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A B S T R A C T   

In humans, methionine derived from dietary proteins is necessary for cellular homeostasis and regeneration of sulfur containing pathways, which produce inorganic 
sulfur species (ISS) along with essential organic sulfur compounds (OSC). In recent years, inorganic sulfur species have gained attention as key players in the crosstalk 
of human health and the gut microbiome. Endogenously, ISS includes hydrogen sulfide (H2S), sulfite (SO3

2− ), thiosulfate (S2O3
2− ), and sulfate (SO4

2− ), which are 
produced by enzymes in the transsulfuration and sulfur oxidation pathways. Additionally, sulfate-reducing bacteria (SRB) in the gut lumen are notable H2S producers 
which can contribute to the ISS pools of the human host. In this review, we will focus on the systemic effects of sulfur in biological pathways, describe the contrasting 
mechanisms of sulfurylation versus phosphorylation on the hydroxyl of serine/threonine and tyrosine residues of proteins in post-translational modifications, and the 
role of the gut microbiome in human sulfur metabolism.   

1. Introduction 

Sulfur is among the most biologically abundant elements in the 
human body with functions including cellular signaling, detoxification 
of free radicals, structural support, and assisting in energy production 
[1–5]. Sulfur pools in the human body are vast and include both inor
ganic sulfur species (ISS) as well as critical organic sulfur-containing 
compounds (OSCs). In humans, sulfur pools (ISS and OSC) are main
tained mainly through dietary intake of methionine along with adequate 
B-vitamins (B1, B2, B3, B5, B6, B7, B9, B12), and trace elements zinc, 
nickel, molybdenum, cobalt, potassium, magnesium, iron, calcium, and 
sodium (Table 1) [6,7]. Methionine is an essential regulator of human 
sulfur pools through its direct regeneration of universal methyl donor 
s-adenosyl-L-methionine (SAM) and homocysteine, which replenish 
cysteine concentrations during the fed-state through the trans
sulfuration pathway [4]. While cysteine is considered a conditionally 
essential amino acid, it is the rate-limiting amino acid in the synthesis of 
glutathione, coenzyme A, iron-clusters, taurine, and tertiary proteins, all 
of which are considered OSCs because they contain sulfur [4]. As a 
product of sulfur pathways, ISS are commonly produced and include 
hydrogen sulfide (H2S), sulfite (SO3

2− ), thiosulfate (S2O3
2− ), and sulfate 

(SO4
2− ). Additionally, microbiota residing in the human gut-microbiome 

are major contributors and regulators of sulfur pools in the body. 
Through the sulfate reduction pathways of sulfur-reducing bacteria en
ergy is not only extracted for the microorganism, but hydrogen sulfide is 
produced. In general, microbiota found in the gut-microbiome favor ISS 

reduction while human metabolic processes favor ISS oxidation to sul
fate for its activation to 3′-phosphoadenosine 5′-phosphate (PAPS) and 
numerous sulfonation/sulfurylation reactions [8–18]. The purpose of 
this review, is to focus on the systemic effects of sulfur (ISS and OSC) in 
biological pathways and the role of the gut microbiome in human sulfur 
metabolism. 

2. Inorganic sulfur species – hydrogen sulfide (H2S) 

Among the most remarkable distinctions between sulfur and oxygen 
is the range of accessible oxidation states available for sulfur biology 
[19,20] (Fig. 1). The oxidation states of inorganic sulfur species found in 
the human body include hydrogen sulfide (H2S) at − 2, thiosulfate 
(S2O3

2− ) at +2, sulfite (SO3
2− ) at +4, and sulfate (SO4

2− ) at +6. Compared 
to oxygen, sulfur contains an available d-orbital for bond formation, has 
a larger radius, and is less electronegative (2.58 for sulfur, compared to 
oxygen at 3.44 on the Pauling scale). While the redox potential for H2O 
reduction is strongly positive (+0.82 V), the redox potential for H2S is 
more negative (− 0.27 V). This redox potential of H2S is in the same 
range as NADH and FADH2 (− 0.32 V and − 0.20 V, respectively), which 
likely contributes to its ability to carry electrons and detoxify free rad
icals [1]. Additionally, H2S has a pKa1 of close to 7, which is near the 
physiological pH, which is significant as fluctuating H2S and HS− anions 
have different physiological functions and properties allowing sulfur 
compounds to determine the cellular redox potential, regulate metabolic 
pathways, and react to oxidative stress [21]. Notably, the ionized HS− is 
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Table 1 
Enzymes in sulfur metabolism pathways described in this review. Additional information obtained from The Human Protein Atlas.  

ID GENE NAME CHROMOSOME EC COFACTOR/COENZYME TISSUE RNA EXPRESSION 
(nTPM) 

ENSG00000181915 ADO 2-aminoethanethiol dioxygenase 10 1.13.11.19 Nickel (Ni2+) Fe2+ Testes - 40 
Brain - 30 
Tongue - 20 

ENSG00000101444 AHCY (SA 
HH) 

Adenosylhomocysteinase 20 3.3.1.1 NAD + open, NADH 
closed 

Liver - 180, Kidney (Proximal 
Tubule) - 160, Pancreas - 
160, most tissue 

ENSG00000119689 α-KGDHC - 
DLST 

α-ketoglutarate dehydrogenase 
complex 

14 1.2.4.2 TPP (vitamin B1) Mg2+ Tongue - 230 
Muscle - 150 
Kidney - 100 

ENSG00000145692 BHMT betaine-homocysteine S- 
methyltransferase 

5 2.1.1.5 Zinc (Zn2+) Liver (hepatocytes) - 1150 
Potassium (K+) Kidney (proxima tubule) - 

770 
ENSG00000132840 BHMT2 betaine-homocysteine S- 

methyltransferase 2 
5 2.1.1.5 Zinc (Zn2+) Liver - 430 

Potassium (K+) Kidney - 333 
ENSG00000160200 CBS Cystathionine beta-synthase 21 4.2.1.22 Heme (Fe2+) Liver - 175 

Pyridoxal-5-phosphate 
(PLP) 

Pancreas - 100 

ENSG00000129596 CDO1 Cysteine dioxygenase type 1 5 1.13.11.20 Iron (II) Liver - 500 
Adipose - 120 

ENSG00000016391 CHDH Choline dehydrogenase 3 1.1.99.1 FAD+ Liver - 40 
Kidney - 40 

ENSG00000068120 COASY Coenzyme A synthase 17 PPAT - 2.7.7.3 ATP Liver - 70 
DPCK - 
2.7.1.24 

Magnesium (Mg2+) Adrenals - 60 

ENSG00000139631 CSAD Cysteine sulfinic acid decarboxylase 12 4.1.1.29 Heme (Fe2+) Liver - 100 
Pyridoxal-5-phosphate 
(PLP) 

Adipose - 70 

ENSG00000116761 CTH - CSE - 
CGL 

Cystathionine gamma-lyase 1 4.4.1.1 Heme (Fe2+) Liver - 120 
Pyridoxal-5-phosphate 
(PLP) 

Ovary - 35 

ENSG00000228716 DHFR Dihydrofolate reductase 1 5 1.5.1.3 NADP+ Liver - 60 
Thymus - 60 
Bone Marrow - 60 
Tonsils/lymph nodes - 40 

ENSG00000178700 DHFR2 Dihydrofolate reductase 2 3 1.5.1.3 NADP+ Ovary - 10 
Endometrium - 8 
Liver - 7 

ENSG00000102967 DHODH Dihydroorotate dehydrogenase 
(quinone) 

