Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jun 30;79(Pt 7):678–681. doi: 10.1107/S2056989023005480

Crystallographic and spectroscopic characterization of two 1-phenyl-1H-imidazoles: 4-(1H-imidazol-1-yl)benzaldehyde and 1-(4-meth­oxy­phen­yl)-1H-imidazole

Isobelle F McClements a, Clara R Wiesler a, Joseph M Tanski a,*
Editor: J Reibenspiesb
PMCID: PMC10439435  PMID: 37601580

Two 1-phenyl-1H-imidazoles, 4-(1H-imidazol-1-yl)benzaldehyde and 1-(4-meth­oxy­phen­yl)-1H-imidazole, differ in the substituent para to the imidazole group on the arene ring. Both mol­ecules pack with different motifs via similar weak C—H⋯N/O inter­actions and differ with respect to the angles between the mean planes of the imidazole and arene rings.

Keywords: crystal structure, 1-phenyl-1H-imidazole derivatives, weak inter­molecular inter­actions, non-centrosymmetric space group

Abstract

The title compounds, C10H8N2O, (I), and C10H10N2O, (II), are two 1-phenyl-1H-imidazole derivatives, which differ in the substituent para to the imidazole group on the arene ring, i.e. a benzaldehyde, (I), and an anisole, (II). Both mol­ecules pack with different motifs via similar weak C—H⋯N/O inter­actions and differ with respect to the angles between the mean planes of the imidazole and arene rings [24.58 (7)° in (I) and 43.67 (4)° in (II)].

1. Chemical context

N-Aryl­ated imidazoles are commonly found in the structures of an array of biologically active compounds (Ananthu et al., 2021). They have a variety of applications in the medicinal chemistry field, such as use in anti­cancer and anti-inflammatory medications and as anti­viral agents (Shalini et al., 2010). They are also used in agriculture as fungicides, herbicides, and plant-growth regulators (Emel’yanenko et al., 2017). 4-(1H-Imidazol-1-yl)benzaldehyde, (I), may be synthesized in high yield by treating 4-bromo­benzaldehyde with imidazole in an aprotic solvent with the addition of potassium carbonate and a copper(I) catalyst (Xi et al., 2008). The yellow solid is a common reagent in the synthesis of various targets with anti­fungal and anti­bacterial activity. It has been shown that (I) could be used to synthesize a series of 3-[4-(1H-imidazol-1-yl)phen­yl]prop-2-en-1-ones with anti­fungal, antioxidant, and anti­leishmanial activities (Hussain et al., 2009). Cream-colored 1-(4-meth­oxy­phen­yl)-1H-imidazole, (II), and other similar compounds have been found to work as catalysts in the catalytic epoxidation of olefins with moderate to good yields using mild reaction conditions (Schröder et al., 2009). Compound (II) can be synthesized in a 99% isolated yield by allowing imidazole and 4-iodo­anisole to react in aceto­nitrile in the presence of cesium carbonate and a copper(II) catalyst (Milenković et al., 2019). 1.

2. Structural commentary

The mol­ecular structures of the benzaldehyde derivative (I) (Fig. 1) and the anisole derivative (II) (Fig. 2) show the para nature of the substituent with respect to the imidazole group. The angle between the mean planes of the imidazole and arene rings is 24.58 (7)° in (I) and 43.67 (4)° in (II).

Figure 1.

Figure 1

A view of 4-(1H-imidazol-1-yl)benzaldehyde, (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

A view of 1-(4-meth­oxy­phen­yl)-1H-imidazole, (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The mol­ecules of benzaldehyde derivative (I) are held together in the solid state via weak C—H⋯O/N inter­actions (Fig. 3 and Table 1). Specifically, imidazole C—H groups inter­act with neighboring benzaldehyde O atoms (C8—H8A⋯O1i) and imidazole N atoms (C10—H10A⋯N2ii). The mol­ecules also stack with an offset face-to-face geometrical arrangement of the arene rings, with an inter­molecular centroid-to-centroid distance of 3.7749 (2) Å, a plane-to-centroid distance of 3.5002 (10) Å, and a ring shift of 1.414 (3) Å. Fig. 3 displays a di-periodic sheet with a thickness roughly equivalent to the length of the c axis, where the imidazoles inter­act in the inter­ior and the aldehyde substituents extend to the faces. The sheets then stack in the [001] direction. Notably, (I) crystallizes in the space group P21 and is therefore a polar material in the solid state. Polar organic materials formed by achiral mol­ecules are of inter­est in crystal engineering, in particular for nonlinear optical materials (Merritt & Tanski, 2018).

