In the title complex, the NiII atom is coordinated by the S and N atoms of two N′-[(Z)-(furan-2-yl)methylidene]carbamohydrazonothioic acid ligands in a distorted square-planar geometry.
Keywords: crystal structure, ligands, distorted square-planar geometry, hydrogen bonds, Hirshfeld surface analysis
Abstract
In the title complex, [Ni(C6H6N3OS)2]·2CH3OH, the NiII atom is coordinated by the S and N atoms of two N′-[(Z)-(furan-2-yl)methylidene]carbamohydrazonothioic acid ligands in a distorted square-planar geometry. The two mutual ligands bound to NiII are also connected by C—H⋯S interactions, while the H atoms of the NH2 group of the ligands form R 4 4(8) motifs with the O atoms of the solvent ethyl alcohol molecules. At the same time, the OH groups of the solvent ethyl alcohol molecules form parallel layers to the (011) plane by the O—H⋯N interactions with the ligand N atom that is not bonded to the NiII atom.. The layers are connected by van der Waals interactions. A Hirshfeld surface analysis indicates that the most important contacts are H⋯H (37.7%), C⋯H/H⋯C (14.6%), O⋯H/H⋯O (11.5%) and S⋯H/H⋯S (10.6%).
1. Chemical context
Hydrazones have been used extensively as substrates in organic synthesis (Polyanskii et al., 2019 ▸; Shikhaliyev et al., 2019 ▸; Safavora et al., 2019 ▸; Zubkov et al., 2018 ▸) and multidentate ligands (Gurbanov et al., 2020a ▸,b ▸; Gurbanov et al., 2022 ▸) while their complexes have been found to possess a wide variety of useful properties. Thus, they can be used as sensor or analytical reagents, catalysts and building blocks in crystal engineering (Ma et al., 2021 ▸; Mahmudov et al., 2010 ▸; Mahmoudi et al., 2017a ▸,b ▸). Not only because of their coordination ability, but also the attached substituents, the intermolecular non-covalent interactions direct the functional properties as well as the supramolecular chemistry of hydrazones (Abdelhamid et al., 2011 ▸; Khalilov et al., 2021 ▸; Kopylovich et al., 2011 ▸; Mahmudov et al., 2015 ▸;). In fact, hydrogen and chalcogen bonds and other types of weak interactions have been well employed in the decoration of the secondary coordination sphere of transition-metal complexes (Mahmoudi et al., 2019 ▸; Mahmudov et al., 2012 ▸, 2022 ▸). We have synthesized a new NiII complex of a (E)-2-(furan-2-ylmethylene)hydrazine-1-carbothioamide ligand and studied its crystal structure.
2. Structural commentary
Fig. 1 ▸ shows the arrangement of the complex molecules in the unit cell. The NiII atom is coordinated by the S and N atoms of two N′-[(Z)-(furan-2-yl)methylidene]carbamohydrazonothioic acid ligands in a distorted square-planar geometry. The ligands assume a trans arrangement with respect to each other around the NiII ion, which lies on a crystallographic inversion centre at (−x + 1, −y, −z + 1). The Ni—S [2.1818 (6) Å] and Ni—N [1.9055 (17) Å] bond lengths lie within the range of those found in related structures.
Figure 1.
The molecular structure of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the two mutual ligands bound to NiII are also linked by C—H⋯S interactions, while the H atoms of the NH2 group of the ligands form
(8) motifs (Bernstein et al., 1995 ▸; Tables 1 ▸ and 2 ▸; Fig. 2 ▸) with the O atoms of the solvent ethyl alcohol molecules. At the same time, the OH groups of the solvent ethyl alcohol molecules form parallel layers to the (011) plane by the O—H⋯N interactions with the ligand N atom that is not bonded to the NiII atom (Figs. 2 ▸, 3 ▸ and 4 ▸). These layers are connected by van der Waals interactions.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O2—H2O⋯N2 | 0.90 | 1.94 | 2.788 (3) | 156 |
| N3—H3A⋯O2i | 0.90 | 2.07 | 2.964 (3) | 173 |
| N3—H3B⋯O2ii | 0.90 | 2.12 | 3.009 (3) | 171 |
| C5—H5⋯S1iii | 0.93 | 2.51 | 3.102 (3) | 121 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Table 2. Summary of short interatomic contacts (Å) in the title compound.
| Contact | Distance | Symmetry operation |
|---|---|---|
| S1⋯C5 | 3.55 | −1 + x, y, z |
| H2⋯O1 | 2.78 | 2 − x, 1 − y, 1 − z |
| N2⋯H2O | 1.94 | x, y, z |
| H3B⋯O2 | 2.12 | −1 + x, y, z |
| H3A⋯O2 | 2.07 | 1 − x, 1 − y, 1 − z |
| C1⋯C1 | 3.51 | 1 − x, 1 − y, 1 − z |
| H3B⋯H3A | 2.55 | −x, 1 − y, −z |
| H7C⋯H7C | 2.38 | 2 − x, −y, −z |
Figure 2.