16 1.3.5.2 FAD+ Liver (hepatocytes) - 100 

ENSG00000132837 DMGDH Dimethylglycine dehydrogenase 5 1.5.99.2 FAD+ Liver - 300 
kidney - 170 

ENSG00000105755 ETHE1/PDO “ethylmalonic encephalopathy 1 
protein” and “per sulfide 
dioxygenase" 

19 1.13.11.18 Iron (Fe2+) Colon - 260 
Rectum - 230 

ENSG00000010932 FMO1 Flavin containing dimethylaniline 
monoxygenase 1 

1 1.14.13.8 FAD+ Kidney (Proximal Tubule) - 
200 NADP+

ENSG00000094963 FMO2 Flavin containing dimethylaniline 
monoxygenase 2 

1 1.14.13.8 FAD + NADPH 
Magnesium (Mg2+) 

Lung - 100 
Adipose - 70 
Esophagus - 70 
Muscle - 60 

ENSG00000007933 FMO3 Flavin containing dimethylaniline 
monoxygenase 3 

1 1.14.13.8 FAD+ Liver - 1120 
NADP+

ENSG00000076258 FMO4 Flavin containing dimethylaniline 
monoxygenase 4 

1 1.14.13.8 FAD+ Liver - 70 
NADP+ Kideny - 50 

ENSG00000131781 FMO5 Flavin containing dimethylaniline 
monoxygenase 5 

1 1.14.13.8 FAD+ Liver - 700 
NADP+

ENSG00000165060 FXN Frataxin 9 1.16.3.1 Iron (Fe2+) Liver - 46 
Bone Marrow - 30 
Muscle - 25 

ENSG00000001084 y-GCS - 
GCLC 

Glutamate-cysteine ligase 6 6.3.2.2 ATP Magnesium (Mg2+) Liver - 150 
Bladder - 60 
Fallopian Tubes - 60 

ENSG00000120053 GOT1 - 
CAT1 - AST1 

Aspartate aminotransferase 1 10 2.6.1.3 Pyridoxal 5′-phosphate 
(PLP) 

Tongue - 1010 
Heart - 560 
Muscle - 500 
Liver - 370 
Kidney - 140 

ENSG00000125166 GOT2 - 
CAT2 - AST2 

Aspartate aminotransferase 2 16 2.6.1.3 Pyridoxal 5′-phosphate 
(PLP) 

Tongue - 730 
Skeletal muscle - 700 
Liver - 320 
Heart - 310 

ENSG00000100983 GSS Glutathione synthetase 20 6.3.2.3 ATP Magnesium (Mg2+) Testis - 70 
Liver - 45 
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Table 1 (continued ) 

ID GENE NAME CHROMOSOME EC COFACTOR/COENZYME TISSUE RNA EXPRESSION 
(nTPM) 

Kidney - 45 
GI - 40 
Skin - 30 
Brain - 20 

ENSG00000151224 MAT1A Methionine adenosyltransferase 1A 10 2.5.1.6 ATP Liver (hepatocytes) - 1400 
Magnessium (Mg2+) 
Potassium (K+) 

ENSG00000168906 MAT2A Methionine adenosyltransferase 2A 2 2.5.1.6 ATP Pancreas - 900 
Magnessium (Mg2+) Thyroid - 400 
Potassium (K+) Brain White Matter - 300 

ENSG00000038274 MAT2B Methionine adenosyltransferase 2B 5 2.5.1.7 NADP+ Nonspecific - 100 (Kidney, 
duodenum, lymph) 

ENSG00000128309 MPST, TST2 Mercaptopyruvate sulfurtransferase 22 2.8.1.2 Zinc (Zn2+) Liver - 400 
GI TRACT - 100 

ENSG00000177000 MTHFR Methylenetetrahydrofolate reductase 1 1.5.1.20 FAD+ Epidydemis - 60 
NADP+ Bone - 30 

ENSG00000116984 MTR Methionine synthase 1 2.1.1.13 B12 Parathyroid - 30 
Zinc (Zn2+) Muscle - 20 
Cobalt (Co3+) Cardiomyocytes - 20 

ENSG00000124275 MTRR 5-methyltetrahydrofolate- 
homocysteine methyltransferase 
reductase 

5 2.1.1.3 FAD+, NADP+ Parathyroid - 20 
Tongue 20 
Muscle - 16 

ENSG00000152782 PANK1 Pantothenate kinase 1 10 2.7.1.33 ATP Magnesium (Mg2+) Liver - 110 
Kidney - 40 
Tongue - 30 
GI-tract - 20 

ENSG00000125779 PANK2 Pantothenate kinase 2 20 2.7.1.33 ATP Magnesium (Mg2+) Testis - 25 
Tonsils - 20 
Bone Marrow - 20 
Esophagus - 20 

ENSG00000120137 PANK3 Pantothenate kinase 3 5 2.7.1.33 ATP Magnesium (Mg2+) Liver - 40 
GI Tract - 30 
Breast - 25 

ENSG00000157881 PANK4 Pantothenate kinase 4 1 2.7.1.33 ATP, Maganase (Mn2+), 
Nickel (Ni2+), Cobalt 
(Co2+) 

Skeletal Muscle - 35 
Heart - 20 
Tongue - 20 

ENSG00000138801 PAPSS1 3′-phosphoadenosine 5′- 
phosphosulfate synthase 1 

4 ATPS - 2.7.7.4, 
APSK - 2.7.1.25 

ATP, Magnesium (Mg2+) Brain - 65 
Salvilary gland - 65 
Stomach - 60 
Skin - 50 

ENSG00000198682 PAPSS2 3′-phosphoadenosine 5′- 
phosphosulfate synthase 2 

10 ATPS - 2.7.7.4 , 
APSK - 2.7.1.25 

ATP, Magnesium (Mg2+) Adrenal - 135 
Liver - 80 
Colon - 80 
Lung - 70 
Placenta - 60 

ENSG00000138621 PPCDC Propionyl-CoA decarboxylase, alpha 
subunit 

15 4.1.1.36 Coenzyme A, FMN Parathyroid - 20 
Bone Marrow - 20 
Adrenal - 20 
Esophagus - 20 

ENSG00000127125 PPCS Propionyl-CoA synthase 1 6.3.2.51 B5, ATP, Magnesium 
(Mg2+) 

Liver - 100 
Kidney - 90 
Pancreas - 70 
Testis - 70 

ENSG00000123453 SARDH Sarcosine dehydratase 9 1.5.8.3 FAD+, Pyridoxal-5- 
phosphate (PLP) 

Liver - 115 
Pancreas - 40 
Testis - 40 

ENSG00000073578 SDHA Succinate dehydrogenase complex, 
subunit A 

5 1.3.5.1 FAD+ Heart - 600 
Skeletal muscle - 480 
Liver - 250 

ENSG00000117118 SDHB Succinate dehydrogenase complex, 
subunit B 

1 1.3.5.1 Iron–Sulfur [Fe–S] Tongue - 580 
Skeletal muscle - 500 
Liver - 310 

ENSG00000143252 SDHC Succinate dehydrogenase complex, 
subunit C 

1 1.3.5.1 Iron–Sulfur [Fe–S] Liver - 300 
Tongue - 280 
Kidney - 280 
Skeletal muscle - 280 

ENSG00000204370 SDHD Succinate dehydrogenase complex, 
subunit D 

11 1.3.5.1 Iron–Sulfur [Fe–S], Heme Tongue - 450 
Liver - 350 
Skeletal muscle - 330 
Kidney - 320 

ENSG00000176974 SHMT1 Serine hydroxymethyltransferase 1 17 2.1.2.1 Pyridoxal-5-phosphate 
(PLP) 

Liver- 400 
Kidney - 170 

ENSG00000182199 SHMT2 Serine hydroxymethyltransferase 2 12 2.1.2.1 Pyridoxal-5-phosphate 
(PLP) 

Liver - 180 
Pancreas - 60 
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Table 1 (continued ) 

ID GENE NAME CHROMOSOME EC COFACTOR/COENZYME TISSUE RNA EXPRESSION 
(nTPM) 

ENSG00000081800 SLC13A1 Solute carrier family 13 member A1 7 NA Sodium (Na+) Kidney (Proximal Tubule) - 
80 

ENSG00000145217 SLC26A1 Solute carrier family 26 member 1 4 NA NA Liver - 18 
Adrenals - 10 

ENSG00000155850 SLC26A2 - 
DTDST 

diastrophic dysplasia sulfate 
transporter 

5 NA NA Colon - 210 
Rectum - 200 

ENSG00000137767 SQOR Sulfide quinone oxidoreductase 15 1.8.5.8 FAD+ Colon - 210 
Rectum - 180 
Muscle - 130 
Esophagus - 110 

ENSG00000196502 SULT1A1 Sulfotransferase family 1A member 1 16 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) 

Liver - 250 
Duodenum - 140 
Small intestines - 100 
Adrenals - 100 

ENSG00000197165 SULT1A2 Sulfotransferase family 1A member 2 16 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) Calcium 
(Ca2+) 

Liver - 50 
Duodenum - 50 
Small intestine - 50 

ENSG00000261052 SULT1A3 Sulfotransferase family 1A member 3 16 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) 

Duodenum - 240 
Small Intestine - 140 
BRAIN - 50 

ENSG00000213648 SULT1A4 Sulfotransferase family 1A member 4 16 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) 

Small Intestine - 70 
Colon - 50 
Adipose - 30 
Breast - 30 

ENSG00000173597 SULT1B1 Sulfotransferase family 1B member 1 4 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) 

Duodenum - 100 
Small Intestine - 100 

ENSG00000198203 SULT1C2 Sulfotransferase family 1C member 2 2 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) 

Stomach (gastric mucus 
cells) - 170 
Kidney - 70 

ENSG00000196228 SULT1C3 Sulfotransferase family 1C member 3 2 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) 

Breast - 370 

ENSG00000198075 SULT1C4 Sulfotransferase family 1C member 4 2 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) 

Brain - 30 
Gall bladder - 30 
Ovary - 30, 

ENSG00000109193 SULT1E1 Sulfotransferase family 1E member 1 4 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) Sodium 
(Na+) 

Liver - 40 
Duodenum - 30 
Vagina - 30 
Skin - 20 

ENSG00000105398 SULT2A1 Sulfotransferase family 2A member 1 19 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) 

Liver - 1080 
Duodenum - 240 
Small intestine 100 
Duodenum - 60 
Parathyroid - 40 

ENSG00000088002 SULT2B1a Sulfotransferase family 2B member 
1a 

19 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) Sodium 
(Na+) 

Esophogus - 300 
Skin (karatinocytes), 200 
Vagina 150 
Cervix - 70 
Salivary glands - 50 

ENSG00000088002 SULT2B1b Sulfotransferase family 2B member 
1b 

19 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) Sodium 
(Na+) 

Esophogus - 300 
Skin (karatinocytes) - 200 
Vagina 150 
Cervix - 70 

ENSG00000130540 SULT4A1 Sulfotransferase family 4A member 1 22 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) 

Brain (cerebral cortex) - 100 
Brain (white matter) - 30 

ENSG00000138068 SULT6B1 Sulfotransferase family 6B member 1 2 2.8.2.1 3-phospho-5-adenosyl 
sulfate (PAPS) 

Testes - 5 
Brain - 3 

ENSG00000139531 SUOX Sulfite oxidase 12 1.8.3.1 Molybdenum (Mo) Cobalt 
(Co) Heme (Fe2+) 

Liver - 70 
Parathyroid - 50 
Kidney - 40 
Muscle - 40 

ENSG00000138336 TET1 Ten-eleven translocation 
methylcytosine deoxigenase 1 

10 NA Zinc (Zn2+) Iron (Fe2+) Brain - 5 

ENSG00000168769 TET2 Ten-eleven translocation 
methylcytosine deoxigenase 2 

4 NA Zinc (Zn2+) Iron (Fe2+) Bone marrow - 25 
Skin - 10 

ENSG00000187605 TET3 Ten-eleven translocation 
methylcytosine deoxigenase 3 

2 NA Zinc (Zn2+) Iron (Fe2+) Bone marrow - 20 
Skin - 15 
Brain - 13 

ENSG00000169902 TPST1 Tyrosylprotein sulfotransferase 1 7 2.8.2.20 NA Liver - 50 
Gallbladder – 40 
Urinary bladder - 40 

ENSG00000128294 TPST2 Tyrosylprotein sulfotransferase 2 7 2.8.2.20 NA Pancreas - 400 
Epididymis - 100 
Liver - 70 

ENSG00000176890 TS/TYMS Thymidylate synthase 18 2.1.1.45 Tetrahydrofolate (THF) Thymus - 115 
Bone - 90 
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more reactive than the un-ionized H2S and exerts its biological effects 
through binding electrophiles in a process known as sulfhydration or 
attaching to other reactive sulfur species (thiols) to form disulfide bonds 
in a process known as persulfhydration. These post-translational pro
cesses, sulfhydration and persulfidation, also apply to thiol containing 
molecules (R–SH) such as cysteine and are regarded as fundamental 
molecular mechanisms for sensing/regulating oxidative stress [22–24]. 

In healthy humans, the plasma baseline levels of H2S have been re
ported to lie in the range of 34 μM–274 μM; however, this does not 
specify the concentration of ionized to un-ionized H2S forms [25,26]. By 
assuming the plasma pH is about 7.4, the ionized HS− is the predominate 
form at 80% of the concentration, while the un-ionized H2S exists at 
20%. This is important for two major reasons; first, HS− anions are 
biologically more reactive, attaching to proteins found on platelets 
which inhibit aggregation and also attaching to potassium-ATP channels 
causing vasodilation [2,19,27–31]. Secondly, since the ionized HS−

form carries an overall negative charge, it requires facilitated diffusion 
and therefore specific transporters, such as anion exchange protein AE1 
present on erythrocytes to enter cells [29]. On the other hand, the 20% 
H2S at the physiological plasma pH of 7.4 is more hydrophobic and 
penetrates the lipid bilayer of the cell membrane through simple diffu
sion. Inside the cell, where the pH of the cytosol is closer to a neutral 7, 
un-ionized H2S and ionized HS− anions would become roughly equal in 
concentration. In the basic environment of the mitochondria, where the 
pH can reach above 8, the concentration of the HS− anion again pre
dominates at more than 90% of the sulfide concentration. Lastly, in a 
more acidic environment such as the lysosomes with a pH below 5, 
nearly 99% of un-ionized H2S predominates [21]. 

In recent years, accumulating evidence continues to show a key 
reciprocal relationship between hydrogen sulfide and oxygen in regu
lating metabolism and electron flow within the mitochondria [3,32–34]. 
More specifically, Kumar et al. and others have shown that under con
ditions of excess HS− concentrations, oxidative phosphorylation is 
inhibited by HS− binding to cytochrome a3 (cytochrome oxidase) of 
mitochondrial complex IV in the electron transport chain. Inhibition of 
Complex IV by HS− anions results in increased electrons at complex II, 
III, and the Coenzyme Q (CoQH2) pools. Although electrons readily 
escape as free radicals, the majority of electrons are shunted in a reverse 
flow through complex II to the sulfide quinone oxidoreductase (SQOR) 
reducing fumarate to succinate along with thiosulfate or oxidized 
glutathione (GSSH), depending on sulfur acceptor availability [1,3,20, 
32–37]. A sulfide-driven metabolic flux may be a protective mechanism 
used in mammalian cells to avoid free radical damage during conditions 
of low pH, high proliferation, or hypoxia. In hypoxia, succinate accu
mulation is observed, and restoration of Complex II activity through 
pure oxygen reperfusion induces rapid succinate oxidation met with an 
already abundant CoQH2 pool causing electrons to leak as reactive ox
ygen species (ROS) and free radical tissue damage to occur [36]. To 
avoid tissue damage in reperfusion cases according to these mecha
nisms, hypothermic therapy and gentle rewarming of organs mixed with 

oxygen and sulfide monitoring may ameliorate the events and signifi
cantly reduce succinate-driven ROS production [37] (Fig. 2). 

3. Inorganic sulfur species – thiosulfate (S2O3
2¡) 

Thiosulfate has been shown to possesses antioxidant, anti- 
inflammatory, and antihypertensive properties [20,38–50]. Clinically, 
low concentrations of thiosulfate have been shown to reduce hyper
tension, left ventricular hypertrophy, fibrosis, and even rescue a failing 
heart [42]. Currently, sodium thiosulfate is an FDA approved medicine 
used for treating acute cyanide poisoning, carbon monoxide toxicity, 
and calcific uremic arteriolopathy found in dialysis patients [38,40, 
42–44,48,51]. Systemically, thiosulfate (S2O3

2− ) mainly serves as a su
peroxide scavenger to be excreted in the urine but can also be a major 
sulfur source for sulfonation/sulfurylation pathways [42] (Fig. 1). 

Thiosulfate and sulfite are produced within the mitochondria of 
various tissues by the thiosulfate sulfurtransferase (TST) using inorganic 
sulfide anions (HS− ) and glutathione-persulfide substrates [49]. For 
thiosulfate to be produced, a sulfhydryl group is donated to glutathione 
by sulfur-donating enzymes such as the membrane-bound sulfide 
quinone oxidoreductase (SQOR). TST can then use the sulfhydryl group 
from glutathione-persulfide to produce thiosulfate using an additional 
inorganic sulfide during sulfur oxidation [49]. Thiosulfate (S = +2) can 
be excreted into the plasma and or further oxidized to sulfite (S = +4) 
for sulfate-PAPS production (Fig. 1 and 2). 

4. Inorganic sulfur species – sulfite (SO3
2¡) 

Inorganic sulfite (SO3
2− ) and sulfur dioxide (SO2) have both shown to 

cause a wide-range of allergic reactions and inflammatory symptoms at 
high concentrations [52]. While both sulfur dioxide (S = +4) and 
inorganic sulfite (S = +4) share similar sulfur oxidation states, sulfur 
dioxide has been described to exist as an aerosolized pollutant whereas 
inorganic sulfite is a dissolved ISS in human plasma [52]. Notably, mast 
cells and basophils have been reported to be sulfite-sensitive and induce 
histamine degranulation independent of calcium or IgE cross-linking 
upon exposure [53]. This means, inhalation of high concentrations of 
sulfur dioxide pollutants, ingestion of high volume sodium sulfites found 

Table 1 (continued ) 

ID GENE NAME CHROMOSOME EC COFACTOR/COENZYME TISSUE RNA EXPRESSION 
(nTPM) 

Tonsil - 45 
lymph - 40 

ENSG00000128311 TST Thiosulfate sulfurtransferase 22 2.8.1.1 Zinc (Zn2+) Liver - 560 
GI Tract - 150 
Adrenals - 150 

ENSG00000112299 VNN1 Vanin 1 6 3.5.1.92 NA Liver – 220 
Duodenum 140 
Gallbladder - 90 

ENSG00000112303 VNN2 Vanin 2 6 3.5.1.92 NA Spleen – 60 
Tonsils & Lymph nodes – 40 
Bone Marrow - 30 

ENSG00000093134 VNN3 Vanin 3 6 3.5.1.92 NA Liver – 35 
Bone Marrow - 35  

Fig. 1. 2-D molecular structure of hydroxide anion (left) and inorganic sulfur 
species (sulfide, thiosulfate, sulfite, and sulfate) at the physiological plasma pH 
of about 7.4. 
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in food additives, or dysfunctional sulfur oxidation pathways resulting 
in higher plasma sulfite concentrations may all be risk factors for 
anaphylaxis, especially in sulfite-sensitive patients (Fig. 1). 

Under physiological conditions, sulfite (S = +4) is endogenously 
produced in the mitochondria and then further oxidized to inorganic 
sulfate (SO4

2− ) (S = +6), by molybdenum-dependent sulfite oxidase 
(SOUX), which resides in the intermembrane space of the mitochondria 
[54]. Since SOUX is the rate-limiting enzyme for sulfite oxidation, single 
nucleotide polymorphisms (SNPs) or molybdenum deficiencies effecting 
enzymatic function can cause a wide range of sulfite sensitivities due to 
increased plasma sulfite (Fig. 1 and 2). 

5. Inorganic sulfate (SO4
2¡) & 3′-phosphoadenosine-5′- 

phosphosulfate (PAPS) 

In humans, inorganic sulfate is a vital ISS that is produced through 
sulfite oxidation by either molybdenum-dependent sulfite oxidase 
(SOUX) residing in the intermembrane space of the mitochondria or by 
the moonlighting functions of endothelial nitric oxide synthase (eNOS) 
[15,54,55]. Inorganic sulfate can also be consumed through diet or 
produced as a degradative product of the extracellular matrix by sulfa
tase enzymes [56–59]. 

In humans, inorganic sulfate is activated through ATP and 

magnesium-dependent PAPS synthase (PAPSS1 or PAPSS2a/b) and then 
incorporated into biomolecules such as glycoproteins, glycosaminogly
cans (GAGS), cholesterols, or even proteins in sulfonation/sulfurylation 
reactions by several sulfotransferase enzymes (SULTs/TPSTs). Inorganic 
sulfate levels in the plasma are retained by reabsorption of the filtered 
sulfate in the renal proximal tubule which requires the SLC13A1 (Solute 
Carrier Family 13 Member 1) which is a sodium-sulfate cotransporter 
(NaS1) located in the apical brush-border membrane and together with 
the SLC26A1-encoded sulfate-anion exchange transporter in the contra 
luminal basolateral membrane, allows for sulfate re-entry into blood 
circulation [60–62]. Of these two transport proteins, SLC13A1 
Na-sulfate cotransport is believed to be the rate-limiting step in plasma 
sulfate retention and loss of this transporter may deplete the circulating 
sulfate pools and negatively affect general sulfonation/sulfurylation 
capacity [60–62]. When in circulation, inorganic sulfate can be trans
ported into cells by SLC26A1 or SLC26A2 (DTDST) sulfate/chloride 
antiporters (Fig. 2) [63]. 

Upon entering the cell, inorganic sulfate is activated/adenylated 
using ATP to form adenosine phosphosulfate (APS) by ATP sulfurylase 
and then phosphorylated to form PAPS by the magnesium-dependent 
APS kinase activity [13,14]. Notably, the ATP sulfurylase and APS ki
nase activities are fused into a single polypeptide known as PAPSS which 
forms the universal sulfuryl donor. In humans there are two major 

Fig. 2. –In humans, sulfur pathways require sufficient intake of methionine along with adequate B-vitamins (B2, B3, B5, B6, B7, B9, B12), and trace elements zinc, 
nickel, molybdenum, cobalt, potassium, magnesium, iron, calcium, and sodium (Table 1) [4,6,7,19,68,71,77,174]. Methionine is essential as it can regenerate critical 
organic sulfur compounds, including the universal methyl donor s-adenosyl-L-methionine (SAM), homocysteine, cysteine, glutathione (GSH), iron-clusters (Fe–S), 
coenzyme A (CoA), hypotaurine, and taurine [4]. As a by-product of transsulfuration pathways, inorganic sulfur species (ISS) are produced. Specifically, the Cys
tathionine β-synthase (CBS), cystathionine γ-lyase (CGL), and 3-mercaptopyruvate sulfurtransferase (MST) enzymes produce endogenous H2S, mitochondrial SQOR, 
ETHE1/PDO, and TST enzymes produce SO3

2− and S2O3
2− , and mitochondrial SUOX produces endogenous SO4

2. Additionally, extracellular sulfate can also be 
transported into cells by SLC26A1 or SLC26A2 (DTDST) sulfate/chloride antiporters [63]. The oxidation of inorganic sulfur species (H2S, SO3

2− and S2O3
2− ) then 

occurs step-wise in the mitochondria where thiosulfate and GSSH are oxidized by either iron-dependent persulfide dioxygenase (PDO/ETHE1) or by thiosulfate sulfur 
transferase (TST/rhodanese) to produce sulfite (SO3

2− ) and regenerate reduced glutathione (GSH) [40,42,43,45,47,49,175]. The final and most oxidized inorganic 
sulfur species produced from sulfite (S = +4), is inorganic sulfate (SO4

2− ) (S = +6), by molybdenum-dependent sulfite oxidase (SOUX), which resides in the 
intermembrane space of the mitochondria [54]. Sulfate is readily used as a substrate for sulfonation/sulfurylation reactions after activation to 3′-phosphoadenosi
ne-5′-phosphosulfate (PAPS) by PAPS synthase [13,14]. 
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isoforms PAPSS1 and PAPSS2 with a 77% identity in amino acid 
sequence. In addition, there is a splice variant PAPSS2b which contains 
an extra five amino acid sequence GMALP [13,14]. As the rate-limiting 
enzymes in the sulfurylation pathway, PAPSS supplies the sulfuryl group 
from PAPS to several different sulfotransferase (SULT) enzymes for 
sulfonation/sulfurylation reactions [64]. Among the thousands of 
end-products in sulfonation/sulfurylation, cholesterol sulfate (Ch-S), 
complex glycosaminoglycans (GAGS), and sulfotyrosine (proteins) are 
arguably the most vital for cellular homeostasis. 

6. Organic sulfur compounds – methionine: folate-dependent 
and independent cycles 

Methionine is an essential regulator of cellular homeostasis and 

sulfur pools through its direct regeneration of universal methyl donor s- 
adenosyl-L-methionine (SAM) and homocysteine, which replenish 
cysteine concentrations during the fed-state through the trans
sulfuration pathway [4]. The magnesium-dependent methionine ade
nosyltransferase (MAT1A or MAT2A/B) produces SAM from methionine 
using ATP. SAM is the universal methyl group donor used by nearly all 
methyltransferase reactions in every cellular compartment, second only 
to ATP in the number of biological reactions that use it [65]. When the 
methyl group is transferred from SAM, the remaining molecule is 
s-adenosyl-L-homocysteine (SAH) which functions as a feedback inhib
itor of SAM-dependent methyltransferases. SAH can then be reversibly 
hydrolyzed to produce homocysteine and adenosine by the 
B3/NAD+-dependent SAH hydrolase (SAHH; AHCY) [66]. Notably, 
AHCY is the only reversible enzyme in the methionine cycle and as such 

Fig. 3. Organic sulfur compounds (OSC’s) in human metabolism described in this review.  
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is a key regulator of the SAM to SAH molar ratio, commonly referred to 
as the “methylation index” or “indicator of methylation capacity.” [67] 
When SAH and homocysteine concentrations increase faster than 
methionine regeneration, SAM utilizing enzymes are inhibited by SAH 
and the SAM concentrations then act in a feed-forward mechanism to 
allosterically activate the B6-dependent cystathionine beta-synthase 
(CBS) which metabolizes homocysteine through the transsulfuration 
pathway and allows the methionine cycle to continue [68,69]. While 
mammals assimilate methionine primarily through the diet, methionine 
is also regenerated from homocysteine by the folate cycle which utilizes 
the zinc and B12-dependent methionine synthase (MS; MTR) and or the 
zinc-dependent betaine-homocysteine S-methyltransferase (BHMT) 
with betaine (trimethylglycine; TMG) being the one-carbon donor pro
duced from choline in the mitochondria of the liver and the kidneys 
[70–72]. It has been reported that ~50% of methionine regeneration 
occurs through the folate cycle and ~50% of methionine regeneration 
occurs by zinc-dependent BHMT (Fig. 2 and 3) [71,72]. 

7. Transsulfuration – homocysteine to cysteine 

In order to maintain cellular homeostasis and cysteine concentra
tions, dietary intake of methionine is vital because it replenishes 
cysteine through the transsulfuration pathway [73]. Transsulfuration 
from homocysteine to cysteine occurs by two steps; first, through a 
condensation reaction combining homocysteine with a serine amino 
acid by the enzyme CBS, which is the rate-limiting step of the trans
sulfuration pathway [74]. Secondly, cystathionine is hydrolyzed by 
cystathionine gamma lyase (CGL; CSE) into cysteine producing alpha 
keto-butyrate and ammonia by-products. Studies have shown, SAM 
allosterically activates CBS and inhibits of methylenetetrahydrofolate 
reductase (MTHFR) increasing the irreversible reaction of homocysteine 
to cysteine [21,74–79] (Fig. 2). 

8. Organic sulfur compounds – cysteine to glutathione (GSH), 
coenzyme A, taurine etc 

While cysteine and the disulfide form cystine are relatively insoluble 
and toxic at high concentrations [80], cysteine is a crucial OSC and in
termediate in the synthesis of proteins [81], coenzyme A [82–86], 
taurine [87–90], iron-sulfur clusters [91–93], zinc-finger complex
es/metalloproteins [94,95], and glutathione (GSH or γ-gluta
myl-cysteinyl-glycine) [71,77,78,80,92,96–102]. Intracellular cysteine 
is maintained in the 80–100 μM range in most tissues except in the 
kidney, where its concentration is only ~1 mM [58]. In the mitochon
dria, cysteine can be oxidized to hypotaurine and taurine [81,103,104], 
used by cysteine desulfurase (NFS1) to generate iron–sulfur (Fe–S) 
clusters [91–93], or function in sulfhydration and persulfidation re
actions [22,23,30,105]. In the cytosol under conditions of abundant ATP 
concentrations and pantothenate (B5), cysteine is combined with B5 
through a series of reactions that utilize three ATP molecules to form 
coenzyme A [82–86] (Fig. 2). 

Under conditions of increased oxidative stress, cysteine concentra
tions are shifted toward producing glutathione (GSH; γ-glutamyl-cys
teinyl-glycine), which represents the most abundant low molecular 
weight thiol present in the human body with an intracellular concen
tration of 1–10 mM [71]. GSH is among the most important thiols in the 
human body because of its ability to scavenge free radicals and regulate 
superoxides [16,106]. Low GSH levels are associated with rheumatoid 
arthritis, Alzheimer’s, Parkinson’s, cirrhosis, human immunodeficiency 
virus (HIV), asthma, cystic fibrosis, diabetes, hemorrhagic strokes, 
atherosclerosis, and benign cancers [71]. GSH is synthesized from the 
precursor of three common amino acids; cysteine, glutamate, and 
glycine by two ATP-dependent reactions catalyzed by γ-gluta
mylcysteine synthetase (GCS; GCL) and by GSH synthetase (GSS), 
respectively [98]. While cysteine is the rate-limiting substrate in GSH 
synthesis [71,96–99,107,108], the concentration of GSH is also 

enzymatically regulated. Specifically, GSH concentrations are increased 
by upregulation of the GCS enzyme through the nuclear erythroid factor 
2-related factor 2 (NRF2) pathway and GSH concentrations are 
decreased by the γ-glutamyltranspeptidase (GGT) enzyme present on the 
external surface of certain cell types [71,77,78,96,109–111] (Table 1 
and Fig. 3). 

Most prominently, cysteine oxidation to taurine accounts for around 
50% of cysteine pool utilization in most tissues [112]. Taurine serves 
various cellular functions including osmotic pressure regulation, cellular 
membrane stabilization, calcium signaling regulation, mitochondrial 
biogenesis upregulation, neurotransmitter inhibition through weak 
binding of the GABA-a receptor, conjugation of bile salts, and as a 
radical scavenger [87,88,112–114]. The process of cysteine oxidation to 
taurine occurs by two main pathways; first, through the oxidation of 
cysteine to form cysteine sulfonic acid (CSA) by the mitochondrial 
enzyme cysteine dioxygenase (CDO), followed by the decarboxylation to 
hypotaurine by cysteine sulfonic acid decarboxylase (CSAD) and an 
oxidation to taurine by the flavin-containing monooxygenase (FMO) 
enzyme [90]. Secondly, taurine can be formed through the breakdown 
of coenzyme A [103,104] (Fig. 2, Fig. 3). 

9. Sulfur in post-translational modifications (S-PTMs) 

Among the mechanisms for cellular signaling and sensing in both 
eukaryotic and prokaryotic cells, post-translational modifications 
(PTMs) are an abundant group of mechanisms where biochemical al
terations significantly affect the diversity of protein localization, sta
bility, and function (Fig. 2). In contrast to the better-known system of 
phosphorylation/dephosphorylation, the PTM system of sulfurylation is 
relatively less understood. Upon phosphorylation the recipient molecule 
receives two negative charges, whereas the recipient molecule upon 
sulfurylation receives one negative charge. Aside from this crucial dif
ference, the bond angle, bond distance and the chemical natures are not 
very different at the macroscopic levels. Yet the charge differences alone 
can make some uniqueness to the sets of molecules that are being either 
phosphorylated or sulfurylated [115,116]. From the global analysis it is 
apparent that many eukaryotic proteins/enzymes are hormonally 
regulated by phosphorylation/dephosphorylation mechanisms, and 
small molecules (primary metabolites) are phosphorylated to keep the 
phosphorylated compounds trapped inside the cell. On the contrary, it is 
tempting to speculate that molecules that are sulfurylated are mostly 
secondary metabolites in nature and are typically directed outside of the 
cell although not exclusively. Some examples of sulfurylated macro
molecules (>10,000 Da) include proteoglycans (glycosaminoglycans), 
cholecystokinin (CCK), thyroglobulin (TG), and glycoprotein receptors 
(TSHr, LH/hCGr, FSHr) [117–119]. Some small molecules that get sul
furylated include dopamine, estrogen, pregnenolone, glycan moiety of 
high endothelial venule, and selectin proteins [119–121]. Importantly, 
the recipient amino acid residues of the proteins that are often phos
phorylated are serine, threonine and less frequently tyrosine. In 
contrast, the peptide/protein residue that is sulfurylated is only tyrosine. 
Since sulfurylated serine or threonine have not been discovered thus far 
in humans, we speculate that phosphorylation happens uniquely to 
serine/threonine residues of proteins (Venkatachalam unpublished) 
whereas tyrosine residues of peptide/proteins can be either phosphor
ylated or sulfurylated [120]. Thus, in broad terms clear evolutionary 
differences between sulfuryl versus phosphoryl transfer processes and 
their specificities must be understood for targeted therapies. 

10. Sulfotyrosine 

Of the potential post-translational modifications (PTMs) that can 
occur on a tyrosine residue, sulfurylation (R1-O-(SO3

2− )) of tyrosine is the 
most abundant PTM and is vital for the biological activity of many 
proteins directed out of the cell [122]. With a pKa near 1.5, the sulfuryl 
group of the sulfotryrosine remains fully ionized at any pH found in the 
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biological system and therefore can serve to increase the plasma solu
bility and half-life of proteins, influence binding interactions, and even 
regulate the peptide/protein activities [122]. Sulfurylation of tyrosine 
occurs in the Golgi apparatus where the pH is more acidic (pH 6.0–6.8) 
and is directed by two protein-tyrosine sulfotransferases 
(TPST1/TPST2), each with different specificities and expression pat
terns [117,119] (Fig. 2). The catalyzed reaction involves the transfer of a 
sulfuryl group from the 3′-phosphoadenosine-5′-phosphosulfate (PAPS) 
to the hydroxyl group of tyrosine residues which are surrounded by 
clusters of acidic residues, glutamate and aspartate [119,121,123]. 

11. Sulfated Glycosaminoglycans (S-GAGs) 

Sulfated Glycosaminoglycans (S-GAGs) are highly sulfated macro
molecules that are found on the surface of every cell and in the extra
cellular matrix (ECM) throughout the human body [124,125]. S-GAGs 
are a diverse class of long, linear, and heterogeneous polysaccharides 
characterized by disaccharide repeats composed of alternating units of 

uronic acid and amino-sugar, forming chains that range from 1 to 25, 
000 disaccharide units [124,125]. Heparin (HP), heparan sulfate (HS), 
dermatan sulfate (DS), chondroitin sulfate (CS), and keratan sulfate (KS) 
are all S-GAGs that play an important role in cell-cell communications, 
structural support, cell adhesion and signaling [46,124–130]. 

The biosynthesis of S-GAGs begins in the cytoplasm with the for
mation of a tetrasaccharide linkage to the core proteins, catalyzed by the 
sequential actions of four glycosyltransferases, which adds one xylose, 
two galactose, and one glucuronic acid residues (Xyl-gal-gal-glucA). 
These blocks are then transported into the Golgi lumen through a 
transmembrane antiporter, where the polymerization and sulfurylation 
of HP, HS, DS, CS, and KS occurs followed by anterograde vesicle 
transport to the outer cell membrane [110,111,124,125,129,131]. The 
sulfurylation of HP and HS typically occurs at positions 2, 3, and 6 of the 
glucuronic or iduronic acids. The sulfurylation of DS and CS typically 
occur at positions 4 and 6 of the N-acetylgalactosamine (GalNAc) resi
dues. Lastly, sulfurylation of KS occurs at position 6 of both the N-ace
tylglucosamine and galactose [122,124]. 

Table 2 
The dominant human gut microbial phyla are Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia, with the two phyla Bacter
oidetes and Firmicutes representing 90% of gut microbiota [137]. It is estimated that the gut microbiome contains 39 trillion microbial cells compared to 37 trillion 
human cells [138]. Additional enzyme information was obtained from KEGG pathways.  

PHYLUM SUMMARY COMMON BACTERIA BACTERIAL SULFUR REDUCING ENZYMES 

Bacteroides Gram Negative (− ) 
Anaerobic 
Rod-shaped 

Alistipes (− ) Rod 
Bacteroides cellulosilyticus(− ) Rod 
Bacteroides dorei(− ) Rod 
Bacteroides fragilis(− ) Rod 
Bacteroides ovatus(− ) Rod 
Bacteroides vulgatus(− ) Rod 
Bacteroides xylanisolvens(− ) Rod 
Faecalibacterium prausnitzii(− ) Rod 
Oscillibacter (− ) Rod 
Parabacteroides(− ) Rod 
Porphyromonas gingivalis(− ) Rod 
Prevotella (− ) Rod 

3-mercaptopyruvate sulfurtransferase (3-MST; sseA) 
PAPS Reductase (PAPSR/CysH) 
Desulfhydrase enzymes 
Sulfite Reductase (CysJ/CysI; SIR) 
O-acetylserine(thiol)lyas (OASS) enzymes. 
ArylSulfatases 
Cystathionine-gamma-synthase (metB) 
Cystathionine-gamma-lyase (mccB) 
Cystiene synthase (cysK, cysM) 
Desulfurylases (dcyD, malY, metC) 
Cysteine desulfhydrases (dcyD/CDS, CdsH, LCD/DES1) 
Methionine Gamma Lyase (MGL) 
GlycoSulfatase 

Firmicutes Gram Positive (+) 
Aerobic/Anaerobic/Facultative 
Rod/Coccus-shaped 

Bacillus anthrax (+) Rod 
Staphylococcus (+) Coccus 
Streptococcus (+) Coccus 
Clostridium difficile(+) Rod 
Clostridium perfinges(+) Rod 
Clostridium tetanus(+) Rod 
Lactobacillus(+) Rod 
Roseburia(+) Rod 
Fusobacterium (− ) Spindle rod 
Eubacteria (+) Rod 
Haemophilis influenzae(− ) Rod 
Listeria(+) Rod 

3-mercaptopyruvate sulfurtransferase (3-MST; sseA) 
PAPS Reductase (PAPSR/CysH) 
Desulfhydrase enzymes 
Sulfite Reductase (CysJ/CysI; SIR) 
O-acetylserine(thiol)lyas (OASS) enzymes. 
ArylSulfatase 
Cystathionine-gamma-synthase (metB) 
Cystathionine-gamma-lyase (mccB) 
Cystiene synthase (cysK, cysM) 
Desulfurylases (dcyD, malY, metC) 
Cysteine desulfhydrases (dcyD/CDS, CdsH, LCD/DES1) 
Methionine Gamma Lyase (MGL) 

Proteobacteria Gram Negative (− ) 
Anaerobic/Facultative 
Rod-shaped 

Desulfovibrio (− ) Rod 
Corynebacterium diphtheria(+) Rod 
Escherichia Coli(− ) Rod 
Klebsiella(− ) Rod 
Proteus (− ) Rod 
Salmonella (− ) Rod 
Shigella (− ) Rod 
Vibrio cholerae(− ) Rod 
Campylobacter jejuni(− ) Spiral rod 
Helicobacter pylori(− ) Spiral rod 

3-mercaptopyruvate sulfurtransferase (3-MST; sseA) 
PAPS Reductase (PAPSR/CysH) 
Desulfhydrase enzymes 
Sulfite Reductase (CysJ/CysI; SIR) 
O-acetylserine(thiol)lyas (OASS) enzymes. 
ArylSulfatases 
Cystathionine-gamma-synthase (metB) 
Cystathionine-gamma-lyase (mccB) 
Cystiene synthase (cysK, cysM) 
Desulfurylases (dcyD, malY, metC) 
Cysteine desulfhydrases (dcyD/CDS, CdsH, LCD/DES1) 
Methionine Gamma Lyase (MGL) 
GlycoSulfatase 

Actinomycetota (Actinobacteria) Gram Positive (+) 
Aerobic/Anaerobic 
Rod/Coccus/Branching 

Mycobacterium Leprae (+) Rod 
Mycobacterium Tuberculosis(+) Rod 
Nocardia (+) Rod 
Rhodococcus (+) Coccus/Branching 
Streptomyces (+) Coccus/Branching 
Actinomyces(+) Branching rod 
Bifidobacterium (+) Branching rod 
Collinsella (+) Cocci/Branching 

3-mercaptopyruvate sulfurtransferase (3-MST; sseA) 
PAPS Reductase (PAPSR/CysH) 
Desulfhydrase enzymes 
Sulfite Reductase (CysJ/CysI; SIR) 
O-acetylserine(thiol)lyas (OASS) enzymes. 
ArylSulfatases 
Cystathionine-gamma-synthase (metB) 
Cystathionine-gamma-lyase (mccB) 
Cystiene synthase (cysK, cysM) 
Desulfurylases (dcyD, malY, metC) 
Cysteine desulfhydrases (dcyD/CDS, CdsH, LCD/DES1) 
Methionine Gamma Lyase (MGL)  
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Inversely, the degradation of the S-GAGs occurs both extracellularly 
and within the lysosomes [124]. Within the lysosomes, acid hydrolases 
degrade S-GAGs by the sequential removal of monosaccharides followed 
by the removal of the sulfur groups; sulfonate/sulfamate groups 
(R–NH–SO3

2-) and sulfuryl/sulfate groups (R-O-SO3
2-) [110,111,131]. If 

any of the 12 enzymes participating in S-GAG degradation malfunctions, 
the lysosomal accumulation of the substrates result in disorders known 
as mucopolysaccharidoses (MPS) [57,110,111,131]. Overall, S-GAGs 
are essential in providing structural support and negative charge to cells, 
and are particularly abundant in the cardiovascular endothelium and 
the glycocalyx, a protective barrier for epithelial cells in the gut [125, 
132] (Fig. 2). 

12. Sulfur homeostasis in the gut microbiome and crosstalk 

The human gut is home to a diverse community of microorganisms, 
including bacteria, viruses, fungi, and protozoa. It is estimated that the 
gut microbiome contains tens of thousands of different species of mi
croorganisms, with the majority being bacteria [11,133–136] (Table 2). 
The dominant gut microbial phyla are Bacteroidetes, Firmicutes, Actino
bacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia, with the two 
phyla Bacteroidetes and Firmicutes representing 90% of gut microbiota 
[137]. Bacteroidetes consists of a diverse group of bacteria, the pre
dominant genera being Bacteroides and Prevotella. Firmicutes also con
sists of a diverse group of bacteria, the predominant genera being 
Clostridium, Staphylococcus, Lactobacillus, and Bacillus [137]. The Acti
nobacteriaphylum is proportionally less abundant and mainly repre
sented by the Bifidobacterium genus. Overall, it is estimated that the gut 
microbiome contains 39 trillion microbial cells compared to 37 trillion 
human cells [138]. 

In general, microbiota found in a healthy human gut form colonies 
and biofilms on the mucus layers of the host intestinal tissues which is 
spatially segregated and maintained by the secretion of thrombin from 
the epithelium [139]. In homeostasis, the mucus layers and thrombin 
keep the biofilms at bay, through proteolytic degradation of its 
matrix-associated proteins [139]. In the small intestine, antimicrobial 
peptides, IgA, IL-33, IL-10 and transforming growth factor-β (TGFβ), as 
well as cells such as CD103+ dendritic cells and regulatory T-cells are 
produced to also maintain gut homeostasis while the large intestine 
relies on a thick continuous mucus layer to compartmentalize the 
microbiome [32,140–144]. It is worth noting that bacterial composition 
and colonization is dynamic, not only diverse between individuals, but 
also in a single individual as trillions of microorganisms are constantly 
exposed to gut-environment changes (pH, temperature, etc.), 
diet-choices by the host, and other microbes. Among the diversity of the 
trillions of microorganisms, there are numerous metabolic processes 
that allow microbes to utilize elements and metabolites. Apart from 
sulfur, nitrogen, carbon, and phosphorus are heavily involved in the 
metabolic flux and contribute to the complexity of the overall 
gut-microbiome metabolism and its homeostasis. 

Due to the dynamic complexity of the gut-microbiome, the mecha
nisms by which bacteria interact with the human host is complex and 
multifaceted. Some major mechanisms by which bacteria interact with 
the human host is through fermenting and producing metabolites such 
as short-chain fatty acids, like acetate, propionate, and butyrate, as well 
as more complex metabolites such as the hormones serotonin (5-HT) 
[145,146], cholecystokinin (CCK), gastric inhibitory peptide (GIP) and 
glucagon-like peptide 1 (GLP-1) [147], and various vitamins [147]. The 
metabolites can then affect the human host through direct metabolite 
PTM or indirect metabolic pathways, including chromatin regulation 
[10,148–150], chemical regulation of the gut–brain axis [16,135], and 
contributions to the immunomodulatory functions of the host [143, 
144]. 

Among the various metabolites and necessary elements, sulfur plays 
a crucial role in shaping the overall composition and contributions of the 
gut microbiome. Studies have reported that in healthy humans, 

concentrations of H2S were highest in the colon and commonly ranged 
from 0.3 to 3.4 mM [151–154]. Low physiological H2S levels exert 
anti-inflammatory benefits, stabilize mucus layers in the gut, prevent 
fragmentation and adherence of the microbiota biofilm to the epithe
lium, inhibit the release of invasive pathogens, and help resolve 
inflammation and tissue injury [19,27,28,35,153,155,156]. In contrast, 
at excessive concentrations in the gut, H2S can cause mucus disruption, 
inflammation, and can then diffuse into the bloodstream where it has 
been reported to enter red blood cells and bind hemoglobin (Hb), 
methemoglobin (metHb), and glutathione disrupting systemic redox 
homeostasis, oxygen utilization, and free radical scavenging [157,158]. 

While oxygen is the final electron acceptor in oxidative phosphory
lation for human metabolism, many microbes utilize ISS or OSC’s rather 
than oxygen as electron acceptors for energy producing pathways. 
Sulfur-reducing bacteria (SRBs) such as those residing in the human gut, 
for example, rely on metabolizing OSCs through assimilatory pathways 
and ISS through dissimilatory pathways for energy which require sulfur 
species to be electron acceptors and produce H2S or reduced sulfur 
species as final products [9–11]. Two key enzymes able to complete the 
final step of sulfite reduction ubiquitous among microbes are the 
dissimilatory sulfite reductase (Dsr) and anaerobic sulfite reductase 
(Asr) enzymes [113]. While studies have mainly focused on bacteria 
harboring Dsr enzymes, Asr may be a more important contributor of 
sulfate reduction in the human gut [113]. 

Cowley et al. describes the diversity and distribution of sulfur en
zymes within the gut microbiome with great detail [113]. Although the 
assimilatory metabolism of OSC’s like methionine by methionine 
gamma lyase (mgl) and 3′-phosphoadenosine 5′-phosphate by PAPS 
Reductase (PAPSR), and sulfite by sulfite reductase (SIR) are common 
within the microbiome, cysteine-metabolizing enzymes are by far the 
most expressed and highly conserved genes across nearly all microbiota 
residing in the human gut-microbiome [113]. Genes associated with 
cysteine metabolism include cysteine synthase (cysK, cysM), cysteine 
desulfurase (iscS, sufS), cystathionine-γ-synthase (metB), desulfur
yalases (dcyD, malY, metC, and mgl) as well as the three human 
orthologs cystathionine-β-synthase (CBS), cystathionine-γ-lyase 
(CSE/mccB), and 3-mercaptopyruvate sulfurtransferase (3MST) [113]. 
Additionally, cysteine desulfhydrase (dcyD/CDS, CdsH, LCD/DES1) are 
enzymes that produces H2S from cysteine and have been described in 
diverse intestinal pathogens such as Salmonella typhi [80,159], Myco
bacterium tuberculosis, [31,80,159] Helicobacter pylori [160], and the 
protozoan Leishmania major, [161] as well as various oral microorgan
isms, including Streptococcus, Prevotella, and Fusobacterium [109,159, 
161–167]. 

In addition to cysteine metabolizing enzymes, arylsulfatases, glyco
sulfatases, and O-acetyl-L-serine sulfhydrylase (OASS) are enzymes that 
produce reduced sulfur products. Arylsulfatases are involved in the 
degradation of sulfated compounds and have been purified from Clos
tridium perfringens [57,58]. Glycosulfatase enzymes are also involved in 
the degradation of sulfated compounds and have been described pri
marily in the intestinal Prevotella and Bacteroides fragilis and have also 
been identified in the stomach Helicobacter pylori [160]. Conversely, the 
prevalent O-acetyl-L-serine sulfhydrylase (OASS) and homocysteine 
synthase mediate the microbial synthesis of cysteine from O-ace
tyl-L-serine and sulfide in bacteria and archaea [168]. 

The detailed mechanisms of the cross-talk between the gut micro
biome and the human host are complex, dynamic, and still to be fully 
determined. While the mutually beneficial relationship of the host 
provides an environment and nutrients for the bacteria to thrive, the 
bacteria contribute to various aspects of human health. The functional 
contributions of the gut microbiome to host health are immense [8,12, 
16,135]. To name a few, microbiota maintain gut-barrier function in the 
mucus layers of the GI tract [139,153,169–173], support gut motility 
[145,148], secrete hormones like serotonin (5-HT) [145,146], chole
cystokinin (CCK), gastric inhibitory peptide (GIP) and glucagon-like 
peptide 1 (GLP-1) [147], regulate chromatin [10,148–150], contribute 
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to the gut–brain axis [16,135], and contribute to immunomodulatory 
functions of the host [143,144] (Table 2). 

13. Conclusion 

Sulfur pools in the human body are vast and include both inorganic 
sulfur species (ISS) as well as critical organic sulfur-containing com
pounds (OSCs). Endogenously produced ISS includes hydrogen sulfide 
(H2S), sulfite (SO3

2− ), thiosulfate (S2O3
2− ), and sulfate (SO4

2− ). Endoge
nous OSCs include methionine, cysteine, universal methyl donor s- 
adenosyl-L-methionine (SAM), homocysteine, cystathionine, cysteine, 
glutathione (GSH), coenzyme A (CoA), hypotaurine, taurine, and others 
[4]. Through this review, we have explored the systemic effects of sulfur 
in biochemical pathways, including mechanisms of regulation by 
post-translational modifications, and explored the role of the gut 
microbiome in human sulfur metabolism. While this review has 
attempted to be thorough, the growing body of literature on the inter
connectedness of sulfur pathways and crosstalk with gut microbiota, as 
well as, human brain sulfurylation are vast warranting further investi
gation and an up to date review. In future studies, we feel it is important 
to characterize rate-limiting enzymes including MTHFR, CBS, GCL, 
PAPSS, eNOS, SUOX, SQOR, and others within the sulfur pathways as 
they have implications for human health and disease. By investigating 
specific rate-limiting enzymes and sulfur pathway variations, we can 
begin to create pharmacological agents to treat associated diseases. 
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