Figure 3.

Figure 3

A view of the mol­ecular packing in 4-(1H-imidazol-1-yl)benzaldehyde, (I). [Symmetry codes: (i) x − 1, y − 1, z; (ii) −x + 1, y +  Inline graphic , −z + 1.]

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.95 2.51 3.458 (2) 176
C10—H10A⋯N2ii 0.95 2.51 3.449 (2) 173

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Similarly, the mol­ecules of anisole derivative (II) are held together in the solid state via weak C—H⋯O/N inter­actions (Fig. 4 and Table 2), with the same imidazole C—H groups as (I) inter­acting with a neighboring anisole O atom (C9—H9A⋯O1ii) and an imidazole N atom (C10—H10A⋯N2iii). A third weak inter­action links the remaining imidazole H atom with the imidazole N atom (C8—H8A⋯N2i). Unlike benzaldehyde derivative (I), anisole derivative (II) does not exhibit any π-stacking geometrical arrangement of the arene rings and the mol­ecules pack centrosymmetrically (Fig. 5).

Figure 4.

Figure 4

A view of the inter­molecular inter­actions in 1-(4-meth­oxy­phen­yl)-1H-imidazole, (II). [Symmetry codes: (i) x, −y +  Inline graphic , z +  Inline graphic ; (ii) x − 1, −y +  Inline graphic , z −  Inline graphic ; (iii) −x + 1, −y + 1, −z.]

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯N2i 0.95 2.55 3.4391 (11) 157
C9—H9A⋯O1ii 0.95 2.56 3.3048 (11) 136
C10—H10A⋯N2iii 0.95 2.52 3.3004 (11) 140

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 5.

Figure 5

A view of the mol­ecular packing in 1-(4-meth­oxy­phen­yl)-1H-imidazole, (II).

4. Database survey

The Cambridge Structural Database (CSD; Groom et al., 2016) contains six simple para-X-substituted 1-phenyl-1H-imidazole derivatives: X = –NH2 (CSD refcode MUFCAS; Liang et al., 2009), –Br (PAJDUD; Ding et al., 2021), –I (FIQFUJ; Bejan et al., 2018), –CO2H (IKAWAT; Zheng et al., 2011), –CO2CH3 (BEMVUN; Khattri et al., 2016) and –COCH3 (XECDUG; Ibrahim et al., 2012). The amino and carb­oxy­lic acid derivatives engage in inter­molecular hydrogen bonding with the imidazole N atom and exhibit angles between the mean planes of the imidazole and arene rings of 31.17 (MUFCAS) and 14.51° (IKAWAT). The halide derivatives both contain halide to imidazole nitro­gen inter­molecular con­tacts and angles between the mean planes of the imidazole and arene rings of 35.22 (PAJDUD) and 27.10° (FIQFUJ). Similar to the title compounds (I) and (II), the methyl ester and methyl ketone derivatives pack via weak C—H⋯N/O inter­actions and with angles between the mean planes of the imidazole and arene rings of 24.83 (BEMVUN) and 1.04° (XECDUG). In XECDUG, a mol­ecule of water hydrogen bonds to the 1H-imidazole H and ortho-phenyl H of a neighboring mol­ecule, holding the planes of the imidazole and arene rings nearly coplanar. Inspection of the bond lengths of the imidazole ring for all eight derivatives reveals that they are remarkably similar.

5. Synthesis and crystallization

4-(1H-Imidazol-1-yl)benzaldehyde (98%), (I), and 1-(4-meth­oxy­phen­yl)-1H-imidazole (98%), (II), were purchased from Aldrich Chemical Company, USA, and were used as received.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms on C atoms were included in calculated positions and refined using a riding model, with C—H = 0.95 Å and U iso(H) = 1.2U eq(C) for aryl H atoms, and C—H = 0.98 Å and U iso(H) = 1.5U eq(C) for methyl H atoms.

Table 3. Experimental details.

Experiments were carried out at 125 K using a Bruker APEXII CCD diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2016). Refinement was on 119 parameters. H-atom parameters were constrained.