A view along the a axis of the crystal packing of the title compound. The O—H⋯N, N—H⋯O and C—H⋯S hydrogen bonds are shown as dashed lines.
Figure 3.
A view along the b axis of the crystal packing of the title compound, with hydrogen bonds indicated by dashed lines.
Figure 4.
A view along the c axis of the crystal packing of the title compound, with hydrogen bonds indicated by dashed lines.
A Hirshfeld surface analysis was carried out using CrystalExplorer 17.5 (Spackman et al., 2021 ▸) to analyse the intermolecular interactions. The three-dimensional Hirshfeld surface mapped over the normalized contact distance (d norm) is shown in Fig. 5 ▸. The bright-red spots indicate shortened contacts, and correspond to the O—H⋯N and N—H⋯O intermolecular hydrogen bonds.
Figure 5.
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d norm.
The two-dimensional fingerprint plots show the H⋯H (Fig. 6 ▸ b; 37.7%) contacts to be the most common, followed by C⋯H/H⋯C (Fig. 6 ▸ c; 14.6%), O⋯H/H⋯O (Fig. 6 ▸ d; 11.5%) and S⋯H/H⋯S (Fig. 6 ▸ e; 10.6%) contacts. The N⋯H/H⋯N (8.5%), O⋯C/C⋯O (4.9%), Ni⋯H/H⋯Ni (3.2%), O⋯N/N⋯O (2.2%), N⋯C/C⋯N (1.9%), C⋯C (1.8%), S⋯C/C⋯S (1.1%), S⋯S (0.7%), O⋯O (0.7%),S⋯O/O⋯S (0.5%) and Ni⋯C/C⋯Ni (0.2%) contacts have little directional influence on the molecular packing.
Figure 6.
The two-dimensional fingerprint plots of the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) S⋯H/H⋯S interactions. [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].
4. Database survey
A search of the Cambridge Structural Database (ConQUEST version 2022 3.0; Groom et al., 2016 ▸) for one of the Ni atoms plus ligands in the title compound yielded 14 structures that have the same framework as the title compound. FUTRAN (Puranik et al., 1987 ▸) appears to be the same structure, without any solvent, and NOQCUS (Rodríguez-Argüelles et al., 2009 ▸) is the same with a dimethyl sulfoxide solvent molecule; the other 12 have alkyl or phenyl groups attached.
In the crystal of FUTRAN, Ni II is in the distorted square planar ligand field of the N2S2 chromophore. The thiosemicarbazonato group is planar with Ni—S = 2.149 (1) Å and Ni—N(2) = 1.921 (2) Å. The coordination around Ni is trans planar with respect to the two S and two N atoms. The furan ring plane is at an angle of 3(1)° to the coordination plane. In the crystal of NOQCUS, the coordination environment around the nickel(II) ion is totally planar, as the NiN2S2 chromophore lies on its least-squares calculated plane and the four angles formed by the metal centre with the four donor atoms add up to exactly 360°. The Ni—N and Ni—S distances are within the usual range. This plane forms a 18° angle with the uncoordinated furan ring, which is also highly planar.
5. Synthesis and crystallization
17 mg (0.1 mmol) of (E)-2-(furan-2-ylmethylene)hydrazine-1-carbothioamide were dissolved in 30 mL of methanol then 13 mg (0.05 mmol) of Ni(OOCCH3)2·4H2O were added. The reaction mixture was kept in air at room temperature for slow evaporation. After ca 2–3 d, orange crystals, suitable for X-ray analysis, were formed.
Yield 81%, soluble in DMSO, ethanol and dimethylformamide and insoluble in non-polar solvents. Elemental analysis: C14H20N6NiO4S2 (M = 459.17); C 36.61 (calc. 36.62); H 4.35 (4.39); N 18.26 (18.30) %. IR (KBr): 3372 ν(OH), 2965 and 2854 ν(NH), 1643 ν(C=N) cm−1.
6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. C-bound H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined using a riding model with U iso(H) = 1.2 or 1.5U eq(C). O- and N-bound H atoms were located in difference Fourier maps [O2—H2O = 0.90 Å, N3—H3A = 0.90 Å, N3—H3B = 0.90 Å] and refined with U iso(H) = 1.2U eq(N) and 1.5U eq(O), with their positions fixed. Two reflections (001) and (010), affected by the beam stop, were omitted in the final cycles of refinement.
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | [Ni(C6H6N3OS)2]·2CH4O |
| M r | 459.19 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 296 |
| a, b, c (Å) | 6.5394 (11), 8.9611 (15), 10.2020 (15) |
| α, β, γ (°) | 67.965 (5), 79.666 (6), 70.349 (6) |
| V (Å3) | 520.92 (15) |
| Z | 1 |
| Radiation type | Mo Kα |
| μ (mm−1) | 1.16 |
| Crystal size (mm) | 0.26 × 0.21 × 0.12 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2008 ▸) |
| T min, T max | 0.735, 0.861 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 8497, 2134, 1633 |
| R int | 0.046 |
| (sin θ/λ)max (Å−1) | 0.626 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.032, 0.088, 1.04 |
| No. of reflections | 2134 |
| No. of parameters | 125 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.25, −0.21 |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023005182/jy2031sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023005182/jy2031Isup2.hkl
CCDC reference: 2269284
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The author’s contributions are as follows. Conceptualization, MA and AB; synthesis, ANA and GZM; X-ray analysis, ANA, GZM, STÇ and MA; writing (review and editing of the manuscript) STÇ, MA and AB; funding acquisition, ANA and GZM; supervision, MA and AB.
supplementary crystallographic information
Crystal data
| [Ni(C6H6N3OS)2]·2CH4O | Z = 1 |
| Mr = 459.19 | F(000) = 238 |
| Triclinic, P1 | Dx = 1.464 Mg m−3 |
| a = 6.5394 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 8.9611 (15) Å | Cell parameters from 2724 reflections |
| c = 10.2020 (15) Å | θ = 2.7–26.4° |
| α = 67.965 (5)° | µ = 1.16 mm−1 |
| β = 79.666 (6)° | T = 296 K |
| γ = 70.349 (6)° | Prism, orange |
| V = 520.92 (15) Å3 | 0.26 × 0.21 × 0.12 mm |
Data collection
| Bruker APEXII CCD diffractometer | 1633 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.046 |
| Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 26.4°, θmin = 3.3° |
| Tmin = 0.735, Tmax = 0.861 | h = −8→8 |
| 8497 measured reflections | k = −11→11 |
| 2134 independent reflections | l = −12→12 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
| wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0459P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 1.03 | (Δ/σ)max < 0.001 |
| 2134 reflections | Δρmax = 0.25 e Å−3 |
| 125 parameters | Δρmin = −0.21 e Å−3 |
| 0 restraints |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Ni1 | 0.500000 | 0.000000 | 0.500000 | 0.03949 (16) | |
| S1 | 0.21552 (9) | 0.08780 (8) | 0.37725 (6) | 0.0544 (2) | |
| O1 | 0.8206 (3) | 0.4874 (2) | 0.41926 (18) | 0.0592 (5) | |
| O2 | 0.7620 (3) | 0.3261 (2) | 0.05737 (16) | 0.0534 (4) | |
| H2O | 0.634939 | 0.350050 | 0.108389 | 0.080* | |
| N1 | 0.5375 (3) | 0.2167 (2) | 0.39689 (17) | 0.0403 (4) | |
| N2 | 0.4320 (3) | 0.3178 (2) | 0.27263 (18) | 0.0428 (4) | |
| N3 | 0.1595 (3) | 0.3562 (2) | 0.1429 (2) | 0.0558 (6) | |
| H3A | 0.195718 | 0.448305 | 0.083360 | 0.067* | |
| H3B | 0.032648 | 0.349515 | 0.126510 | 0.067* | |
| C1 | 0.6747 (4) | 0.4539 (3) | 0.3592 (2) | 0.0446 (5) | |
| C2 | 0.8207 (5) | 0.6480 (3) | 0.3424 (3) | 0.0688 (8) | |
| H2 | 0.905332 | 0.703098 | 0.359617 | 0.083* | |
| C3 | 0.6847 (5) | 0.7162 (3) | 0.2396 (3) | 0.0679 (8) | |
| H3 | 0.658018 | 0.824589 | 0.173586 | 0.082* | |
| C4 | 0.5872 (4) | 0.5926 (3) | 0.2494 (3) | 0.0544 (6) | |
| H4 | 0.483563 | 0.604491 | 0.191646 | 0.065* | |
| C5 | 0.6538 (3) | 0.2881 (3) | 0.4311 (2) | 0.0440 (5) | |
| H5 | 0.732223 | 0.223902 | 0.511529 | 0.053* | |
| C6 | 0.2750 (3) | 0.2665 (3) | 0.2568 (2) | 0.0415 (5) | |
| C7 | 0.8122 (6) | 0.1616 (4) | 0.0563 (3) | 0.0883 (10) | |
| H7A | 0.683980 | 0.143664 | 0.039468 | 0.132* | |
| H7B | 0.864640 | 0.082516 | 0.146089 | 0.132* | |
| H7C | 0.922412 | 0.146101 | −0.017494 | 0.132* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Ni1 | 0.0337 (2) | 0.0371 (3) | 0.0388 (2) | −0.01571 (17) | −0.00740 (15) | 0.00392 (17) |
| S1 | 0.0428 (3) | 0.0477 (4) | 0.0586 (4) | −0.0248 (3) | −0.0200 (3) | 0.0150 (3) |
| O1 | 0.0688 (12) | 0.0533 (11) | 0.0615 (11) | −0.0308 (9) | −0.0191 (8) | −0.0081 (8) |
| O2 | 0.0559 (10) | 0.0439 (10) | 0.0575 (10) | −0.0225 (8) | 0.0064 (8) | −0.0116 (7) |
| N1 | 0.0346 (9) | 0.0423 (10) | 0.0352 (9) | −0.0157 (8) | −0.0070 (7) | 0.0024 (8) |
| N2 | 0.0419 (10) | 0.0435 (11) | 0.0368 (10) | −0.0213 (8) | −0.0095 (8) | 0.0040 (8) |
| N3 | 0.0505 (12) | 0.0567 (13) | 0.0511 (11) | −0.0293 (10) | −0.0223 (9) | 0.0121 (10) |
| C1 | 0.0482 (13) | 0.0444 (13) | 0.0435 (12) | −0.0202 (10) | −0.0031 (10) | −0.0114 (11) |
| C2 | 0.087 (2) | 0.0537 (17) | 0.078 (2) | −0.0385 (15) | −0.0121 (16) | −0.0171 (15) |
| C3 | 0.095 (2) | 0.0426 (15) | 0.0671 (18) | −0.0308 (15) | −0.0135 (16) | −0.0068 (13) |
| C4 | 0.0675 (16) | 0.0402 (14) | 0.0540 (15) | −0.0191 (12) | −0.0152 (12) | −0.0063 (12) |
| C5 | 0.0457 (12) | 0.0435 (13) | 0.0366 (12) | −0.0171 (10) | −0.0090 (9) | −0.0005 (10) |
| C6 | 0.0350 (11) | 0.0408 (12) | 0.0391 (12) | −0.0152 (9) | −0.0050 (9) | 0.0017 (10) |
| C7 | 0.101 (3) | 0.0552 (19) | 0.111 (3) | −0.0192 (17) | −0.003 (2) | −0.0358 (19) |
Geometric parameters (Å, º)
| Ni1—N1 | 1.9055 (17) | N3—H3A | 0.8997 |
| Ni1—N1i | 1.9055 (17) | N3—H3B | 0.9000 |
| Ni1—S1 | 2.1818 (6) | C1—C4 | 1.354 (3) |
| Ni1—S1i | 2.1818 (6) | C1—C5 | 1.431 (3) |
| S1—C6 | 1.731 (2) | C2—C3 | 1.323 (4) |
| O1—C2 | 1.357 (3) | C2—H2 | 0.9300 |
| O1—C1 | 1.384 (3) | C3—C4 | 1.419 (3) |
| O2—C7 | 1.402 (3) | C3—H3 | 0.9300 |
| O2—H2O | 0.9032 | C4—H4 | 0.9300 |
| N1—C5 | 1.305 (3) | C5—H5 | 0.9300 |
| N1—N2 | 1.391 (2) | C7—H7A | 0.9600 |
| N2—C6 | 1.313 (3) | C7—H7B | 0.9600 |
| N3—C6 | 1.332 (3) | C7—H7C | 0.9600 |
| N1—Ni1—N1i | 180.0 | C3—C2—H2 | 124.4 |
| N1—Ni1—S1 | 85.69 (5) | O1—C2—H2 | 124.4 |
| N1i—Ni1—S1 | 94.31 (5) | C2—C3—C4 | 107.0 (2) |
| N1—Ni1—S1i | 94.31 (5) | C2—C3—H3 | 126.5 |
| N1i—Ni1—S1i | 85.69 (5) | C4—C3—H3 | 126.5 |
| S1—Ni1—S1i | 180.0 | C1—C4—C3 | 106.5 (2) |
| C6—S1—Ni1 | 95.83 (7) | C1—C4—H4 | 126.7 |
| C2—O1—C1 | 106.13 (18) | C3—C4—H4 | 126.7 |
| C7—O2—H2O | 109.2 | N1—C5—C1 | 127.45 (19) |
| C5—N1—N2 | 112.86 (16) | N1—C5—H5 | 116.3 |
| C5—N1—Ni1 | 126.69 (14) | C1—C5—H5 | 116.3 |
| N2—N1—Ni1 | 120.44 (13) | N2—C6—N3 | 117.99 (17) |
| C6—N2—N1 | 112.74 (15) | N2—C6—S1 | 122.47 (15) |
| C6—N3—H3A | 116.5 | N3—C6—S1 | 119.54 (16) |
| C6—N3—H3B | 127.8 | O2—C7—H7A | 109.5 |
| H3A—N3—H3B | 114.4 | O2—C7—H7B | 109.5 |
| C4—C1—O1 | 109.12 (19) | H7A—C7—H7B | 109.5 |
| C4—C1—C5 | 138.1 (2) | O2—C7—H7C | 109.5 |
| O1—C1—C5 | 112.71 (19) | H7A—C7—H7C | 109.5 |
| C3—C2—O1 | 111.2 (2) | H7B—C7—H7C | 109.5 |
| C5—N1—N2—C6 | −163.93 (19) | N2—N1—C5—C1 | 2.4 (3) |
| Ni1—N1—N2—C6 | 15.0 (2) | Ni1—N1—C5—C1 | −176.40 (17) |
| C2—O1—C1—C4 | −0.7 (3) | C4—C1—C5—N1 | 5.6 (5) |
| C2—O1—C1—C5 | −179.0 (2) | O1—C1—C5—N1 | −176.8 (2) |
| C1—O1—C2—C3 | 0.3 (3) | N1—N2—C6—N3 | 178.56 (19) |
| O1—C2—C3—C4 | 0.2 (3) | N1—N2—C6—S1 | −1.8 (3) |
| O1—C1—C4—C3 | 0.8 (3) | Ni1—S1—C6—N2 | −8.9 (2) |
| C5—C1—C4—C3 | 178.5 (3) | Ni1—S1—C6—N3 | 170.73 (18) |
| C2—C3—C4—C1 | −0.6 (3) |
Symmetry code: (i) −x+1, −y, −z+1.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—H2O···N2 | 0.90 | 1.94 | 2.788 (3) | 156 |
| N3—H3A···O2ii | 0.90 | 2.07 | 2.964 (3) | 173 |
| N3—H3B···O2iii | 0.90 | 2.12 | 3.009 (3) | 171 |
| C4—H4···N2 | 0.93 | 2.51 | 2.882 (3) | 104 |
| C5—H5···S1i | 0.93 | 2.51 | 3.102 (3) | 121 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z; (iii) x−1, y, z.
Funding Statement
This work was supported partially by Azerbaijan Medical University and Baku State University.
References
- Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. [DOI] [PMC free article] [PubMed]
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2008). APEX4, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
- Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031. [DOI] [PubMed]
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
- Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.
- Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
- Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.
- Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
- Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.
- Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.
- Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.
- Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.
- Mahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979–25987.
- Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769–779. [DOI] [PMC free article] [PubMed]
- Puranik, V. G., Tavale, S. S., Guru Row, T. N., Umapathy, P. & Budhkar, A. P. (1987). Acta Cryst. C43, 2303–2304.
- Rodríguez-Argüelles, M. C., Tourón-Touceda, P., Cao, R., García-Deibe, A. M., Pelagatti, P., Pelizzi, C. & Zani, F. (2009). J. Inorg. Biochem. 103, 35–42. [DOI] [PubMed]
- Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023005182/jy2031sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023005182/jy2031Isup2.hkl
CCDC reference: 2269284
Additional supporting information: crystallographic information; 3D view; checkCIF report






