Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jun 30;79(Pt 7):669–673. doi: 10.1107/S2056989023005182

Crystal structure and Hirshfeld surface analysis of bis­{(Z)-N′-[(E)-(furan-2-yl)methyl­idene]carbamo­hydrazono­thio­ato}nickel(II) methanol disolvate

Asmet N Azizova a, Gunay Z Mammadova b, Sevim Türktekin Çelikesir c, Mehmet Akkurt c, Ajaya Bhattarai d,*
Editor: J Reibenspiese
PMCID: PMC10439423  PMID: 37601570

In the title complex, the NiII atom is coordinated by the S and N atoms of two N′-[(Z)-(furan-2-yl)methyl­idene]carbamohydrazono­thioic acid ligands in a distorted square-planar geometry.

Keywords: crystal structure, ligands, distorted square-planar geometry, hydrogen bonds, Hirshfeld surface analysis

Abstract

In the title complex, [Ni(C6H6N3OS)2]·2CH3OH, the NiII atom is coordinated by the S and N atoms of two N′-[(Z)-(furan-2-yl)methyl­idene]carbamohydrazono­thioic acid ligands in a distorted square-planar geometry. The two mutual ligands bound to NiII are also connected by C—H⋯S inter­actions, while the H atoms of the NH2 group of the ligands form R 4 4(8) motifs with the O atoms of the solvent ethyl alcohol mol­ecules. At the same time, the OH groups of the solvent ethyl alcohol mol­ecules form parallel layers to the (011) plane by the O—H⋯N inter­actions with the ligand N atom that is not bonded to the NiII atom.. The layers are connected by van der Waals inter­actions. A Hirshfeld surface analysis indicates that the most important contacts are H⋯H (37.7%), C⋯H/H⋯C (14.6%), O⋯H/H⋯O (11.5%) and S⋯H/H⋯S (10.6%).

1. Chemical context

Hydrazones have been used extensively as substrates in organic synthesis (Polyanskii et al., 2019; Shikhaliyev et al., 2019; Safavora et al., 2019; Zubkov et al., 2018) and multidentate ligands (Gurbanov et al., 2020a ,b ; Gurbanov et al., 2022) while their complexes have been found to possess a wide variety of useful properties. Thus, they can be used as sensor or analytical reagents, catalysts and building blocks in crystal engineering (Ma et al., 2021; Mahmudov et al., 2010; Mahmoudi et al., 2017a ,b ). Not only because of their coordination ability, but also the attached substituents, the inter­molecular non-covalent inter­actions direct the functional properties as well as the supra­molecular chemistry of hydrazones (Abdelhamid et al., 2011; Khalilov et al., 2021; Kopylovich et al., 2011; Mahmudov et al., 2015;). In fact, hydrogen and chalcogen bonds and other types of weak inter­actions have been well employed in the decoration of the secondary coordination sphere of transition-metal complexes (Mahmoudi et al., 2019; Mahmudov et al., 2012, 2022). We have synthesized a new NiII complex of a (E)-2-(furan-2-yl­methyl­ene)hydrazine-1-carbo­thio­amide ligand and studied its crystal structure.

2. Structural commentary

Fig. 1 shows the arrangement of the complex mol­ecules in the unit cell. The NiII atom is coordinated by the S and N atoms of two N′-[(Z)-(furan-2-yl)methyl­idene]carbamohydrazono­thioic acid ligands in a distorted square-planar geometry. The ligands assume a trans arrangement with respect to each other around the NiII ion, which lies on a crystallographic inversion centre at (−x + 1, −y, −z + 1). The Ni—S [2.1818 (6) Å] and Ni—N [1.9055 (17) Å] bond lengths lie within the range of those found in related structures. 2.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the two mutual ligands bound to NiII are also linked by C—H⋯S inter­actions, while the H atoms of the NH2 group of the ligands form Inline graphic (8) motifs (Bernstein et al., 1995; Tables 1 and 2; Fig. 2) with the O atoms of the solvent ethyl alcohol mol­ecules. At the same time, the OH groups of the solvent ethyl alcohol mol­ecules form parallel layers to the (011) plane by the O—H⋯N inter­actions with the ligand N atom that is not bonded to the NiII atom (Figs. 2, 3 and 4). These layers are connected by van der Waals inter­actions.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N2 0.90 1.94 2.788 (3) 156
N3—H3A⋯O2i 0.90 2.07 2.964 (3) 173
N3—H3B⋯O2ii 0.90 2.12 3.009 (3) 171
C5—H5⋯S1iii 0.93 2.51 3.102 (3) 121