  (I) (II)
Crystal data
Chemical formula C10H8N2O C10H10N2O
M r 172.18 174.20
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c
a, b, c (Å) 3.7749 (2), 7.3711 (5), 14.4524 (9) 8.5663 (12), 11.2143 (16), 9.1635 (13)
β (°) 91.096 (2) 94.448 (2)
V3) 402.07 (4) 877.6 (2)
Z 2 4
Radiation type Cu Kα Mo Kα
μ (mm−1) 0.77 0.09
Crystal size (mm) 0.37 × 0.20 × 0.05 0.40 × 0.25 × 0.15
 
Data collection
T min, T max 0.80, 0.96 0.92, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 5673, 1482, 1466 21397, 2678, 2332
R int 0.029 0.031
(sin θ/λ)max−1) 0.615 0.715
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.079, 1.14 0.040, 0.119, 1.04
No. of reflections 1482 2678
No. of restraints 1 0
Δρmax, Δρmin (e Å−3) 0.19, −0.15 0.35, −0.29
Absolute structure Flack x determined using 652 quotients [(I +) − (I )]/[(I +) + (I )] (Parsons et al., 2013); Hooft y = 0.11(6) calculated with OLEX2 (Dolomanov et al., 2009)
Absolute structure parameter 0.09 (7)

Computer programs: APEX3 and SAINT (Bruker, 2013), SHELXT2018 (Sheldrick, 2015a ), SHELXL2017 (Sheldrick, 2015b ), SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), and Mercury (Macrae et al., 2020).

7. Analytical data

7.1. 4-(1H-Imidazol-1-yl)benzaldehyde, (I)

1H NMR (Bruker Avance III HD 400 MHz, CDCl3): δ 7.26 (m, 1H, Cimid H), 7.39 (m, 1H, Cimid H), 7.60 (d, 2H, Car­yl H, J = 8.6 Hz), 7.99 (s, 1H, Cimid H), 8.03 (d, 2H, Car­yl H, J = 8.6 Hz), 10.05 [s, 1H, C(O)H]. 13C NMR (13C{1H}, 100.6 MHz, CDCl3): δ 117.54 (C imidH), 120.97 (C ar­ylH), 131.23 (C imidH), 131.48 (C ar­ylH), 134.84 (C ar­yl), 135.28 (C imidH), 141.60 (C ar­yl), 190.48 [C(O)H]. IR (Thermo Nicolet iS50, ATR, cm−1): 3138 (w, Car­yl—H str), 3109 (m, Car­yl—H str), 2818 and 2746 (m, =C—H aldehyde Fermi doublet str), 1676 (s, C=O str), 1604 (s, arom. C=C str), 1519 (s, arom. C=C str), 1481 (s, arom. C=C str), 1439 (m), 1400 (s), 1375 (s), 1310 (s), 1268 (s), 1220 (s), 1171 (s), 1120 (m), 1105 (m), 1059 (s), 971 (m), 959 (s), 902 (w), 830 (s), 752 (s), 692 (m), 752 (s), 692 (m), 648 (s), 617 (m), 530 (m), 513 (s), 447 (m), 413 (m). GC–MS (Agilent Technologies 7890A GC/5975C MS): M + = 172 amu.

7.2. 1-(4-Meth­oxy­phen­yl)-1H-imidazole, (II)

1H NMR (Bruker Avance III HD 400 MHz, CDCl3): δ 3.85 (s, 3H, OCH 3), 6.98 (d, 2H, Car­yl H, J = 8.9 Hz), 7.20 (m, 2H, Cimid H), 7.30 (d, 2H, Car­yl H, J = 8.9 Hz), 7.78 (m, 1H, Cimid H). 13C NMR (13C{1H}, 100.6 MHz, CDCl3): δ 55.56 (OCH3), 114.87 (C ar­ylH), 118.83 (C imidH), 123.19 (C ar­ylH), 129.97 (C ar­yl), 130.68 (C imidH), 135.89 (C imidH), 158.92 (C ar­yl). IR (Thermo Nicolet iS50, ATR, cm−1): 3128 (m, Car­yl—H str), 3107 (m, Car­yl—H str), 2961 (w, Calk­yl—H str), 2918 (w, Calk­yl—H str), 2838 (m, Calk­yl—H str), 2052 (w), 1877 (w), 1634 (w), 1610 (m), 1591 (w), 1517 (s, arom. C=C str), 1471 (s, arom. C=C str), 1459 (m), 1447 (w), 1332 (m), 1321 (s), 1302 (m), 1267 (s), 1256 (s), 1241 (s), 1192 (s), 1173 (m), 1109 (s), 1100 (s), 1061 (s), 1029 (s), 961 (m), 910 (m), 873 (w), 840 (s), 823 (s), 798 (s), 780 (s), 762 (s), 664 (s), 649 (s), 614 (m), 539 (s), 490 (m), 434 (w). GC–MS (Agilent Technologies 7890A GC/5975C MS): M + = 174 amu.

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989023005480/jy2032sup1.cif

e-79-00678-sup1.cif (819.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023005480/jy2032Isup2.hkl

e-79-00678-Isup2.hkl (119.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023005480/jy2032IIsup3.hkl

e-79-00678-IIsup3.hkl (214.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023005480/jy2032Isup4.cml

Supporting information file. DOI: 10.1107/S2056989023005480/jy2032IIsup5.cml

CCDC references: 2267421, 2267419

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Vassar College. X-ray facilities were provided by the U.S. National Science Foundation.

supplementary crystallographic information

4-(1H-Imidazol-1-yl)benzaldehyde (I) . Crystal data

C10H8N2O F(000) = 180
Mr = 172.18 Dx = 1.422 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
a = 3.7749 (2) Å Cell parameters from 5426 reflections
b = 7.3711 (5) Å θ = 3.1–71.6°
c = 14.4524 (9) Å µ = 0.77 mm1
β = 91.096 (2)° T = 125 K
V = 402.07 (4) Å3 Plate, clear colourless
Z = 2 0.37 × 0.20 × 0.05 mm

4-(1H-Imidazol-1-yl)benzaldehyde (I) . Data collection

Bruker APEXII CCD diffractometer 1482 independent reflections
Radiation source: Cu IuS micro-focus source 1466 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1 Rint = 0.029
φ and ω scans θmax = 71.6°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −4→4
Tmin = 0.80, Tmax = 0.96 k = −8→7
5673 measured reflections l = −17→16

4-(1H-Imidazol-1-yl)benzaldehyde (I) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.0471P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079 (Δ/σ)max < 0.001
S = 1.14 Δρmax = 0.19 e Å3
1482 reflections Δρmin = −0.15 e Å3
119 parameters Extinction correction: SHELXL2017 (Sheldrick, 2015b)
1 restraint Extinction coefficient: 0.021 (6)
Primary atom site location: dual Absolute structure: Flack x determined using 652 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013); Hooft y = 0.11(6) calculated with OLEX2 (Dolomanov et al., 2009).
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.09 (7)

4-(1H-Imidazol-1-yl)benzaldehyde (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-(1H-Imidazol-1-yl)benzaldehyde (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.8970 (4) 0.9617 (2) 0.09534 (10) 0.0289 (4)
N1 0.3041 (4) 0.2861 (2) 0.33233 (10) 0.0166 (4)
N2 0.2148 (4) 0.1490 (2) 0.46723 (11) 0.0222 (4)
C1 0.8366 (5) 0.8021 (3) 0.07934 (13) 0.0230 (4)
H1A 0.889378 0.758391 0.019326 0.028*
C2 0.6890 (5) 0.6719 (3) 0.14516 (12) 0.0185 (4)
C3 0.6418 (5) 0.4920 (3) 0.11753 (13) 0.0203 (4)
H3A 0.698927 0.4571 0.056322 0.024*
C4 0.5120 (5) 0.3631 (3) 0.17851 (12) 0.0192 (4)
H4A 0.480518 0.240754 0.159434 0.023*
C5 0.4286 (4) 0.4165 (3) 0.26824 (12) 0.0169 (4)
C6 0.4704 (4) 0.5971 (3) 0.29652 (12) 0.0183 (4)
H6A 0.409116 0.632564 0.357352 0.022*
C7 0.6015 (5) 0.7236 (3) 0.23531 (13) 0.0199 (4)
H7A 0.632366 0.846022 0.254394 0.024*
C8 0.1451 (4) 0.1207 (3) 0.31214 (12) 0.0191 (4)
H8A 0.086412 0.073743 0.25258 0.023*
C9 0.0906 (5) 0.0395 (3) 0.39529 (13) 0.0212 (4)
H9A −0.017271 −0.075833 0.403072 0.025*
C10 0.3399 (5) 0.2943 (3) 0.42704 (13) 0.0204 (4)
H10A 0.443164 0.393702 0.45957 0.025*

4-(1H-Imidazol-1-yl)benzaldehyde (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0395 (9) 0.0225 (9) 0.0249 (7) −0.0053 (6) 0.0026 (6) 0.0022 (6)
N1 0.0195 (7) 0.0148 (9) 0.0154 (7) 0.0001 (6) −0.0004 (5) 0.0002 (6)
N2 0.0268 (8) 0.0210 (10) 0.0188 (7) −0.0002 (6) 0.0009 (6) 0.0014 (6)
C1 0.0245 (9) 0.0236 (12) 0.0209 (9) −0.0008 (8) −0.0004 (7) 0.0000 (8)
C2 0.0179 (8) 0.0201 (11) 0.0175 (8) 0.0005 (7) −0.0013 (7) 0.0002 (7)
C3 0.0212 (9) 0.0230 (11) 0.0166 (9) 0.0020 (7) 0.0012 (7) −0.0018 (7)
C4 0.0230 (9) 0.0166 (11) 0.0180 (8) −0.0005 (7) −0.0001 (7) −0.0021 (7)
C5 0.0151 (8) 0.0176 (10) 0.0180 (8) 0.0009 (7) −0.0018 (6) 0.0007 (7)
C6 0.0212 (8) 0.0175 (10) 0.0164 (8) 0.0015 (7) 0.0006 (7) −0.0021 (7)
C7 0.0213 (9) 0.0162 (10) 0.0221 (10) 0.0002 (7) −0.0015 (7) −0.0017 (7)
C8 0.0202 (8) 0.0168 (10) 0.0203 (8) −0.0005 (7) −0.0009 (6) −0.0027 (7)
C9 0.0219 (9) 0.0187 (11) 0.0229 (9) 0.0004 (7) 0.0007 (7) 0.0016 (7)
C10 0.0243 (9) 0.0207 (11) 0.0163 (9) 0.0005 (7) −0.0013 (7) −0.0012 (7)

4-(1H-Imidazol-1-yl)benzaldehyde (I) . Geometric parameters (Å, º)

O1—C1 1.219 (3) C3—H3A 0.9500
N1—C10 1.374 (2) C4—C5 1.397 (2)
N1—C8 1.388 (2) C4—H4A 0.9500
N1—C5 1.421 (2) C5—C6 1.401 (3)
N2—C10 1.311 (2) C6—C7 1.383 (3)
N2—C9 1.391 (2) C6—H6A 0.9500
C1—C2 1.469 (2) C7—H7A 0.9500
C1—H1A 0.9500 C8—C9 1.362 (3)
C2—C3 1.395 (3) C8—H8A 0.9500
C2—C7 1.403 (2) C9—H9A 0.9500
C3—C4 1.391 (3) C10—H10A 0.9500
C10—N1—C8 106.39 (15) C4—C5—N1 119.84 (17)
C10—N1—C5 126.28 (15) C6—C5—N1 119.32 (16)
C8—N1—C5 127.19 (15) C7—C6—C5 119.59 (17)
C10—N2—C9 105.21 (15) C7—C6—H6A 120.2
O1—C1—C2 125.41 (17) C5—C6—H6A 120.2
O1—C1—H1A 117.3 C6—C7—C2 120.28 (18)
C2—C1—H1A 117.3 C6—C7—H7A 119.9
C3—C2—C7 119.54 (17) C2—C7—H7A 119.9
C3—C2—C1 118.92 (15) C9—C8—N1 105.83 (16)
C7—C2—C1 121.53 (17) C9—C8—H8A 127.1
C4—C3—C2 120.81 (16) N1—C8—H8A 127.1
C4—C3—H3A 119.6 C8—C9—N2 110.49 (18)
C2—C3—H3A 119.6 C8—C9—H9A 124.8
C3—C4—C5 118.95 (17) N2—C9—H9A 124.8
C3—C4—H4A 120.5 N2—C10—N1 112.07 (16)
C5—C4—H4A 120.5 N2—C10—H10A 124.0
C4—C5—C6 120.84 (16) N1—C10—H10A 124.0
O1—C1—C2—C3 −178.55 (18) N1—C5—C6—C7 178.08 (15)
O1—C1—C2—C7 0.2 (3) C5—C6—C7—C2 0.6 (2)
C7—C2—C3—C4 −0.6 (3) C3—C2—C7—C6 0.2 (3)
C1—C2—C3—C4 178.21 (16) C1—C2—C7—C6 −178.52 (16)
C2—C3—C4—C5 0.1 (3) C10—N1—C8—C9 0.62 (19)
C3—C4—C5—C6 0.7 (3) C5—N1—C8—C9 176.67 (16)
C3—C4—C5—N1 −178.42 (15) N1—C8—C9—N2 −0.6 (2)
C10—N1—C5—C4 153.02 (17) C10—N2—C9—C8 0.4 (2)
C8—N1—C5—C4 −22.3 (2) C9—N2—C10—N1 0.0 (2)
C10—N1—C5—C6 −26.2 (3) C8—N1—C10—N2 −0.4 (2)
C8—N1—C5—C6 158.54 (16) C5—N1—C10—N2 −176.52 (16)
C4—C5—C6—C7 −1.1 (2)

4-(1H-Imidazol-1-yl)benzaldehyde (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8A···O1i 0.95 2.51 3.458 (2) 176
C10—H10A···N2ii 0.95 2.51 3.449 (2) 173

Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, y+1/2, −z+1.

1-(4-Methoxyphenyl)-1H-imidazole (II) . Crystal data

C10H10N2O F(000) = 368
Mr = 174.20 Dx = 1.318 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.5663 (12) Å Cell parameters from 8588 reflections
b = 11.2143 (16) Å θ = 2.4–30.4°
c = 9.1635 (13) Å µ = 0.09 mm1
β = 94.448 (2)° T = 125 K
V = 877.6 (2) Å3 Plate, colourless
Z = 4 0.40 × 0.25 × 0.15 mm

1-(4-Methoxyphenyl)-1H-imidazole (II) . Data collection

Bruker APEXII CCD diffractometer 2678 independent reflections
Radiation source: sealed X-ray tube, Bruker APEXII CCD 2332 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 8.3333 pixels mm-1 θmax = 30.6°, θmin = 2.4°
φ and ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2016) k = −16→15
Tmin = 0.92, Tmax = 0.99 l = −13→13
21397 measured reflections

1-(4-Methoxyphenyl)-1H-imidazole (II) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.1966P] where P = (Fo2 + 2Fc2)/3
2678 reflections (Δ/σ)max < 0.001
119 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.29 e Å3

1-(4-Methoxyphenyl)-1H-imidazole (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-(4-Methoxyphenyl)-1H-imidazole (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.50111 (8) 0.64826 (6) 0.27442 (7) 0.01696 (16)
N2 0.35189 (9) 0.60120 (7) 0.07295 (8) 0.02110 (17)
O1 0.98420 (8) 0.63969 (6) 0.71768 (7) 0.02769 (18)
C1 1.02429 (11) 0.53203 (10) 0.79493 (10) 0.0289 (2)
H1A 1.108753 0.547969 0.87077 0.043*
H1B 1.059244 0.472373 0.726426 0.043*
H1C 0.932403 0.501862 0.840608 0.043*
C2 0.86571 (10) 0.63397 (8) 0.60922 (9) 0.02084 (18)
C3 0.81994 (11) 0.74301 (8) 0.54587 (10) 0.02479 (19)
H3A 0.870761 0.814315 0.579384 0.03*
C4 0.70105 (11) 0.74809 (8) 0.43457 (9) 0.02198 (18)
H4A 0.670793 0.822403 0.391376 0.026*
C5 0.62626 (10) 0.64337 (7) 0.38651 (9) 0.01708 (17)
C6 0.67205 (10) 0.53468 (7) 0.44827 (9) 0.01901 (17)
H6A 0.621215 0.463503 0.414318 0.023*
C7 0.79220 (10) 0.52919 (8) 0.55986 (9) 0.02071 (18)
H7A 0.823565 0.454653 0.601777 0.025*
C8 0.37965 (10) 0.72974 (7) 0.26290 (9) 0.01978 (18)
H8A 0.362414 0.793692 0.327719 0.024*
C9 0.28976 (10) 0.69928 (8) 0.13921 (9) 0.02107 (18)
H9A 0.197198 0.739844 0.10349 0.025*
C10 0.47846 (10) 0.57358 (7) 0.15758 (9) 0.01911 (18)
H10A 0.545959 0.509019 0.139087 0.023*

1-(4-Methoxyphenyl)-1H-imidazole (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0198 (3) 0.0156 (3) 0.0153 (3) 0.0015 (2) 0.0003 (2) −0.0014 (2)
N2 0.0226 (4) 0.0219 (4) 0.0183 (3) 0.0020 (3) −0.0011 (3) −0.0016 (3)
O1 0.0249 (3) 0.0327 (4) 0.0239 (3) −0.0069 (3) −0.0077 (3) 0.0039 (3)
C1 0.0249 (4) 0.0389 (5) 0.0222 (4) −0.0024 (4) −0.0028 (3) 0.0082 (4)
C2 0.0194 (4) 0.0251 (4) 0.0178 (4) −0.0035 (3) 0.0003 (3) 0.0010 (3)
C3 0.0271 (4) 0.0204 (4) 0.0260 (4) −0.0055 (3) −0.0037 (3) −0.0010 (3)
C4 0.0264 (4) 0.0162 (4) 0.0228 (4) −0.0015 (3) −0.0013 (3) 0.0004 (3)
C5 0.0188 (4) 0.0176 (4) 0.0148 (3) −0.0004 (3) 0.0009 (3) −0.0006 (3)
C6 0.0205 (4) 0.0167 (4) 0.0195 (4) −0.0014 (3) −0.0001 (3) −0.0001 (3)
C7 0.0214 (4) 0.0205 (4) 0.0200 (4) −0.0013 (3) −0.0001 (3) 0.0031 (3)
C8 0.0231 (4) 0.0166 (4) 0.0197 (4) 0.0034 (3) 0.0024 (3) −0.0010 (3)
C9 0.0211 (4) 0.0209 (4) 0.0211 (4) 0.0037 (3) 0.0005 (3) 0.0011 (3)
C10 0.0221 (4) 0.0181 (4) 0.0170 (3) 0.0018 (3) 0.0004 (3) −0.0031 (3)

1-(4-Methoxyphenyl)-1H-imidazole (II) . Geometric parameters (Å, º)

N1—C10 1.3612 (10) C3—C4 1.3854 (12)
N1—C8 1.3827 (10) C3—H3A 0.9500
N1—C5 1.4271 (10) C4—C5 1.3928 (11)
N2—C10 1.3200 (10) C4—H4A 0.9500
N2—C9 1.3828 (11) C5—C6 1.3876 (11)
O1—C2 1.3658 (10) C6—C7 1.3947 (11)
O1—C1 1.4279 (12) C6—H6A 0.9500
C1—H1A 0.9800 C7—H7A 0.9500
C1—H1B 0.9800 C8—C9 1.3634 (11)
C1—H1C 0.9800 C8—H8A 0.9500
C2—C7 1.3920 (12) C9—H9A 0.9500
C2—C3 1.3967 (12) C10—H10A 0.9500
C10—N1—C8 106.62 (7) C5—C4—H4A 120.3
C10—N1—C5 126.57 (7) C6—C5—C4 120.21 (8)
C8—N1—C5 126.81 (7) C6—C5—N1 120.01 (7)
C10—N2—C9 104.78 (7) C4—C5—N1 119.78 (7)
C2—O1—C1 117.23 (7) C5—C6—C7 120.46 (7)
O1—C1—H1A 109.5 C5—C6—H6A 119.8
O1—C1—H1B 109.5 C7—C6—H6A 119.8
H1A—C1—H1B 109.5 C2—C7—C6 119.38 (8)
O1—C1—H1C 109.5 C2—C7—H7A 120.3
H1A—C1—H1C 109.5 C6—C7—H7A 120.3
H1B—C1—H1C 109.5 C9—C8—N1 105.73 (7)
O1—C2—C7 124.61 (8) C9—C8—H8A 127.1
O1—C2—C3 115.48 (8) N1—C8—H8A 127.1
C7—C2—C3 119.91 (8) C8—C9—N2 110.64 (7)
C4—C3—C2 120.57 (8) C8—C9—H9A 124.7
C4—C3—H3A 119.7 N2—C9—H9A 124.7
C2—C3—H3A 119.7 N2—C10—N1 112.23 (7)
C3—C4—C5 119.47 (8) N2—C10—H10A 123.9
C3—C4—H4A 120.3 N1—C10—H10A 123.9
C1—O1—C2—C7 −6.43 (13) N1—C5—C6—C7 −178.75 (7)
C1—O1—C2—C3 174.10 (8) O1—C2—C7—C6 179.88 (8)
O1—C2—C3—C4 179.87 (8) C3—C2—C7—C6 −0.68 (13)
C7—C2—C3—C4 0.38 (14) C5—C6—C7—C2 0.19 (13)
C2—C3—C4—C5 0.41 (14) C10—N1—C8—C9 0.16 (9)
C3—C4—C5—C6 −0.91 (13) C5—N1—C8—C9 179.98 (7)
C3—C4—C5—N1 178.46 (7) N1—C8—C9—N2 −0.15 (10)
C10—N1—C5—C6 −44.15 (12) C10—N2—C9—C8 0.07 (10)
C8—N1—C5—C6 136.07 (9) C9—N2—C10—N1 0.03 (10)
C10—N1—C5—C4 136.49 (9) C8—N1—C10—N2 −0.12 (10)
C8—N1—C5—C4 −43.30 (12) C5—N1—C10—N2 −179.94 (7)
C4—C5—C6—C7 0.61 (13)

1-(4-Methoxyphenyl)-1H-imidazole (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8A···N2i 0.95 2.55 3.4391 (11) 157
C9—H9A···O1ii 0.95 2.56 3.3048 (11) 136
C10—H10A···N2iii 0.95 2.52 3.3004 (11) 140

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x−1, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z.

Funding Statement

Funding for this research was provided by: National Science Foundation (grant Nos. 0521237 and 0911324 to J. M. Tanski).

References

  1. Ananthu, S., Aneeja, T. & Anilkumar, G. (2021). ChemistrySelect, 6, 9794–9805.
  2. Bejan, D., Bahrin, L. G., Shova, S., Sardaru, M., Clima, L., Nicolescu, A., Marangoci, N., Lozan, V. & Janiak, C. (2018). Inorg. Chim. Acta, 482, 275–283.
  3. Bruker (2013). SAINT and APEX3. Bruxer AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2016). SADABS. Bruxer AXS Inc., Madison, Wisconsin, USA.
  5. Ding, B., Ma, L., Huang, Z., Ma, X. & Tian, H. (2021). Sci. Adv. 7, eabf9668. [DOI] [PMC free article] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Emel’yanenko, V. N., Kaliner, M., Strassner, T. & Verevkin, S. P. (2017). Fluid Phase Equilib. 433, 40–49.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hussain, T., Siddiqui, H. L., Zia-ur-Rehman, M., Masoom Yasinzai, M. & Parvez, M. (2009). Eur. J. Med. Chem. 44, 4654–4660. [DOI] [PubMed]
  10. Ibrahim, H., Bala, M. D. & Omondi, B. (2012). Acta Cryst. E68, o2305. [DOI] [PMC free article] [PubMed]
  11. Khattri, R. B., Morris, D. L., Davis, C. M., Bilinovich, S. M., Caras, A. J., Panzner, M. J., Debord, M. A. & Leeper, T. C. (2016). Molecules, pp. 21. [DOI] [PMC free article] [PubMed]
  12. Liang, L., Li, Z. & Zhou, X. (2009). Org. Lett. 11, 3294–3297. [DOI] [PubMed]
  13. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  14. Merritt, H. & Tanski, J. M. (2018). J. Chem. Crystallogr. 48, 109–116.
  15. Milenković, M. R., Papastavrou, A. T., Radanović, D., Pevec, A., Jagličić, Z., Zlatar, M., Gruden, M., Vougioukalakis, G. C., Turel, I., Anđelković, K. & Čobeljić, B. (2019). Polyhedron, 165, 22–30.
  16. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  17. Schröder, K., Enthaler, S., Bitterlich, B., Schulz, T., Spannenberg, A., Tse, M. K., Junge, K. & Beller, M. (2009). Chem. Eur. J. 15, 5471–5481. [DOI] [PubMed]
  18. Shalini, K., Sharma, P. K. & Kumar, N. (2010). Der Chem. Sinica, 1, 6–47.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Xi, Z., Liu, F., Zhou, Y. & Chen, W. (2008). Tetrahedron, 64, 4254–4259.
  23. Zheng, Z., Geng, W.-Q., Wu, Z.-C. & Zhou, H.-P. (2011). Acta Cryst. E67, o524. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989023005480/jy2032sup1.cif

e-79-00678-sup1.cif (819.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023005480/jy2032Isup2.hkl

e-79-00678-Isup2.hkl (119.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023005480/jy2032IIsup3.hkl

e-79-00678-IIsup3.hkl (214.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023005480/jy2032Isup4.cml

Supporting information file. DOI: 10.1107/S2056989023005480/jy2032IIsup5.cml

CCDC references: 2267421, 2267419

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES