CD34, CD34+ cell; ProB, pro-B cell; B_Plasma, B

cell_Plasma cell; Ery, erythroblast; Neut, neutrophil;

Mono, monocyte; DC, dendritic cell.

(B) Among the 149 ligand-receptor pairs ex-

pressed in VEXAS patients and healthy donors, the

number of ligand-receptor pairs presenting in

BMMNCs in VEXAS patients and healthy donors

were counted. A pink box indicates ligand-recep-

tor pairs most represented in VEXAS;most of them

were unique in VEXAS BMMNCs. A blue box in-

dicates ligand-receptor pairs that are less repre-

sented in VEXAS than in healthy donors.

(C) Summary of ligand-receptor pairs between

HSPCs with many immune cell types in VEXAS

patients and in healthy donors. Highlights in pink

for patients and blue for healthy donors indicate

that the number of ligand-receptor pairs is higher

in patients than in healthy donors.

(D) Potential target genes were identified as

differentially expressed in VEXAS patients

compared with healthy donors with an adjusted p

value < 0.05 and a log fold change > 0.1 or <�0.1.

Summary of ligand-receptor differential in-

teractions identified in VEXAS patients by

NicheNetr based on differentially expressed

genes. Blue segments, molecules expressed by

monocytes (left) and neutrophils (right); red seg-

ments, molecules expressed by CD34+HSPCs;

blue arcs, interactions of ligands from monocytes/

neutrophils with receptors on CD34+HSPCs; red

arcs, interactions of ligands from CD34+HSPCs

with receptors on monocytes/neutrophils; gray

arcs, interactions of ligands and receptors in the

same cell types. Left and right panels show in-

teractions between monocytes and CD34+

HSPCs, and between neutrophils and CD34+

HSPCs, respectively.

(E) Cell-cell interactions were defined by Niche-

Netr.53 Ligands expressed by BMMNCs were

ranked by likelihood that ligands would affect

gene expression changes in CD34+HSPCs. Re-

ceptors expressed on CD34+HSPCs were

selected based on their known potentials to

interact with prioritized ligands. Finally, target

genes were selected based on their differential

expression in CD34+HSPCs and their potentials to

be regulated by ligand-receptor interactions

identified between BMMNCs and CD34+HSPCs.

(F) Interaction scores of patients’ CD34+HSPCs

with myeloid cells were compared with those in

healthy donors. p values with the two-sided un-

paired t test are shown.

(G) Correlation of interaction scores (CD34+HSPCs with myeloid cells in patients) with inflammatory scores (left) and cytokine scores (right)

were analyzed. p values and R values with the Pearson correlation test are shown.
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DISCUSSION

VEXAS has been described only recently, but its unusual etiology

was clear in the original report1: an acquiredmutation in hemato-

poietic stem cells, found only in men due to the X chromosome

location of the UBA1 gene, resulting in severe, multiorgan auto-

inflammation that manifested in a range of familiar rheumatologic

diagnoses. Zebrafish knockouts of the homologous gene sug-

gested that inflammation was a direct consequence of the muta-

tions,1 but other attempts to model VEXAS in animals and in vitro

have proven difficult in practice, perhaps due to the fundamental

cellular role of the ubiquitylation pathway disrupted by an altered

UBA1 gene product. Nevertheless, pathophysiologic mecha-

nisms have been unclear: how gene mutations lead to inflamma-

tion, which cell types are important in effecting tissue damages,

and the routes to both lymphocyte depletion and malignant

plasma cell proliferation. Other basic questions are the discor-

dance between mtUBA1 cell clonal dominance in patients and

deficient hematopoietic cell proliferation in vitro, and how altered

protein degradation relates to the initiation of profound upregu-

lation of multiple innate immune pathways and globally elevated

cytokine production.

Here, we utilize single-cell methodologies to characterize tran-

scriptomes and expressed mutations of BM precursors and

HSPCs from VEXAS patients, in a comprehensive and unbiased

approach to characterize this poorly understood disease. At the

high resolution of scRNA-seq, activation of multiple different in-

flammatory pathwayswere striking in primitive stem and progen-

itor cells. The protein ubiquitination and proteasome pathway

were dysregulated, with no apparent compensation by auto-

phagy to allow protein degradation, likely leading to elevated

stress response in VEXAS, as suggested by our data and previ-

ous studies.58 Mutations in UBA1 not only resulted in marked

activation of the innate immune pathways (implying a cell-auton-

omous mechanism resulting from UBA1 disruption), but they

altered cell cycling, potentially providing a mechanism for clonal

dominance. Lineage specification of HSCs, governed by several

master transcription factors, was skewed toward myeloid, and
Figure 7. TCR and BCR usage in VEXAS

(A) Skyscraper plots showing Vb/Va and matching Jb/Ja in VEXAS patients (UPN

(B) Gini indexes of TCR clonality in CD4+ T cells, CD8+ T cells, and total T cells

lymphocytic leukemia (T-LGLL) patients pre-aleumtuzmab treatment (n = 13), T-LG

(C) Clone size information was projected to the UMAP of CD4+ T and CD8+ T cells

are in blue color, clones with sizes 3–9 (three to nine cells with identical TCR sequ

with identical TCR sequences) in red, and all other cells in gray.

(D) Expression of T cell activation score, cytotoxicity score, IFN-g signaling score,

donors (n = 4). p values with the two-sided unpaired Mann-Whitney test were sh

(E) CD4+ and CD8+ T cells from VEXAS patients were plotted in UMAP. Top 10%

highlighted in red and all the rest in gray.

(F) TCRs identified in VEXAS patients were clustered by GLIPH2, and clusters with

individual patients. CDR3 sequences for the top two largest TCR clusters are lis

(G) Skyscraper plots showing VH/VK/VL and matching JH/JK/JL in VEXAS patie

(H) Clone size information was projected to the UMAP of B cells in VEXAS patient

clones with sizes 3–9 (three to nine cells with identical BCR sequences) in green

sequences) in red, and all other cells in gray.

(I) Gini indexes of BCR clonality in UPNs 14–17, and healthy donors in a reference

sided unpaired Mann-Whitney test are shown.

(J) B cells from the two largest clones are plotted on UMAP. Clone CAKVYSGEM

186). B cells with captured UBA1 mutations are highlighted in red; B cells with c
especially granulocytic differentiation and against lymphoid dif-

ferentiation in HSCs in VEXAS, and there was progressive loss

of lymphocytes with differentiation, accompanied by increased

apoptosis restricted to the lymphoid trajectory. Myeloid lineage

cells had the most inflammatory activation, but lymphoid cells,

predominantly wtUBA1, also had elevated expression to a lesser

extent of the same genes. Increased cell-cell interactions be-

tween myeloid cells and HSPCs and among major cell types in

BM in VEXAS revealed enhanced ‘‘crosstalk’’ in this inflamma-

tory environment, particularly for the IFN and TNF-a pathways.

Taken together, our results begin to define the characteristics

of inflammation, lineage disequilibrium, and genotype associa-

tion at single-cell molecular resolution for VEXAS syndrome.

One general hypothesis to explain clonal hematopoiesis is that

cells with pre-existing somatic mutations are selected due to

fitness in their microenvironments, as for example, the familiar

loss of HLA gene expression as an escape from immune

destruction.59–61 An alternative, not mutually exclusive mecha-

nism, is that an acquired mutation contributes to or even drives

chronic inflammation, as has been proposed for proinflamma-

tory TET2 mutations in CHIP, with consequent proinflammatory

tissue-resident macrophages and accelerated atherosclerotic

events.62–64 Conversely, chronic infection and inflammation

appear to secondarily favor expansion of mtDNMT3A somatic

clones, perhaps due to their bias toward self-renewal over termi-

nal differentiation in a stressed or regenerating environment, as

has been inferred from murine models.65,66 DNMT3A mutations

also alter immune phenotypes67; in a recently published single-

cell multi-omics study, upregulation of a few genes involved in

proinflammatory signaling is observed in mtDNMT3A HSPCs.33

Our data strongly favor UBA1mutations in HSPCs as immediate

drivers of both myeloid lineage dominance and the origin of

inflammation in VEXAS syndrome. Nevertheless, with apoptosis

genes upregulated and cell cycling genes downregulated in

BMMNCs and HSPCs in VEXAS, and functionally, both

BMMNCs and CD34+ HSPCs from patients formed fewer col-

onies than did cells from healthy individuals (Figure S7B),

myeloid progenitors and HSPCs in VEXAS likely exhibited
s 14–17).

of BM of VEXAS patients (n = 4), peripheral blood T cells of T-large granular

LL patients post-aleumtuzumab treatment (n = 12), and healthy donors (n = 7).56

in VEXAS patients. Clones with size 2 (two cells with identical TCR sequences)

ences) in green, and highly expanded clones with sizesR 10 (at least 10 cells

and exhaustion score were plotted by individual for patients (n = 9) and healthy

own.

cells expressing the highest cytotoxicity score and IFN-g signaling score are

at least four TCRs are shown. Colors indicate TCR sequences originated from

ted, encompassing TCRs from all four patients.

nts (UPNs 14–17).

s. Clones with size 2 (two cells with identical BCR sequences) are in blue color,

, highly expanded clones with sizes R 10 (at least 10 cells with identical BCR

study (n = 71).57 Data are presented as mean values ± SEM. p values with two-

ATMFGFDHSHYYGMDVW (size 449) and clone CARNLLMWFGEFYPW (size

aptured wild-type UBA1 transcripts and all the rest are highlighted in gray.
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defective proliferation and differentiation, reflecting the ineffec-

tive hematopoiesis typical of MDS.

In addition, the hyperinflammatory microenvironment in VEXAS

syndrome likely does positively select other somatically mutated

clones: DNMT3A and TET2 clones are frequent in VEXAS18–21

as they are in other inflammatory clinical conditions.68 We also

characterized the transcriptome of mtDNMT3A cells in the setting

of VEXAS. Upregulation of the inflammation and immune

response pathways in mtDNMT3A cells in our VEXAS cases indi-

cated a proinflammatory phenotype associated with this epige-

netic genotype, in accord with previous reports33,67; cell cycling

of mtDNMT3A cells appeared to be decreased compared

with wtDNMT3A cells. Whether mtUBA1 cells might also have a

selective advantage in an inflammatory environment—possibly

creating a deleterious autocrine/paracrine loop—has been un-

clear, but we noted marked activation of multiple inflammatory

pathways early in hematopoietic ontogeny, in contrast to CHIP-

mutated inflammatory terminal cells. In addition, the allele fre-

quency of mtUBA1 clones did not correlate with clinical severity

of inflammation in patients. Our analysis demonstrated a positive

correlation between interaction of mtUBA1 HSPCs with myeloid

cells and inflammation: with enhanced cell-cell interactions in

VEXAS, malicious feedback may exaggerate inflammation in the

disease. The marked involvement of the IFN-g and TNF-a path-

ways, and cell-cell interactions mediated by IFNs, TNF-a, IL-1b,

and IL-6 suggest that IFN and TNF blockers or disruption

of cell-cell interactions are potential targets of therapies in

VEXAS. In addition, diagnostic distinctionsmay be aided by appli-

cation of single-cell genomic results: both marked activation of

several critical inflammatory pathways and activation in

primitive HSPCs may be useful in distinguishing among VEXAS

syndrome and other hematologic diseases with overlapping clin-

ical features.

Plasma cell dyscrasias are frequent in VEXAS,1,3,4 despite

absence of UBA1 mutations in lymphocytes. Diversity of BCR

repertoires in two of our patients with clinical evidence of

B/plasma cell clonal expansion was similar to that in other

VEXAS patients and both were similar to BCR clonality reported

in healthy individuals,57 indicating that BCR usage was

preserved in disease, but with reduced B cell numbers and

distinct BCR repertoires across individuals. Linking UBA1muta-

tions with BCR sequences in single cells showed coexistence of

mtUBA1and wtUBA1 cells within the same BCR clone, implying

antigenic drivers rather than the UBA1 mutation itself were

driving B cell expansion. Unexpected was reduced TCRdiversity

detected by scRNA-seq in four patients, as to date there are no

reports of TCR clonal expansion in VEXAS. Furthermore, T cells,

especially clonally expanded CD8+ T cells in VEXASmarrow had

increased cytotoxicity and IFN-g signaling, and one inference is

T cells targeting unknown antigens could be actively involved in

disease pathogenesis. A higher percentage of activated CD8+

T cells was observed in relapsing polychondritis patients with

VEXAS compared with polychondritis patients without VEXAS

and healthy controls.5 Oligoclonal B and T cells (reduced in num-

ber and mainly unmutated) may be secondary to immune cell

recognition of novel, aberrant, or overexpressed antigens, and

specific presentation of immunogenic epitopes due to abnormal

protein degradation.
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In conclusion, our study of single-BM hematopoietic cells fa-

cilitates understanding of the pathophysiology of the newly

defined disease VEXAS. Specifically, simultaneous genotyping

and phenotyping, and direct comparison of mutated and wild-

type human HSPCs provide fundamental insights in the direct

and indirect roles ofUBA1mutations in VEXAS pathophysiology.

Our results expand our knowledge of distinct transcriptome sig-

natures and crosstalk among BMhematopoietic cells,UBA1 and

DNMT3A mutations, and TCR/BCR repertoires in VEXAS.

Limitations of the study
Our study has limitations. First, the sample size of the explorative

cohort was relatively small (due to the high cost of experiments)

and potentially biased by patients with rheumatologicmanifesta-

tions (due to referral patterns at our center). Nevertheless, obser-

vations from scRNA-seq were reproducible in an independent

validation cohort with traditional immunological methods. How-

ever, attempts at confirmation by flow cytometry and ELISpot

with HSPCs were not successful due to low cell numbers. Sec-

ond, detection of UBA1 and DNMT3A mutations with scRNA-

seq data was limited by low transcript abundance, allelic and

technical dropout, and incomplete transcript coverage inherent

to the platform.48 Indeed, very few experimental protocols

have been published that allow reliable simultaneous RNA and

DNA sequencing of single cells.31–33 Due to the prospective na-

ture of the study and the limitation of 30- or 50-biased sequencing

reagents, completely reliable simultaneous detection of UBA1

and DNMT3A mutations in single cells was not achieved. Tech-

nologies under development that enable simultaneous

sequencing of both RNA and DNA of single cells at high

throughput31–33 may help to define the clonal architecture of

UBA1 and other somatic mutations frequent in VEXAS, and allow

correlation of transcriptome signatures in multiply mutated sin-

gle cells. Third, although we performed knockdown in vitro ex-

periments with human cell lines, validation in primary human

cells and animal models is desirable, if not yet achievable.
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R.A., et al. (2022). Single-cell roadmap of human gonadal development.

Nature 607, 540–547.

72. Fast Gene Set Enrichment Analysis Gennady Korotkevich, Vladimir Su-

khov, Alexey Sergushichev. bioRxiv 060012.

73. Setty, M., Kiseliovas, V., Levine, J., Gayoso, A., Mazutis, L., and Pe’er, D.

(2019). Characterization of cell fate probabilities in single-cell data with

Palantir. Nat. Biotechnol. 37, 451–460.

74. Alex, A., and Rahnenfuthrer, J. (2019). topGO: Enrichment Analysis for

Gene Ontology. R package version 2.36.0.
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Analysis and visualization of the scRNA-seq
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Lead contact
Further information and request for resources and reagents should be directed to and will be fulfilled by the lead contact Zhijie Wu

(zhijie.wu@nih.gov).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The raw and analyzed sequencing data in this study have been deposited in the NCBI’s Gene Expression Omnibus (Database:

GSE196052) and Sequence Read Archive (Database: SRP358093), and are publicly available. Accession numbers are listed in

the key resources table. Code supporting this study is available at a dedicated Github repository [https://github.com/shouguog/

UBA1]. Analysis and visualization of the scRNA-seq datasets in this study can be performed at the interactive website https://

shouguog.shinyapps.io/vexas_cd34_bm/. DOIs are listed in the key resources table. All other relevant data supporting the key find-

ings of this study are available within the article, and any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human samples
Bone marrow (BM) samples were obtained from VEXAS patients after written informed consent under protocol (www.clinicaltrials.

gov NCT00001373) approved by the Institutional Review Board of the National Human Genome Research Institute, in accordance

with the Declaration of Helsinki. Healthy donors were enrolled as controls under protocol NCT00001620 in National Heart, Lung,

and Blood Institute. Four healthy donors (male, 57/61/62/68 years old) were age- and gender-matched with patients in explorative

cohort for scRNA-seq analyses.

METHOD DETAILS

Bone marrow processing and cell sorting
BM mononuclear cells (BMMNCs) were isolated, followed by flow cytometric sorting to enrich lineage CD34+ hematopoietic stem

and progenitor cells (HSPCs); both BMMNCs andHSPCswere used for single-cell RNA sequencing (scRNA-seq). Fresh BMsamples

were processed within 16 h, followed by either direct analyses (flow cytometry and colony forming assay for all individuals; scRNA-

seq for UPNs 1, 6, 10, and 11) or cryopreserved until use (UPNs 14–17) to enrich lineage-CD34+ HSPCs and for scRNA-seq. Another

11 patients and 8 healthy donors were enrolled in a validation cohort, with cryopreserved BMMNC samples primarily for immunophe-

notyping and ELISpot assays.

BM specimens were obtained from patients and healthy donors and kept in heparin tubes, and processed within 16 h after collec-

tion. BMMNCs from each person were isolated by density centrifugation using LSM Lymphocyte Separation Medium (Cat# 50494X,

MP Biomedicals). Briefly, BM was diluted 2-fold using phosphate buffered saline (PBS) (Cat# 17-516Q, Lonza), layered on top of 1

volume LSM Lymphocyte Separation Medium in a 50-mL Falcon tube, and spun down at 1,140g for 25 min at room temperature with

brake off. A BMMNC layer was isolated and washed with PBS after red blood cell lysing with ACK lysing buffer (Cat# 118-156-101,

Quality Biological). BMMNCs were resuspended in the IMDM (Cat# 12440053, Thermo Fisher Scientific) + 2% fetal bovine serum

(Cat# 12306C, Sigma-Aldrich) before fluorescence-activated cell sorting (FACS) to enrich lineage�CD34+ hematopoietic stem and

progenitor cells (HSPCs). BMMNCs were stained with monoclonal antibodies (Abs) for 30 min on ice: anti-human lineage cocktail

(CD3, CD14, CD16, CD19, CD20, and CD56; clones UCHT1, HCD14, 3G8, HIB19, 2H7, and HCD56, respectively, Cat# 348805,

BioLegend) in Pacific Blue; anti-CD34 Ab (clone 581, Cat# 555822, BD Biosciences) in PE, and anti-CD38Ab (clone HIT2, Cat#

555462, BD Biosciences) in APC. Cells were sorted using the FACSAria Fusion Flow Cytometer (BD Biosciences). Aliquots of

BMMNCs were subjected to multi-color flow cytometry to profile HSP subpopulations. BMMNCs and purified lineage�CD34+ cells
were subjected to colony forming assay and scRNA-seq analysis.

Human primary cell culture
BMMNC isolated from fresh BMwere used for flow cytometry, cell sorting, and scRNA-seq were proceeded without cell culture. Cell

culture conditions for primary BM cells used for colony forming assay and ELISpot assay were described in ‘‘Colony forming assay’’

and ‘‘ELISpot assay to check IFN-g and TNF-a secreted by human BMMNCs’’ sections below, respectively, with different cell

culturing conditions per experiments. In brief, for colony forming assay, isolated BMMNCs and sorted CD34+ cells were cultured

in semisolid methylcellulose medium at 37�C with 5% CO2 for 14 days. For ELISpot assay, BMMNCs were cultured in CTL-Test Me-

dium in 96-well plates and incubated in a 37�C humidified incubator, 5–9% CO2 for 20 h.
Cell Reports Medicine 4, 101160, August 15, 2023 e3

mailto:zhijie.wu@nih.gov
https://github.com/shouguog/UBA1
https://github.com/shouguog/UBA1
https://shouguog.shinyapps.io/vexas_cd34_bm/
https://shouguog.shinyapps.io/vexas_cd34_bm/
http://www.clinicaltrials.gov
http://www.clinicaltrials.gov


Article
ll

OPEN ACCESS
Colony forming assay
BMMNCs from individuals were mixed in semisolid methylcellulose medium (MethoCult H4434 Classic, Cat# 04444, STEMCELL

Technologies) containing interleukin (IL)-3, stem cell factor (SCF), erythropoietin (EPO), and granulocyte-macrophage colony-stim-

ulating factor (GM-CSF) at 2 x 104 cells/plate. Sorted CD34+ cells from individuals were mixed in semisolid methylcellulose medium

(MethoCult H4435 Enriched, Cat# 04445, STEMCELL Technologies) containing IL-3, IL-6, SCF, EPO, granulocyte colony-stimulating

factor (G-CSF), and GM-CSF at 500 cells/plate. Cells were cultured at 37�C with 5% CO2. Colonies were counted at day 14.

Flow cytometry profiling of HSPCs
Flow cytometric sorting of lineage�CD34+ HSPCs following isolation of BMMNCs. BMMNCs were stained with antibody mixtures on

ice for 30 min in RPMI 1640 (Cat# 11875093, Thermo Fisher Scientific). Samples were subsequently acquired using the BD LSR For-

tessa cytometer (BD Biosciences), and post-acquisition analysis was performed using Flowjo software (v.7.6.4; Flowjo LLC, BD Bio-

sciences). Antibodies used for flow cytometry analyses were: anti-human lineage cocktail (CD3, CD14, CD16, CD19, CD20, and

CD56; clones UCHT1, HCD14, 3G8, HIB19, 2H7, and HCD56, respectively, Cat# 348805, BioLegend) in Pacific Blue; anti-human

CD34 in PE (clone 581, Cat# 550761, BD Biosciences), anti-human CD38 in APC (clone HIT2, Cat# 555462, BD Biosciences),

anti-CD90 in FITC (clone 5E10, Cat# 328108, BioLegend), anti-human CD10 in BV605 (clone HI10A, Cat# 562978, BD Biosciences),

anti-human CD135 in PE/Cy7 (clone BV10A4H2, Cat# 313314, BioLegend), and anti-human CD45RA in BV510 (clone HI100, Cat#

304142, BioLegend).

ELISpot assay to check IFN-g and TNF-a secreted by human BMMNCs
IFN-g and TNF-a secretion from BMMNCs of VEXAS patients and healthy donors were measured using the Human IFN-g/TNF-a

Double-Color Enzymatic ELISPOT Assay kit (Cat# SKU:hIFNgTNFa-2M, ImmunoSpot) in two separate experiments in triplicate

(4 patients versus 3 healthy donors for a 1st batch, and 5 patients versus 2 healthy donors for a 2nd batch), according to the man-

ufacturer’s protocol. In brief, pre-coated 96-well plates were activated with Human IFN-g/TNF-aCapture Solution and 70% ethanol

on Day 0, and incubated at 4�C overnight. On Day 1, BMMNCs were suspended in CTL-Test Medium and seeded in 96-well plates

at a density of 90,000 cells/well (1st batch) or 400,000 cells/well (2nd batch), and incubated in a 37�C humidified incubator, 5–9%

CO2 for 20 h. On Day 2, 96-well plates were washed and incubated sequentially with Anti-human IFN-g/TNF-a Detection Solution,

Tertiary Solution, and Blue and Red Developer Solutions. 96-well plates were then air-dried and face down on paper towels on a

bench top for more than 24 h before scanning and counting with the CTL ImmunoSpot Analyzers and ImmunoSpot Software.

Human leukemic cell lines culture
Human leukemic cell lines U937, THP-1, Raji, and Jurkat were purchased from the American Type Culture Collection (ATCC). U937,

THP-1, Raji and Jurkat cell lines were maintained in RPMI-1640 (Cat# 11875093, Thermo Fisher Scientific) in 10% heat-inactivated

fetal bovine serum (Sigma-Aldrich), 1%L-glutamine, 100 units/ml penicillin and 100 mg/mL streptomycin (Thermo Fisher) at 37�Cwith

5–9% CO2.

Knockdown of UBA1 in human leukemic cell lines
pLKO1-Puro Mission shRNA constructs (Sigma-Aldrich) targeting UBA1 included KD1 TRCN0000004003, KD2 TRCN0000277770,

KD3 TRCN0000277769, and KD4 TRCN0000004004 along with control scramble shRNA were used for producing shRNA knock-

down. Lentiviruses were produced in 293T cells by co-transfection of the lentiviral construct pLKO-1 puro plasmid (Cat# 8453, Addg-

ene) with packaging plasmids (pCMV-VSV-G, Cat# 8454; pRSV-Rev, Cat# 12253; pHM-Tat1b, Cat# 164442, Addgene) for 48 to 72 h.

Infection was carried out with 2 x 106 of U937, THP-1, Raji, or Jurkat cells (ATCC) in a 6-well plate with lentiviruses in the presence of

Polybrene (6 mg/mL; Cat# TR-1003, Sigma-Aldrich). For infection of lentiviruses carrying ectopic expression vectors, cells were

centrifuged at 1,000 g at 30�C for 90 min. After 4 to 6 days of selection with 0.5–1 mg/mL of puromycin for pLKO1-puro-shRNA con-

structs, cells were analyzed by immunoblotting with UBA1 (Cat# 4891, Cell Signaling Technology) and actin (Cat# 3700, Cell

Signaling Technology) antibodies using the protocol previously described (Beck et al., 2020). RNA was extracted from pooled anti-

biotic resistant clones for each respective shRNA, after confirmation of knockdown by immunoblotting.

Cell preparation, whole transcriptome amplification (WTA), cDNA library preparation, and sequencing
scRNA-seq analysis for patients (UPNs 6, 11, 1, 10, and 13) and healthy donors was performed with the 10x Genomics System using

the Chromium Single Cell 30 Reagent Kit v2 (Cat# 120237), according to the manufacturer’s protocol (www.10xgenomics.com).78

scRNA-seq coupled with single-cell T cell receptor/B cell receptor sequencing (scTCR/BCR-seq) analysis for UPNs 14–17 was per-

formed with the 10x Genomics System using the 10x Genomics Single Cell Immune Profiling Solution v 1.1 (Chromium Single Cell 50

Reagent Kit v1.1, Cat# 1000165, 10x Genomics), following the manufacturer’s protocol (www.10xgenomics.com).78 Briefly,

BMMNCs and FACS-sorted BM lineage�CD34+ cells were washed with 1X PBS with 0.04% (w/v) bovine serum albumin. Cell con-

centration and viability were determined using the Countess II Automatic Cell Counter and the trypan blue staining method. Cell

loading and capturing were done on the Chromium Controller (10x Genomics). Following reverse transcription and cell barcoding

in droplets, emulsions were broken, and cDNAwas purified using DynabeadsMyOne SILANE, followed by PCR amplification. Ampli-

fied cDNA was then used for both 30 and 50 gene expression library construction and TCR/BCR enrichment. For gene expression
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library construction, the amplified cDNA was fragmented, end-repaired, and double-sided size-selected with SPRIselect beads. For

TCR/BCR library construction, TCR/BCR transcripts were enriched from amplified cDNA by PCR. Subsequently, the enriched PCR

product was fragmented, end-repaired, and size-selected with SPRIselect beads. The scRNA libraries were pooled together and

sequenced on the Illumina NovaSeq system using read lengths of 26-bp read 1, 8 bp i7 index, 98-bp read 2. The single-cell TCR/

BCR libraries were sequenced on the Illumina NovaSeq system using read lengths of 150-bp read 1, 8 bp i7 index, 150-bp read

2. Sequencing metrics were summarized in Table S5.

scRNA-seq data analysis
Preprocessing of scRNA-seq and scTCR/BCR-seq data

Alignment, barcode assignment, and Unique Molecular Identifier (UMI) counting were performed using the cellranger pipeline (http://

software.10xgenomics.com/single-cell/overview/welcome).78.

After single-cell libraries were sequenced using the Illumina system, cellranger pipeline (support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/latest/what-is-cell-ranger" title="https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/what-is-cell-ranger">https://support.10xgenomics.com/single-cell-gene-expression/

software/pipelines/latest/what-is-cell-ranger) was used to process scRNA-seq raw data in order to align reads to the genome,

and to generate gene–cell expression matrices. Specifically, sequencing reads were aligned to the hg19 reference genome by

STAR with annotation of ENSEMBL. Uniquely aligned reads were used to quantify gene expression levels for all ENSEMBL genes

with UMIs. We filtered and removed low-quality cells from further analysis if the number of genes detected was fewer than 500

(low quality, potential fragments) or more than 3,000 (potential doublets). We also excluded those cells with a high percentage of

mitochondrial gene reads (>10%),79 and remaining single cells were subjected to subsequent data analyses. Sequencing metrics

and detailed information are provided in Table S1.

TCR reads were aligned to the GRCh38 reference genome and consensus TCR annotation was performed using the cellranger vdj

program (10x Genomics, version 3.0.1). TCR libraries were sequenced at depth of over 2,000 reads/cell, with a final 33418mean read

pairs/cell. On average, 27,053 reads mapped to either the TRA or TRB loci in each cell. TCR annotation was performed using the 10x

cellranger vdj pipeline as described at support.10xgenomics.com/single-cell-vdj/software/pipelines/latest/using/vdj" title="https://

support.10xgenomics.com/single-cell-vdj/software/pipelines/latest/using/vdj">https://support.10xgenomics.com/single-cell-vdj/

software/pipelines/latest/using/vdj. Barcodes with a higher number of UMI counts than those of simulated background were consid-

ered as cell barcodes. V(D)J read filtering and assembly were implemented as a previous study.80 cellranger firstly trimmed known

adaptor and primer sequences from the 50 and 30 ends of reads, and then filtered away reads lacking at least one 15-bp exact match

against at least one reference segment (TCR, TRA, and TRB gene annotations in Ensembl version 87). Next, cellranger performed de

novo assembly for each barcode by building a De Bruijn graph of reads independently. The assembler output contig sequences

which were assigned at least one UMI. Finally, each assembled contig was aligned against all of the germline segment reference

sequences of the V, D, J, C, and 50 UTR regions. cellranger searched a CDR3 motif (Cys-to-FGXG/WGXG) in a frame defined by

a start codon in the L + V region or all 6 frames when the L + V region was absent. A contig was kept and considered as productive

if: 1) it fully spanned the V and J segments; 2) there was a start codon in the V region; 3) it contained a CDR3 region in-frame with a V

start codon; 4) therewere no stop codons in the V-J spanning region.Most cell barcodes contained twomatching productive contigs,

comprising either a TCRA or a TCRB though it was of biological possibility that fewer productive contigs (low sensitivity) or >2 pro-

ductive contigs (some cells do contain more than one TCRB or TCRA chain) were associated with one cell barcode.81 Similarly, BCR

reads were also processed using the cellranger vdj program, with the IMGT database of GRCh38 genome as reference. Only pro-

ductive contigs of BCR were kept for analysis.

Downstream analyses were performed using the R software82 package in Seurat (Stuart et al., 2019; http://satijalab.org/seurat/,

v2.3.4)70 on BMMNCs and lineage�CD34+ cells separately (Satija et al., 2015).83 Raw reads in each cell were first scaled by a library

size to 10,000, and then log-transformed. To improve downstream dimensionality reduction and clustering, regressionOut in the

Seurat package84 was used to remove unwanted sources of variation based on the number of UMIs and percentages of mitochon-

drial reads. Highly variable genes (�1,600 for BM cells and �1,900 for CD34+ cells, identified with y.cutoff = 0.5) were used for Prin-

cipal Component Analysis (PCA) of high-dimensional data. Top 30 principal componentswere selected for unsupervised clustering of

cells with a graph-based clustering approach.

Downstream analysis
Dimensionality reduction and clustering were performed by PCA and visualized with UniformManifold Approximation and Projection

(UMAP). Cell type identity was assigned to each cluster based on significance in overlap between signature genes of BMMNCs35 and

HSPCs40 and cluster-specific genes (Fisher’s exact test). Palantir73 was used to reconstruct a differentiation continuum of cells and

to order individual cells’ differentiation for pseudotime analysis. Gene Set Enrichment Analysis (GSEA; http://software.broadinstitute.

org/gsea) and Gene Ontology (GO)85,86 were used to interpret gene set enrichment and pathways of defined differentially expressed

genes. Single-nucleotide variations in UBA1 and DNMT3A were identified in single cells using a Pysam-based tool, cb_sniffer with

default parameters.48 A scoring algorithm to calculate interaction scores,87 CellPhoneDB52,71 and NicheNet51 were used to examine

ligand-receptor interactions.
Cell Reports Medicine 4, 101160, August 15, 2023 e5

http://software.10xgenomics.com/single-cell/overview/welcome
http://software.10xgenomics.com/single-cell/overview/welcome
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
http://satijalab.org/seurat/
http://software.broadinstitute.org/gsea
http://software.broadinstitute.org/gsea


Article
ll

OPEN ACCESS
QUANTIFICATION AND STATISTICAL ANALYSIS

Unsupervised dimensionality reduction and UMAP visualization
PCA was used to reduce feature dimensions on the pooled cells of all patients and healthy donors, and top 30 principal components

were input into t-SNE for further dimensional reduction. We found that cells of individuals clustered together, due to subject spec-

ificity and batch effects. The canonical correlation analysis (CCA) algorithm83 implemented in Seurat is a multivariate statistical tech-

nique for detecting the statistically common factors among digital gene expression (DGE) matrices, which varies from each other due

to batch effects. After alignment with CCA, cells from different subjects were mixed well and separated by cell type categories. Res-

olution in the FindClusters function in Seurat88 was set to 2 for BMMNCs and 1 for HSPCs, and clustering results were shown in PCA

and UMAP plots. Accordingly, marker genes in each cluster were identified using the Wilcoxon Rank-Sum test implemented in the

Seurat v.2.3.4 package.

Cell type assignment
For lineage�CD34+ cells, an HSPC typewas assigned to each cluster based on significance in overlapping betweenHSPCs and clus-

ter-specific genes (the Fisher’s exact test).28,40 More specifically, top 250 overexpressed genes in each HSPC population were

downloaded from http://www.jdstemcellresearch.ca/node/32, and were denominated as cell-type specific signature genes. Subse-

quently, the one-tailed Fisher’s exact test was utilized to assert enrichment of HSPC signature genes in the cluster marker gene list for

each cluster,69 and a top associated cell type was assigned to each cluster. Cell types of BM cells were assigned with the same stra-

tegies using the Human Cell Atlas as ref. 35

Single-cell mutation identification and analysis
Aligned sequence data were generated by cellranger, and single-nucleotide variations inUBA1 andDNMT3Awere identified in single

cells using the Pysam-based tool, cb_sniffer (https://github.com/sridnona/cb_sniffer), with default parameters.48 Reads that had no

Chromium Cellular Barcode (CB) tag or no Chromium Molecular Barcode (UB) tag were filtered out. Then, cell-associated tags for

downstream analyses of UMIs were obtained. Usually, duplicate reads existed for a given UB and a base at a mutant position

were identical across all reads. In rare cases when there were inconsistent reads, the most common base was chosen if a mutation

was present in at least 75% of the reads. All reads corresponding to the UB were discarded when there was no common base at a

mutation position (>75% reads).

Reconstruction of hematopoiesis trajectories using scRNA-seq data and dynamic gene expression
We used Palantir,73 a recently published trajectory-detection algorithm for pseudotime ordering. Palantir is based on results of diffu-

sion maps, which is suitable to explore a differentiation trajectory. It firstly uses diffusion maps to focus on developmental trends and

avoid spurious edges resulting from the sparsity and noise in scRNA-seq. Projecting the data onto top diffusion components effec-

tively focuses edges in directions with high cell densities and reweighs similarity along these directions. Then, Palantir estimates

probability of a cell in an intermediate state to reach any of terminal states of differentiation. It thus provides a quantitative measure

of differentiation potential, in which multipotent cells have the highest differentiation potential and mature terminal states have the

lowest potential. A high resolution achieved by Palantir allows detailed mapping of gene expression trends and dynamics that corre-

late with changes in lineage potential. After calculating diffusion components by using the Harmony augmented affinity matrix, Pal-

antir orders cells along pseudotime that recapitulates known marker trends in development. Tracking gene expression changes

along pseudotime enable determination of the differentiation change for each of the terminal fates. We used Palantir to estimate

the differentiation status in order to characterize cells in patients with UBA1 mutations.

Projection of patients’ cells to the map of normal hematopoiesis
To characterize early hematopoiesis in VEXAS patents, individual cells were projected onto the map of normal hematopoietic differ-

entiation based on cell-by-cell comparison of the patterns of global gene expression and localization to the most similar healthy

donor cells (by Pearson correlation). This strategy was used for mapping patients’ cells on t-SNE and diffusion map plots, locating

pseudotime estimation for Palantir.

Comparison of lineage gene Area Under the Receiver Operating Characteristic Curve (AUC) scores
We calculated AUC scores of lineage-specific gene expression (HSC,MEP, GMP, and LymP) of single cells in individual patients, and

average AUC scores75 of specific lineages of all cells in each patient were compared. Comparison between two groups was per-

formed using Prism (v.7.02; the GraphPad Software), and results were shown as mean ± standard derivation. Statistical analysis

was performed using the two-sided unpaired Mann-Whitney test for two groups. p < 0.05 was considered statistically significant.

Differential expression of genes and generation of heatmaps
Differentially expressed genes were defined with the FindMarkers function in Seurat, by comparing gene expression in one cell sub-

set with expression in all others. Genes with p value <0.05 and Log2(average fold change) > 0.1 were regarded as differentially ex-

pressed genes. Heatmaps and network visualization were generated with ggplot2 and heatmap2 in the R package.
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GO and pathway analysis
GO was assessed with the R package topGO v2.26 using the algorithm elim,74 a minimum node size of 10, and genes that were ex-

pressed over 100 cells as the background gene list. p values derived from the GO analysis were not corrected for multiple testing. We

examined the biological processes GO terms (The Gene Ontology Consortium, 2019) and the KEGG pathways.89,90

GSEA is the widely used pathway analysis tool that determines whether pre-defined gene sets show statistically significant,

concordant differences between two biological states. GSEA is based on fold changes of all detected genes. To create gene sets

for a genome with custom annotations, we associated our genes with known KEGG pathways and manually created gene sets.

Fgsea51 was used for GSEA and to plot the running normalized enrichment scores along the ranked gene list.

Inflammatory gene pathway activity score analysis
To compare inflammation in HSPCs of VEXASwith several other hematopoietic diseases with overlapping clinical features, we calcu-

lated activity scores (expression levels) of several inflammatory response pathways in HSPCs of VEXAS patients in the current study,

with data from published datasets (E-MTAB_8884 for chronicmyelomonocytic leukemia (CMML) patients, GSE137429 formyelodys-

plastic syndrome (MDS) patients, and GSE76312 for chronic myelogenous leukemia (CML) patients). Briefly, we downloaded the

fastq files from ArrayExpress with access number E-MTAB_8884, and used Cellranger 2.0 to analyze gene expression for this data-

set. We also downloaded the processed scRNA-seq data for MDS (GSE137429) and CML (GSE76312) patients. We then down-

loaded the gene lists of HALLMARK_INFLAMMATORY_RESPONSE, HALLMARK_TNFA_SIGNALING VIA NFKB, and

HALLMARK_INTERFERON_GAMMA_RESPONSE from MSigDB of GSEA, and their activity scores (expression levels) in our and

these three datasets were calculated with the addModuleScore function built in the Seurat (http://satijalab.org/seurat/). The activity

scores were normalized with healthy donors included in individual studies, and the double-sided t-test was used to assess the dif-

ference between VEXAS and three other diseases (MDS, CML, and CMML).

Inflammatory and cytokine score calculation
Inflammatory and cytokine scores were defined based on the published reference gene list,43,49 and were evaluated with the

AddModuleScore function built in Seurat.70

Cell cycle stages calculation
Cell cycle stageswere assignedwith theCellCycleScoring function in Seurat.70,91 In specific, it calculated themean expression levels

of 43 ‘‘S phase" marker genes and 54 ‘‘G2/M phase" marker genes to obtain standardized scores for S and G2/M phases for each

cell, and then assigns each cell to a specific phase with the highest score.

Ligand receptor analysis
Cell-cell interactions based on the expression of known ligand-receptor pairs in different cell types were calculated using the

CellPhone DB version 3.1.0.52,71 Sorted CD34+ HSPCs were merged with defined HSPCs in BMMNCs as one population, and the

algorithmwas run on log-normalized expression values for cell populations of BMMNCswith default parameters and no subsampling

to identify the enriched ligand-receptor pairs in VEXAS patients and healthy controls.

To examine and quantify a ligand–receptor interaction between different cell types, we implemented the established scoring

algorithm proposed by Kumar et al. (2018)87 to calculate an interaction score based on ligand and receptor expression abun-

dance. First, we collected 1,141 curated ligand-receptor pairs from the KEGG database for analysis. Then, for each cell, the

gene expression of ligand (ELÞ and receptor (ERÞ were normalized to (Enorm
L and Enorm

R Þ by subtracting an average housekeeping

expression value. A score of a given ligand-receptor interaction between cell types A and B was calculated as a product of

average ligand expression across all cells of type A and average receptor expression across all cells of type B (SL;R =E
norm
L;A 3

Enorm
R;B Þ. The one-sided Wilcoxon rank-sum test was applied on the hypothesis that the interaction score was greater than 0.

For each HSPC, the interaction score was defined as the sum of its L-R scores with all monocytes/granulocytes in BMMNCs

ðS =
P

L;R˛LR pairs SL;R).

NicheNet analysis
Weused the R package NicheNet53 to predict ligand-receptor interactions that might drive gene expression changes in our cell types

of interest. We combined all HSPCs,monocytes, and neutrophils for this analysis. All default parameters were usedwith an exception

of setting a lower cutoff threshold of 0.3 and 0.6 for ‘‘prepare_ligand_target_visualization’’.

Diversity index calculation
There are many ways of defining the diversity of a population, clonal types in this study, with each method providing a different rep-

resentation of the number of clones (identical TCR/BCR chains) present (richness) and of their relative frequency (evenness). The

Shannon entropy weighs both of these aspects of diversity equally, and it is an intuitive measure whereby the maximum value is

determined by a total size of the repertoire. Entropy values decreases with increasing inequality of frequency as a result of clonal

expansion. The Shannon entropy in a population of N clones with nucleotide frequency pi is defined by the following equation:
Cell Reports Medicine 4, 101160, August 15, 2023 e7

http://satijalab.org/seurat/


Article
ll

OPEN ACCESS
HðPÞ = �
Xn

i = 1

pi log2pi

The Gini coefficient is a number aimed at measuring the inequality in a distribution. It is most often used in economics to measure a

country’s wealth distribution and has been widely used in diversity assessment of TCRs/BCRs.55 The Gini coefficient is usually

defined mathematically based on the Lorenz curve or Relative mean absolute difference.92 The Gini index and Shannon entropy

for diversity and clonality analysis were calculated with the R package of tCR (https://imminfo.github.io/tcr/).

Identification of TCR motifs with shard antigen specificity using GLIPH2
GLIPH293 was applied to T cells of VEXAS patients to identify clusters of TCRs that recognized the same epitope based on CDR3b

amino acid sequence similarities, with default parameters. CDR3b amino acid sequences of the top 1,000most abundant CDRswere

used to identify significant motif lists and associated TCR convergence groups. Themotif-shared TCRs network was visualized using

Cytoscape version 3.9.1.94

Statistical analysis
Pearson correlations between interaction scores and inflammatory and cytokine scores were calculated with the R package. Com-

parison between groups was performed using the GraphPad Prism (v.9.5.1; GraphPad software, La Jolla, CA), and results were

shown as mean ± standard derivation.

ADDITIONAL RESOURCES

Analysis and visualization of the scRNA-seq datasets in this study can be performed at the interactive website https://shouguog.

shinyapps.io/vexas_cd34_bm/. DOIs are listed in the key resources table.
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