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
S1⋯C5 3.55 −1 + x, y, z
H2⋯O1 2.78 2 − x, 1 − y, 1 − z
N2⋯H2O 1.94 x, y, z
H3B⋯O2 2.12 −1 + x, y, z
H3A⋯O2 2.07 1 − x, 1 − y, 1 − z
C1⋯C1 3.51 1 − x, 1 − y, 1 − z
H3B⋯H3A 2.55 x, 1 − y, −z
H7C⋯H7C 2.38 2 − x, −y, −z

Figure 2.

Figure 2

A view along the a axis of the crystal packing of the title compound. The O—H⋯N, N—H⋯O and C—H⋯S hydrogen bonds are shown as dashed lines.

Figure 3.

Figure 3

A view along the b axis of the crystal packing of the title compound, with hydrogen bonds indicated by dashed lines.

Figure 4.

Figure 4

A view along the c axis of the crystal packing of the title compound, with hydrogen bonds indicated by dashed lines.

A Hirshfeld surface analysis was carried out using CrystalExplorer 17.5 (Spackman et al., 2021) to analyse the inter­molecular inter­actions. The three-dimensional Hirshfeld surface mapped over the normalized contact distance (d norm) is shown in Fig. 5. The bright-red spots indicate shortened contacts, and correspond to the O—H⋯N and N—H⋯O inter­molecular hydrogen bonds.

Figure 5.

Figure 5

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d norm.

The two-dimensional fingerprint plots show the H⋯H (Fig. 6 b; 37.7%) contacts to be the most common, followed by C⋯H/H⋯C (Fig. 6 c; 14.6%), O⋯H/H⋯O (Fig. 6 d; 11.5%) and S⋯H/H⋯S (Fig. 6 e; 10.6%) contacts. The N⋯H/H⋯N (8.5%), O⋯C/C⋯O (4.9%), Ni⋯H/H⋯Ni (3.2%), O⋯N/N⋯O (2.2%), N⋯C/C⋯N (1.9%), C⋯C (1.8%), S⋯C/C⋯S (1.1%), S⋯S (0.7%), O⋯O (0.7%),S⋯O/O⋯S (0.5%) and Ni⋯C/C⋯Ni (0.2%) contacts have little directional influence on the mol­ecular packing.

Figure 6.

Figure 6

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) S⋯H/H⋯S inter­actions. [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (ConQUEST version 2022 3.0; Groom et al., 2016) for one of the Ni atoms plus ligands in the title compound yielded 14 structures that have the same framework as the title compound. FUTRAN (Puranik et al., 1987) appears to be the same structure, without any solvent, and NOQCUS (Rodríguez-Argüelles et al., 2009) is the same with a dimethyl sulfoxide solvent mol­ecule; the other 12 have alkyl or phenyl groups attached.

In the crystal of FUTRAN, Ni II is in the distorted square planar ligand field of the N2S2 chromophore. The thio­semicarbazonato group is planar with Ni—S = 2.149 (1) Å and Ni—N(2) = 1.921 (2) Å. The coordination around Ni is trans planar with respect to the two S and two N atoms. The furan ring plane is at an angle of 3(1)° to the coordination plane. In the crystal of NOQCUS, the coordination environment around the nickel(II) ion is totally planar, as the NiN2S2 chromophore lies on its least-squares calculated plane and the four angles formed by the metal centre with the four donor atoms add up to exactly 360°. The Ni—N and Ni—S distances are within the usual range. This plane forms a 18° angle with the uncoordinated furan ring, which is also highly planar.

5. Synthesis and crystallization

17 mg (0.1 mmol) of (E)-2-(furan-2-yl­methyl­ene)hydrazine-1-carbo­thio­amide were dissolved in 30 mL of methanol then 13 mg (0.05 mmol) of Ni(OOCCH3)2·4H2O were added. The reaction mixture was kept in air at room temperature for slow evaporation. After ca 2–3 d, orange crystals, suitable for X-ray analysis, were formed.

Yield 81%, soluble in DMSO, ethanol and di­methyl­formamide and insoluble in non-polar solvents. Elemental analysis: C14H20N6NiO4S2 (M = 459.17); C 36.61 (calc. 36.62); H 4.35 (4.39); N 18.26 (18.30) %. IR (KBr): 3372 ν(OH), 2965 and 2854 ν(NH), 1643 ν(C=N) cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined using a riding model with U iso(H) = 1.2 or 1.5U eq(C). O- and N-bound H atoms were located in difference Fourier maps [O2—H2O = 0.90 Å, N3—H3A = 0.90 Å, N3—H3B = 0.90 Å] and refined with U iso(H) = 1.2U eq(N) and 1.5U eq(O), with their positions fixed. Two reflections (001) and (010), affected by the beam stop, were omitted in the final cycles of refinement.

Table 3. Experimental details.

Crystal data
Chemical formula [Ni(C6H6N3OS)2]·2CH4O
M r 459.19
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 6.5394 (11), 8.9611 (15), 10.2020 (15)
α, β, γ (°) 67.965 (5), 79.666 (6), 70.349 (6)
V3) 520.92 (15)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.16
Crystal size (mm) 0.26 × 0.21 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.735, 0.861
No. of measured, independent and observed [I > 2σ(I)] reflections 8497, 2134, 1633
R int 0.046
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.088, 1.04
No. of reflections 2134
No. of parameters 125
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.21

Computer programs: APEX4 (Bruker, 2008), SAINT (Bruker, 2008), SHELXT2016/6 (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b , ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023005182/jy2031sup1.cif

e-79-00669-sup1.cif (261.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023005182/jy2031Isup2.hkl

e-79-00669-Isup2.hkl (171.2KB, hkl)

CCDC reference: 2269284

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author’s contributions are as follows. Conceptualization, MA and AB; synthesis, ANA and GZM; X-ray analysis, ANA, GZM, STÇ and MA; writing (review and editing of the manuscript) STÇ, MA and AB; funding acquisition, ANA and GZM; supervision, MA and AB.

supplementary crystallographic information

Crystal data

[Ni(C6H6N3OS)2]·2CH4O Z = 1
Mr = 459.19 F(000) = 238
Triclinic, P1 Dx = 1.464 Mg m3
a = 6.5394 (11) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.9611 (15) Å Cell parameters from 2724 reflections
c = 10.2020 (15) Å θ = 2.7–26.4°
α = 67.965 (5)° µ = 1.16 mm1
β = 79.666 (6)° T = 296 K
γ = 70.349 (6)° Prism, orange
V = 520.92 (15) Å3 0.26 × 0.21 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer 1633 reflections with I > 2σ(I)
φ and ω scans Rint = 0.046
Absorption correction: multi-scan (SADABS; Bruker, 2008) θmax = 26.4°, θmin = 3.3°
Tmin = 0.735, Tmax = 0.861 h = −8→8
8497 measured reflections k = −11→11
2134 independent reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0459P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2134 reflections Δρmax = 0.25 e Å3
125 parameters Δρmin = −0.21 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.500000 0.000000 0.500000 0.03949 (16)
S1 0.21552 (9) 0.08780 (8) 0.37725 (6) 0.0544 (2)
O1 0.8206 (3) 0.4874 (2) 0.41926 (18) 0.0592 (5)
O2 0.7620 (3) 0.3261 (2) 0.05737 (16) 0.0534 (4)
H2O 0.634939 0.350050 0.108389 0.080*
N1 0.5375 (3) 0.2167 (2) 0.39689 (17) 0.0403 (4)
N2 0.4320 (3) 0.3178 (2) 0.27263 (18) 0.0428 (4)
N3 0.1595 (3) 0.3562 (2) 0.1429 (2) 0.0558 (6)
H3A 0.195718 0.448305 0.083360 0.067*
H3B 0.032648 0.349515 0.126510 0.067*
C1 0.6747 (4) 0.4539 (3) 0.3592 (2) 0.0446 (5)
C2 0.8207 (5) 0.6480 (3) 0.3424 (3) 0.0688 (8)
H2 0.905332 0.703098 0.359617 0.083*
C3 0.6847 (5) 0.7162 (3) 0.2396 (3) 0.0679 (8)
H3 0.658018 0.824589 0.173586 0.082*
C4 0.5872 (4) 0.5926 (3) 0.2494 (3) 0.0544 (6)
H4 0.483563 0.604491 0.191646 0.065*
C5 0.6538 (3) 0.2881 (3) 0.4311 (2) 0.0440 (5)
H5 0.732223 0.223902 0.511529 0.053*
C6 0.2750 (3) 0.2665 (3) 0.2568 (2) 0.0415 (5)
C7 0.8122 (6) 0.1616 (4) 0.0563 (3) 0.0883 (10)
H7A 0.683980 0.143664 0.039468 0.132*
H7B 0.864640 0.082516 0.146089 0.132*
H7C 0.922412 0.146101 −0.017494 0.132*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0337 (2) 0.0371 (3) 0.0388 (2) −0.01571 (17) −0.00740 (15) 0.00392 (17)
S1 0.0428 (3) 0.0477 (4) 0.0586 (4) −0.0248 (3) −0.0200 (3) 0.0150 (3)
O1 0.0688 (12) 0.0533 (11) 0.0615 (11) −0.0308 (9) −0.0191 (8) −0.0081 (8)
O2 0.0559 (10) 0.0439 (10) 0.0575 (10) −0.0225 (8) 0.0064 (8) −0.0116 (7)
N1 0.0346 (9) 0.0423 (10) 0.0352 (9) −0.0157 (8) −0.0070 (7) 0.0024 (8)
N2 0.0419 (10) 0.0435 (11) 0.0368 (10) −0.0213 (8) −0.0095 (8) 0.0040 (8)
N3 0.0505 (12) 0.0567 (13) 0.0511 (11) −0.0293 (10) −0.0223 (9) 0.0121 (10)
C1 0.0482 (13) 0.0444 (13) 0.0435 (12) −0.0202 (10) −0.0031 (10) −0.0114 (11)
C2 0.087 (2) 0.0537 (17) 0.078 (2) −0.0385 (15) −0.0121 (16) −0.0171 (15)
C3 0.095 (2) 0.0426 (15) 0.0671 (18) −0.0308 (15) −0.0135 (16) −0.0068 (13)
C4 0.0675 (16) 0.0402 (14) 0.0540 (15) −0.0191 (12) −0.0152 (12) −0.0063 (12)
C5 0.0457 (12) 0.0435 (13) 0.0366 (12) −0.0171 (10) −0.0090 (9) −0.0005 (10)
C6 0.0350 (11) 0.0408 (12) 0.0391 (12) −0.0152 (9) −0.0050 (9) 0.0017 (10)
C7 0.101 (3) 0.0552 (19) 0.111 (3) −0.0192 (17) −0.003 (2) −0.0358 (19)

Geometric parameters (Å, º)

Ni1—N1 1.9055 (17) N3—H3A 0.8997
Ni1—N1i 1.9055 (17) N3—H3B 0.9000
Ni1—S1 2.1818 (6) C1—C4 1.354 (3)
Ni1—S1i 2.1818 (6) C1—C5 1.431 (3)
S1—C6 1.731 (2) C2—C3 1.323 (4)
O1—C2 1.357 (3) C2—H2 0.9300
O1—C1 1.384 (3) C3—C4 1.419 (3)
O2—C7 1.402 (3) C3—H3 0.9300
O2—H2O 0.9032 C4—H4 0.9300
N1—C5 1.305 (3) C5—H5 0.9300
N1—N2 1.391 (2) C7—H7A 0.9600
N2—C6 1.313 (3) C7—H7B 0.9600
N3—C6 1.332 (3) C7—H7C 0.9600
N1—Ni1—N1i 180.0 C3—C2—H2 124.4
N1—Ni1—S1 85.69 (5) O1—C2—H2 124.4
N1i—Ni1—S1 94.31 (5) C2—C3—C4 107.0 (2)
N1—Ni1—S1i 94.31 (5) C2—C3—H3 126.5
N1i—Ni1—S1i 85.69 (5) C4—C3—H3 126.5
S1—Ni1—S1i 180.0 C1—C4—C3 106.5 (2)
C6—S1—Ni1 95.83 (7) C1—C4—H4 126.7
C2—O1—C1 106.13 (18) C3—C4—H4 126.7
C7—O2—H2O 109.2 N1—C5—C1 127.45 (19)
C5—N1—N2 112.86 (16) N1—C5—H5 116.3
C5—N1—Ni1 126.69 (14) C1—C5—H5 116.3
N2—N1—Ni1 120.44 (13) N2—C6—N3 117.99 (17)
C6—N2—N1 112.74 (15) N2—C6—S1 122.47 (15)
C6—N3—H3A 116.5 N3—C6—S1 119.54 (16)
C6—N3—H3B 127.8 O2—C7—H7A 109.5
H3A—N3—H3B 114.4 O2—C7—H7B 109.5
C4—C1—O1 109.12 (19) H7A—C7—H7B 109.5
C4—C1—C5 138.1 (2) O2—C7—H7C 109.5
O1—C1—C5 112.71 (19) H7A—C7—H7C 109.5
C3—C2—O1 111.2 (2) H7B—C7—H7C 109.5
C5—N1—N2—C6 −163.93 (19) N2—N1—C5—C1 2.4 (3)
Ni1—N1—N2—C6 15.0 (2) Ni1—N1—C5—C1 −176.40 (17)
C2—O1—C1—C4 −0.7 (3) C4—C1—C5—N1 5.6 (5)
C2—O1—C1—C5 −179.0 (2) O1—C1—C5—N1 −176.8 (2)
C1—O1—C2—C3 0.3 (3) N1—N2—C6—N3 178.56 (19)
O1—C2—C3—C4 0.2 (3) N1—N2—C6—S1 −1.8 (3)
O1—C1—C4—C3 0.8 (3) Ni1—S1—C6—N2 −8.9 (2)
C5—C1—C4—C3 178.5 (3) Ni1—S1—C6—N3 170.73 (18)
C2—C3—C4—C1 −0.6 (3)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2O···N2 0.90 1.94 2.788 (3) 156
N3—H3A···O2ii 0.90 2.07 2.964 (3) 173
N3—H3B···O2iii 0.90 2.12 3.009 (3) 171
C4—H4···N2 0.93 2.51 2.882 (3) 104
C5—H5···S1i 0.93 2.51 3.102 (3) 121

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z; (iii) x−1, y, z.

Funding Statement

This work was supported partially by Azerbaijan Medical University and Baku State University.

References

  1. Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2008). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  7. Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031. [DOI] [PubMed]
  8. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  9. Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.
  10. Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773.
  11. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
  12. Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.
  13. Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
  14. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.
  15. Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.
  16. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.
  17. Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.
  18. Mahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979–25987.
  19. Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769–779. [DOI] [PMC free article] [PubMed]
  20. Puranik, V. G., Tavale, S. S., Guru Row, T. N., Umapathy, P. & Budhkar, A. P. (1987). Acta Cryst. C43, 2303–2304.
  21. Rodríguez-Argüelles, M. C., Tourón-Touceda, P., Cao, R., García-Deibe, A. M., Pelagatti, P., Pelizzi, C. & Zani, F. (2009). J. Inorg. Biochem. 103, 35–42. [DOI] [PubMed]
  22. Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.
  23. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  24. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  25. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  26. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  27. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  28. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023005182/jy2031sup1.cif

e-79-00669-sup1.cif (261.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023005182/jy2031Isup2.hkl

e-79-00669-Isup2.hkl (171.2KB, hkl)

CCDC reference: 2269284

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES