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Summary 
Bispecific T-cell engagers (BiTEs) redirect endogenous T-cell populations to cells expressing tumour-associated antigens to induce tumour cell 
killing. This inherently relies upon a cytotoxic T-cell population that is able to be recruited. In many cancers, immune checkpoints and other im-
munosuppressive factors in the tumour microenvironment lead to a population of anergic T-cells which cannot be redirected to tumour killing 
and thus impede the efficacy of BiTE therapy. Furthermore, there is evidence that BiTE therapy itself can increase immune checkpoint expres-
sion, and this is thought to be a major escape mechanism for the BiTE therapy blinatumomab. To overcome these inadequate T-cell responses, 
BiTEs may be combined with checkpoint inhibitors, chemotherapy, costimulatory molecules or oncolytic viruses. Study of these combinations 
is needed to expand the use of BiTEs in solid malignancies. This review covers the rationale, preclinical evidence and any clinical trials for these 
combination therapies and a few other less-studied combinations.
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Abbreviations: B-ALL: B-cell acute lymphoblastic leukemia; BiTE: Bispecific T-cell engager; BsAb: Bispecific antibody; CLL: Chronic lymphocytic leukemia; CPI: 
Checkpoint inhibitor; CRS: Cytokine release syndrome; ImmTAC: Immune mobilizing monoclonal T-cell receptors against cancer; MRD: Minimal residual disease; 
OV: Oncolytic virus; Ph+: Philadelphia chromosome-positive; r/r: Relapsed or refractory; ScFv: Single-chain variable fragment; TAA: Tumour-associated antigen; 
TCR: T-cell receptor; TKI: Tyrosine kinase inhibitors; TME: Tumour microenvironment; VEGF: Vascular endothelial growth factor

Introduction
Bispecific T-cell engagers (BiTEs) redirect T-cell cytotoxic-
ity towards tumour cells, essentially kickstarting the cancer-
immunity cycle described by Chen and Mellman [1] (Figure 
1). BiTEs simultaneously bind a tumour-associated antigen 
(TAA) on one arm, and a T-cell-associated molecule (most 
commonly CD3) on the other (CD3xTAA). This forms an 
immunological synapse inducing tumour cell lysis and cy-
tokine release (Figure 2). Because cytotoxicity is dependent 
on engagement of both arms of the BiTE; cytotoxicity is 
directed specifically towards TAA-expressing cells [2]. TAAs 
are also expressed on healthy tissues and so BiTEs by defini-
tion will cause some on-target off-tumour toxicity. Depending 
on the tumour cell type this may be tolerable, for example, 
the TAA CD19 is restricted to the B cell lineage and thus 
the CD3xCD19 BiTE blinatumomab induces tolerable and 
reversible B cell depletion [3]. However, many solid tumour 
TAAs are also expressed on a variety of healthy tissues, and 
although BiTE therapy in solid tumours could rely on tumour 
cell overexpression rather than specificity [4], on-target off-
tumour toxicity remains a major barrier to BiTE therapy of 
solid tumours.

Many formats of BiTE exist. The first BiTE to be approved 
was blinatumomab, a bispecific antibody (BsAb) consisting 
of two single-chain variable fragments (scFvs) connected by a 
linker region [2]. An IgG-like structure is also commonly used. 

The IgG-like BiTE teclistamab has recently been approved for 
the treatment of multiple myeloma in the US and EU, and 
the IgG-like BiTE talquetamab demonstrated a 70% response 
rate in a phase 1 trial of heavily pre-treated multiple myeloma 
patients [5] and has thus been granted an expedited devel-
opment pathway in the US. Immune mobilizing monoclonal 
T-cell receptors against cancer (ImmTACs) offer the advan-
tage of targeting intracellular antigens via an engineered T-cell 
receptor (TCR) arm. The ImmTAC tebentafusp has shown a 
survival advantage over standard treatment in a phase 3 trial 
in metastatic uveal melanoma [6], and is now licensed in the 
US and Europe.

Blinatumomab is approved in the US and Europe for the 
treatment of B-cell acute lymphoblastic leukaemia (B-ALL) 
[7]. Side effects are generally manageable but significant ad-
verse events include neurotoxicity and cytokine release syn-
drome (CRS) [3]. Despite the successes of this treatment, a 
significant proportion of patients are non-responders, and 
half of those that do respond will relapse [8]. Indeed, (BiTE-
induced) oncolysis is just one step of the cancer-immunity cy-
cle (Figure 1), and inadequacies in other steps are likely to  
impede therapy. For example, given the reliance of BiTE ther-
apy on endogenous T-cell redirection, one mechanism of escape 
is inadequate T-cell activation [8]. This may be due to barriers 
such as T-cell exhaustion or the immunosuppressive tumour 
microenvironment (TME)—issues which can be targeted 
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using therapeutics such as checkpoint inhibitors (CPIs). This 
provides a strong rationale for exploring combinations of 
therapies which might synergise and improve response rates 
for BiTEs by influencing other stages of the cancer-immunity 
cycle. Given that these barriers also impede the expansion of 
BiTE therapy to solid tumours, combination therapies may 
also take BiTEs beyond their current restriction to certain 
haematological malignancies [4].

This review focuses on the rationale, preclinical evidence, 
and clinical trials for the various combination therapies stud-
ied for BiTEs.

Checkpoint inhibitors
Endogenous T-cells that are able to be redirected to tumour 
killing are a precondition for successful BiTE therapy. 

Figure 1. The cancer-immunity cycle (adapted from [1]). Tumour cell death leads to release of antigens which are taken up by antigen presenting cells 
(APCs). These travel to lymph nodes and activate lymphocytes, including cytotoxic T-lymphocytes (CTLs) which travel to the tumour site in the circulation 
and to the infiltrate by extravasation. These infiltrating CTLs cause tumour cell lysis which releases further tumour antigens that perpetuate the cycle. 
Produced using biorender.com.

Figure 2. Mechanism of BiTE-mediated tumour lysis. BiTEs form an immunological synapse between T-cells and TAA presenting cells by binding CD3 
(most commonly, but other T-cell-associated targets such as CD28 or 4-1BB exist, as discussed below) and a TAA of choice. Binding of both arms of 
the BiTE activates the T-cell and leads to degranulation of cytotoxic perforins and granzyme B across the immunological synapse, leading to tumour cell 
lysis [2]. As the BiTE depicted directly targets CD3 on T-cells, activation occurs in a TCR-independent fashion that results in activation of a polyclonal 
population of T-cells. Crucially, BiTE-mediated tumour lysis would also perpetuate the cancer-immunity (depicted in Figure 1) because activated T-cells 
secrete immune activating cytokines, and tumour cell lysis leads to antigen release, uptake by APCs and subsequent immune activation (Figure 1; steps 
4 and 1). Produced using biorender.com.
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Anti-tumour activity leads to upregulation of immune 
checkpoints such as PD-1 and CTLA-4 on T-cells which leads 
to T-cell anergy and immunosuppression [9]. Furthermore, 
PD-L1 (PD-1 ligand) upregulation has been implicated as a 
mechanism of resistance to blinatumomab [10, 11]. One case 
study found that in a non-responder to blinatumomab, PD-
L1 expression by blast cells increased from 2% pretreatment 
to 40% following treatment [11]. In a comparison between 
a non-responder and a responder to blinatumomab, PD-L1 
expression was consistently higher in the non-responder 
blinatumomab treatment [10]. Such observations require cor-
roboration in a larger series, but are consistent with pre-clinical 
observations with respect to blinatumomab resistance. One 
plausible mechanism for BiTE-induced PD-L1 upregulation 
is the release of IFN-gamma and other proinflammatory 
cytokines from activated T helper cells [12–14]. Indeed, BiTE-
dependent PD-L1 upregulation is reduced by blockade of 
IFN-gamma signalling [15]. Thus, successful T-cell redirecting 
therapy inherently causes upregulation of the PD-1/PD-L1 
axis. Furthermore, blinatumomab treatment in vitro induces 
upregulation of additional inhibitory checkpoints including 
CTLA4, TIM-3, and LAG-4 [16]. This begs the question as to 
whether PD-1/PD-L1 upregulation is an epiphenomenon or 
driver of BiTE resistance. Circumstantial evidence comparing 
responders to non-responders supports the latter. Analysis of 
paediatric bone marrow blasts from patients with ALL shows 
greater expression of PD-1 and CTLA4 in non-responders to 
blinatumomab compared to responders [16]. Further studies 
between responders and non-responders to blinatumomab, 
as well as longitudinal studies measuring immune checkpoint 
expression as patients develop resistance to blinatumomab, 
are required to fully understand the relationship between 
treatment outcomes with BiTEs and immune checkpoints.

Although a detailed mechanistic understanding is lacking, 
various preclinical studies have shown improved antitumor 

effects for CPI and BiTE in combination as compared to either 
therapy alone. Investigating a CD3xHER2 BiTE, Juntilla et 
al. found that PD-L1 expression inhibits antitumour activity 
by redirected T-cells in vitro, and this translated to an 82% 
rate of complete response to the CD3xHER2 BiTE in com-
bination with anti-PD-L1 mAb in HER2+ mouse tumours 
compared to 43% of mice achieving a >80% reduction in 
tumour mass with CD3xHER2 BiTE monotherapy [17]. 
Whilst this clearly shows the antitumour potency of com-
bining BiTEs and CPIs, safety must be a concern given the 
expression of HER2 on healthy tissues such as the heart and 
lungs [18], and a case report of fatal CRS during a study of 
CAR-T therapy targeted against HER2 [19]. BiTEs targeted 
against carcinoembryonic antigen (CD3xCEA) were also 
found to increase T-cell tumour killing with an increase in 
tumour cell PD-L1 expression, both in vivo with animal 
studies [20], and in vitro with co-cultured human tumour 
cells [12]. In this latter study, the authors reported improved 
T-cell function with anti-PD-1 and/or anti-PD-L1 therapy, 
an effect which is dependent on early treatment, suggesting 
that T-cell anergy is harder to overcome following prolonged 
exposure to the immunosuppressive PD-1/PD-L1 axis [12]. 
Flow cytometry analysis of tumours treated with a combi-
nation of CD3xCEA and anti-PD-L1 revealed a lower pro-
portion of anergic T-cells (expressing PD-1, TIM-3, and 
LAG-3) compared to monotherapy, further evidencing that 
this combination is capable of improving T-cell functioning 
[15]. Preclinical evidence also supports the use of anti-PD-1/
PD-L1 therapy for use with other BiTE formats, including 
BiTEs against Trop-2 [21] (commonly expressed in breast 
cancer), CEACAM5 [21], and GUCY2C [22] (expressed 
in colon cancers), CD33 [23] or FLT3 [24] for acute mye-
loid leukaemia (AML), gpA33 for colorectal cancer [25], an 
ImmTAC targeting NY-ESO-1 expressed in some non-small 
cell lung cancers [26].

Figure 3. Combination therapies for BiTEs. A depiction of how BiTE combination strategies discussed. Single cell used to represent population of T cells 
and tumour cells for clarity. BiTE-induced tumour cell killing may be inhibited by immunosuppressive immune checkpoints, indicating that checkpoint 
inhibitors may synergise with BiTEs. Furthermore, pairing the traditional CD3xTAA BiTE with a CD28xTAA BiTE replicates costimulation (signal 2), 
leading to better T-cell activation directed towards tumour cells. Oncolytic viruses (OVs) has two distinct mechanisms. Firstly, viral oncolysis promotes 
inflammation (via the cancer-immunity cycle; Figure 1). Secondly, OVs can also be armed with BiTEs (OV-BiTEs), leading to selective delivery of a 
BiTE payload to tumour cells. OV-BiTEs may be targeted to tumour cells either by intratumoral injection (as depicted), or selective tropisms that limit 
replication exclusively to tumour cells. Produced using biorender.com.
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CTLA-4 expression is upregulated following catumaxomab-
analogue (CD3xEpCAM; BiLu) treatment [27]. Accordingly, 
anti-CTLA-4 treatment combined with BiLu moderately 
increased tumour killing and overall survival in mouse 
tumour models [27]. A more potent CD4+ memory T-cell re-
sponse, attributable to signalling mediated by the Fc portion 
of BiLu, was recorded and protected animals against further 
tumour challenge [27].

The strong rationale and preclinical evidence for com-
bining CPIs with BiTEs have translated into several clini-
cal trials (Table 1). Preliminary data from a phase 1 study 
shows that blinatumomab in combination with the anti-PD-1 
mAb nivolumab has a tolerable safety profile and achieved 
complete remission (CR) without minimal residual disease 
(MRD) in four of five patients with relapsed/refractory (r/r) 
B-ALL (NCT02879695) [28]. Following this result, dose es-
calation with ipilimumab (anti-CTLA4 mAb) will also be 
evaluated [28]. Preliminary data from a phase I/II trial of 
blinatumomab with pembrolizumab also shows a tolera-
ble safety profile, and achieved CR in two of four evaluable 
patients (NCT03160079) [29]. Preliminary data from ongo-
ing phase I studies suggest that combining a CD3xCEA BiTE 
with atezolizumab (anti-CTLA4 mAb) may be more effec-
tive than CD3xCEA BiTE monotherapy, and encouragingly, 
there was no additive effect of toxicity with this combination 
(NCT02650713) [30].

The synergy between BiTEs and CPIs has a strong rationale 
and preclinical evidence. Initial results from clinical trials are 

promising, but release of further results is needed to defini-
tively show safety and efficacy. Some authors have suggested 
that CPIs and BiTEs should be considered as a combination 
therapy earlier in treatment development pipelines such that 
maximum tolerated dose studies of monotherapy and combi-
nation can be run in parallel [31].

Chemotherapy
Chemotherapy may increase tumour immunogenicity and 
therefore acts synergistically with immunotherapy, most 
notably CPIs [32]. This synergy also extends to BiTE ther-
apy, which often fails due to immune-cold environments 
[33]. Polyclonal T-cell recruitment is an inherent feature of 
CD3-targeted BiTEs, and immunosuppressive Tregs are in-
cluded within this population [4]. Indeed Treg quantifica-
tion was found to be an accurate predictor of response to 
blinatumomab [34]. Treg depletion (achievable using chemo-
therapy [34]) thus provides another possible mechanism for 
chemotherapy to synergise with BiTEs.

Preclinical data suggests that ERY974, a CD3xGPC3 BiTE, 
pairs synergistically with chemotherapy in mouse models of 
solid tumours [33]. The authors characterised one of their 
tumour models as non-inflamed based on low immune cell 
infiltration. As expected ERY974 monotherapy had little ef-
fect on this model, but the addition of chemotherapeutic a-
gent capecitabine improved accumulation of both T-cells and 
ERY974 in the tumour [33]. The benefit of this combination is 

Table 1. Clinical trials combining BiTEs and CPIs. mAb: monoclonal antibody; B-ALL: B-cell acute lymphoblastic leukaemia; B-LLy B-lymphoblastic 
lymphoma; r/r relapsed or refractory; MRD: minimal residual disease; PRAME: preferentially expressed antigen of melanoma; ImmTAC: immune 
mobilizing monoclonal T-cell receptors against cancer.

BiTE CPI Phase Study population Identifier

Blinatumomab AMG404 (anti-PD-1 mAb) Ib r/r B-ALL NCT04524455

Blinatumomab alone v 
Blinatumomab + Nivolumab

Nivolumab II First relapse B-ALL in 
paediatric and young adult 
patients

NCT04546399

Blinatumomab Pembrolizumab I/II r/r B-ALL with high bone mar-
row lymphoblast percentage

NCT03160079

Blinatumomab Pembrolizumab I r/r B-ALL in paediatric and 
young adult patients

NCT03605589

Blinatumomab Pembrolizumab Ib r/r Diffuse large B-cell lym-
phoma

NCT03340766

Blinatumomab Pembrolizumab I/II r/r B-ALL NCT03512405

Cibisatamab (CD3xCEA; 
RO6958688)

Atezolizumab I Metastatic colorectal cancer NCT02650713

MGD007 (CD3xgpA33) MGA012 (anti-PD-1 mAb) Ib/II Metastatic colorectal cancer NCT03531632

Acapatamab (CD3xPSMA) Pembrolizumab I Metastatic castration-resistant 
prostate cancer

NCT03792841

REGN5678 (CD28xPSMA) Cemiplimab (anti-PD-1 mAb) I/II Metastatic castration-resistant 
prostate cancer

NCT03972657

REGN7075 (CD28xEGFR) Cemiplimab I/II Advanced solid tumours NCT04626635

REGN4018
(CD3xMUC16)

Cemiplimab I/II Recurrent ovarian cancer NCT03564340

REGN5668
(CD28xMUC16)

Cemiplimab I/II Recurrent ovarian cancer NCT04590326

Tebentafusp
(CD3xgp100 ImmTAC)

Durvalumab (anti PD-L1)
Tremelimuumab (anti-CTLA-4)

Ib/II Advanced cutaneous mela-
noma

NCT02535078

IMC-F106
(CD3xPRAME ImmTAC)

Atezolizumab
Pembrolizumab

I/II Advanced PRAME-positive 
cancers

NCT04262466
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bidirectional as ERY974 upregulated thymidine phosphoryl-
ase, an enzyme key for the conversion of capecitabine into its 
active form 5-fluorouracil [33]. Capecitabine has previously 
been combined with other thymidine phosphorylase-inducing 
therapies to increase the effectiveness of chemotherapy [35], 
thus combination with ERY974 is a promising strategy.

For certain chemotherapy drugs, there is concern that immu-
nosuppressive signals such as PD-L1 may be upregulated fol-
lowing treatment and thus hinder subsequent immunotherapy 
[36]. Indeed, Wathikthinnakon et al. found that gemcitabine 
causes upregulation of PD-L1 in cholangiocarcinoma cells 
[37]. As such, Wathikthinnakon et al. tested the combina-
tion of gemcitabine with a CD3xPD-L1 BiTE to turn an 
upregulated immunosuppressive escape mechanism into 
targets for BiTEs [37]. They found that gemcitabine improved 
BiTE-mediated T cell cytotoxicity and that this was depend-
ent on levels of PD-L1 expression [37].

Clinical trials of BiTEs with chemotherapy have so far 
focussed on haematological malignancies in which both 
monotherapies are effective. A pivotal phase III randomised 
trial in 2017 showed that blinatumomab was superior to 
chemotherapy for B-ALL in adults in terms of overall sur-
vival, remission rates and duration of remission with simi-
lar rates of adverse events [38]. However, treatment with 

blinatumomab still only achieved a median duration of re-
mission of 7 months [38]. Thus, various clinical trials are 
now combining blinatumomab with various chemotherapy 
regimes in hopes of achieving more durable remission (Table 
2). Combination with blinatumomab may also allow use of 
lower-intensity chemotherapy regimens, sparing toxicity, and 
the requirement for allogenic stem cell transplantation [40, 
41]. Blinatumomab has been shown to improve outcomes 
when combined with chemotherapy and inotuzomab-
ozogamicin, a CD22-specific antibody-drug conjugate. 
This combination, sometimes termed condensed rituximab, 
inotuzomab-ozogamicin and blinatumomab (CRIB), has been 
shown to be effective as a salvage therapy when combined 
with the low-intensity chemotherapy regimen mini-hyper-
CVD in several single-arm trials [42, 43], as well as supe-
rior to inotuzomab-ozogamicin or chemotherapy alone [42]. 
Given that these studies show more favourable outcomes 
when this combination is used in early salvage stages, a study 
of CRIB + mini-hyper-CVD as frontline therapy is warranted 
and underway (NCT01371630). Whilst single-group studies 
are useful at showing efficacy, randomised trials are needed 
for definitive evidence and so far only one comparing che-
motherapy ± blinatumomab has reported preliminary results 
[44]. The ECOG-ACRIN E1910 (NCT02003222) trial 

Table 2. Clinical trials combining BiTEs and chemotherapy. B-ALL: B-cell acute lymphoblastic leukaemia; B-LLy: B-lymphoblastic lymphoma, r/r: relapsed 
or refractory, hyper-CVAD: hyperfractionated cyclophosphamide, vincristine sulphate, doxorubicin hydrochloride, and dexamethasone; mini-hyper-CVD: 
cyclophosphamide, vincristine, and dexamethasone; MRD: minimal residual disease; PRAME: preferentially expressed antigen of melanoma; ImmTAC: 
Immune mobilizing monoclonal T-cell receptors against cancer.

BiTE Chemotherapy Phase Study population Identifier

Blinatumomab Chemotherapy induction as per GIMEMA LAL1913 
(NCT02067143)

III Newly diagnosed 
standard risk 
B-ALL/B-LLy

NCT03914625

Blinatumomab Dexamethasone, filgrastim, pegfilgrastim, cyclophosphamide, 
methotrexate, cytarabine, and vincristine sulfate

II r/r ALL NCT03518112

Blinatumomab Intozumab-ozogamicin (anti CD22 antibody-drug conjugate) 
and hyper-CVAD

II Newly diagnosed 
B-ALL

NCT02877303

Blinatumomab Condensed rituximab, intozumab-ozogamicin, and mini-hyper-
CVD

II Newly diagnosed 
B-ALL

NCT05645718

Blinatumomab Intozumab-ozogamicin II Newly diagnosed 
or r/r CD22 posi-
tive B-ALL

NCT03739814

Blinatumomab Condensed rituximab, intozumab-ozogamicin, and mini-hyper-
CVD

II Paediatric r/r 
B-ALL

NCT05645718

Blinatumomab Intozumab-ozogamicin and mini-hyper-CVD I/II Frontline B-ALL NCT01371630

Blinatumomab +/- Cyclophosphamide, cytarabine, daunorubicin, dexametha-
sone, etoposide, mercaptopurine, methotrexate, pegaspargase, 
prednisone, rituximab, vincristine

III Consolidation 
therapy for MRD-
negative B-ALL

NCT02003222

Blinatumomab Chemotherapy induction as per GIMEMA LAL1913 
(NCT02067143)

II B-ALL NCT03367299

Blinatumomab Reduced dose standard of care chemotherapy (no details given) II Older adults with 
B-ALL

NCT03480438

Blinatumomab Blinatumomab and low-intensity chemotherapy (no details 
given) vs. standard of care alone (hyper-CVAD or as per 
GMALL protocol [39])

III Older adults with 
B-ALL

NCT04994717

Blinatumomab Induction with dexamethasone, cyclophosphamide, vincristine, 
daunorubicin, vindesine, methotrexate, etoposide, and cytarabine 
followed by consolidation as per GMALL protocol [39].

II Frontline B-ALL NCT04554485

IMC-F106
(CD3xPRAME)

Chemotherapy (no details given) I/II Advanced 
PRAME-positive 
cancers

NCT04262466
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compares chemotherapy ± blinatumomab as consolidation 
therapy following chemotherapy-induced MRD-negative re-
mission [44]. Interim analysis reports that the addition of 
blinatumomab was superior to chemotherapy alone (me-
dian follow-up 43 months, blinatumomab arm median OS 
not reached compared to 71.4 months in the chemotherapy 
alone arm) [44]. The effectiveness of CRIB in combination 
with mini-hyper-CVD has so far not been widely reported in 
paediatric B-ALL populations, but a recent case study report-
ing MRD-negative response in one paediatric patient refrac-
tory to several other therapies, including CAR-T cell therapy, 
indicates a need for further study [45].

Tyrosine kinase inhibitors
Tyrosine kinase inhibitors (TKIs), intensive chemother-
apy and allogeneic stem cell transplant are the mainstay 
of Philadelphia chromosome-positive (Ph+) ALL [46]. 
Besides being two classes of drugs separately active against 
haematological malignancies, TKIs and BiTEs may also have 
some mechanistic synergy. For instance, there is evidence 
that ibrutinib reduces immunosuppressive PD-1 and CTLA-
4 expression on T cells from chronic lymphocytic leukaemia 
(CLL) patients [47]. This translates into improved ex-vivo 
blinatumomab-induced T cell viability and cytotoxicity in 
CLL patient samples with ibrutinib treatment [48]. This com-
bination is currently under investigation for r/r B-ALL in 
adults (Table 3; NCT02997761).

Blinatumomab combined with dasatinib (a second-genera-
tion TKI) as a first-line treatment of Ph+ ALL in adults lead to 
disease-free survival of 88% at 18 months of median follow-up 
[49]. The ABL1 944C→T (Thr315Ile) mutation is a known 
driver of TKI resistance in haematological malignancies 
[50]. In this trial, two patients in which Thr315Ile had been 
detected were switched from dasatinib to the third-generation 
ponatinib which remains active against this mutation [49]. 
Recently Jabbour and colleagues have reported a phase II trial 
combining blinatumomab and ponatinib, a third-generation 
TKI active against ABL1 944C→T (Thr315Ile) variant dis-
ease which is a driver of disease relapse following initial re-
mission—in a regimen which completely spares the patient 
from chemotherapy and allogeneic stem cell transplant [51]. 
Complete molecular response was achieved in 87% of patients 
with newly diagnosed Ph+ ALL and 79% of patients with 
r/r disease [51], warranting a randomised controlled trial of 

standard-of-care chemotherapy/TKI compared to ponatinib 
and blinatumomab. Ponatinib can cause cardiovascular ad-
verse events which must be closely monitored for [52]. In this 
trial aspirin and a statin were used as prophylaxis [51].

Costimulation
Besides signal 1 (the antigen—TCR/CD3 interaction), 
costimulation via a host of other pathways (signal 2), in-
cluding CD28 and members of the tumour necrosis factor 
receptor family (such as 4-1BB, OX40, ICOS), is required 
for full T-cell activation [53]. As such, activation of these 
costimulatory pathways is an attractive method of increasing 
CTL activity redirected by BiTEs. A similar approach has 
improved the efficacy of second/third-generation chimeric an-
tigen receptor (CAR) T-cells, which are engineered to incor-
porate costimulatory domains such as CD28 or 4-1BB [54].

Skokos et al. were able to develop two CD28xTAA BsAbs 
which were found to have little effect without signal 1 either 
in vivo or in vitro, but significantly increased T-cell prolifera-
tion and T-cell dependant cytotoxicity when combined with a 
CD3xTAA BsAbs providing signal 1 [55]. Significantly, these 
authors performed safety studies in cynomolgus monkeys and 
found that CD28xTAA did not induce systemic cytokine re-
lease, as opposed to a CD28 superagonist similar to the one 
which caused near-fatal CRS in 2006 [55]. This suggests 
that targeted CD28 costimulation, using CD28xTAA BsAbs, 
for example, should be focussed on in order to minimise 
CRS. A further safety experiment of the effect of combining 
CD28xTAA with CD3xTAA BsAbs in cynomolgus monkeys 
was not included and would be valuable. However, further 
data published in abstract form supports the combination of 
CD3xTAA BsAbs with CD3xPD-L1/B7-H3 BsAbs in terms of 
efficacy in tumour mouse models and safety in monkeys [56].

Using a pair of BsAbs presents the opportunity to tar-
get the same antigen by two different means (CD3xTAA1 
+ CD28xTAA1) or separate antigens (CD3xTAA1 + 
CD28xTAA2). In the former strategy, TAA arms are 
engineered to target different epitopes of the same antigen to 
prevent competition [55]. The latter strategy might improve 
specificity of immunotherapy given work done to profile 
coexpressed targets on cancer cells, for example, the com-
bination of CD33 and TIM3 is highly specific to AML cells 
[57]. The BsAb pair of CD3xCD19 with CD28xPD-L1 was 
tested in vitro on B-ALL cells from patient donors, finding 

Table 3. Clinical trials combining blinatumomab and TKIs. Ph+ ALL: Philadelphia chromosome positive acute lymphoblastic leukaemia, B-ALL: B-cell 
acute lymphoblastic leukaemia, B-LLy: B-lymphoblastic lymphoma, r/r: relapsed or refractory.

BiTE TKI Phase Study population Identifier

Blinatumomab Dasatinib II Frontline adult Ph+ ALL NCT02744768
Follow up: NCT03318770

Blinatumomab Dasatinib II Frontline adult Ph+ ALL NCT04329325

Blinatumomab Ponatinib II Adults over 55 with Ph+ ALL NCT04688983

Blinatumomab Ponatinib III Adult Ph+ ALL NCT04722848

Blinatumomab Ponatinib II Frontline and r/r adult Ph+ ALL NCT03263572

Blinatumomab Ponatinib and low-intensity chemotherapy II Adult Ph+ ALL NCT03147612

Blinatumomab Ponatinib or dasatinib III Frontline adult Ph+ ALL NCT04530565

Blinatumomab Dasatinib or chemotherapy II Adults 65 years of age or older with Ph+ ALL NCT02143414

Blinatumomab Ibrutinib II r/r B-ALL NCT02997761
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that CD28xPD-L1 BsAb alone had no effect, but did po-
tentiate the action of CD3xCD19 [58]. PD-L1 is able to be 
targeted as the TAA in this combination because of the need 
for signal 1 (provided by CD3xCD19 BsAb) for cytotoxic ef-
fect, restricting toxicity to B-ALL cells overexpressing PD-L1 
[58]. As discussed above, PD-L1 is upregulated in response 
to blinatumomab treatment [10, 11]. In essence, by the addi-
tion of the CD28xPD-L1, Correnti and colleagues switched 
an immunosuppressive signal into one which can be targeted 
to redirect CTLs [58]. Moreover, many factors in the TME 
contribute to immunosuppression via a common pathway of 
PD-L1 upregulation [59], but if PD-L1 is used as the TAA 
arm of the BiTE, this normally detrimental effect now simply 
increases the available targets for PD-L1 targeted BiTEs to 
bind [60]. This is supported by evidence from Khalique et al. 
showing that a PD-L1-targeted BiTE performs better in asci-
tes fluid with an immunosuppressive TME than in a standard 
growth medium lacking immunosuppression [60].

A combination of CD3xTAA BsAbs with 4-1BBxTAA 
BsAbs has also been explored. In 2012, Hornig et al. showed 
the in vitro feasibility and improvement of combining a CD3 
BiTE with antibody-ligand fusion proteins that targeted 
CD28 and 4-1BB activation to tumour cells [61]. T-cell prolif-
eration and activation by a CD3xPSMA BsAb were improved 
by adding a 4-1BB agonist, but the authors note that a more 
targeted method of delivering the 4-1BB costimulation 
would result in lower toxicity given weight loss experienced 
by the mice [62]. Others have opted for antibody-ligand fu-
sion proteins with the format 4-1BBxTAA as a method for 
targeted 4-1BB activation [56]. Whilst monotherapy of ei-
ther CD3xCEA BsAb or 4-1BBxFAP did not control tumour 
growth in a mouse tumour model, a combination of these 
led to an increase in T-cell infiltration and inhibited tumour 
growth [56]. This finding was repeated using a CD3xCD20 
BsAb and a 4-1BBxCD19 antibody-ligand fusion protein in a 
mouse model of diffuse large B-cell lymphoma [56].

Trispecific Abs (CD3xCD28xTAA) offer both signal 1 
and 2 in one biologic [63]. Wu et al. were able to demon-
strate the efficacy of a CD3xCD28xCD38 trispecific Ab in 
vivo against myeloma cells in mice [63]. In contrast, the same 
trispecific was generated with a mutant, ineffective CD28 
arm, which exhibited cytotoxicity equivalent to a control 
Ab, demonstrating the importance of the CD28 arm in this 
trispecific [63]. Safety studies were also done in monkeys, 
showing a tolerable safety profile at doses relevant to immune 
stimulation [63]. The advantages of these trispecifics over 
BsAb pairs should be explored in terms of tumour killing, 
specificity/toxicity, pharmacokinetics and manufacturability.

Costimulation in combination with BiTEs shows promise 
in preclinical trials but as yet has not been translated into 
many clinical trials. A combination of CD3xMUC16 and 
CD28xMUC16 BiTEs is being studied in a phase I/II clinical 
trial (NCT04590326) for recurrent ovarian cancer, but pre-
liminary results are yet to be reported.

Oncolytic viruses
Oncolytic viruses (OVs) induce tumour lysis (step 1; figure 
1) which promotes local T-cell response and is thus likely 
to synergize with BiTEs [64, 65]. A promising method of 
delivering this combination is by engineering the OV to ex-
press BiTEs (OV-BiTE; reviewed elsewhere [64, 66, 67]). 
Arming OVs with a BiTE payload may further reduce off-

target toxicity, as OVs can have tropisms for specific tissues 
[68], may be engineered to only replicate in tumour cells [69], 
and can also be effectively delivered by intratumoural injec-
tion [70].

In vitro, evidence shows that OVs armed with a 
CD3xEpCAM BsAb effectively recruit endogenous T-cells to 
tumour killing [71]. Importantly, these authors reported no 
antagonistic relationship between T-cell activation and viru-
lence, which might have been expected due to T-cell clearance 
of virally infected cells [71]. OVs armed with CD3xCD20 
or CD3xCEA BiTEs were tested in vivo in mouse tumour 
models [69]. The OV armed with CD3xCD20 was more ef-
fective than a control OV armed with an irrelevant BiTE or 
BiTE alone for overall survival and CTL recruitment [69]. 
Furthermore, the finding that CD3xCD20 armed OV-induced 
PD-1 upregulation warrants further study of the addition of 
CPIs to this treatment regime [69]. On the other hand, the 
OV armed with CD3xCEA slightly increased CTL recruit-
ment and improved survival in mouse models, but this did not 
differ from an OV armed with an irrelevant BiTE, suggesting 
that the modest therapeutic effect was attributable to the viral 
oncolysis alone and not the BiTE payload [69]. The authors 
attribute this to preexisting high CTL populations in CEA 
tumours (~30%), which renders other factors such as immu-
nosuppression more relevant in this model than additional 
T-cell redirection using BiTEs [69]. This hypothesis also 
warrants further investigation with CPIs. A more recent study 
has armed an OV with a CD3xPD-L1 BsAb, which affects  
efficient tumour cell killing in ex vivo samples of human ma-
lignant ascites [60]. This format also induced T-cell killing of 
immunosuppressive tumour-associated macrophages (TAMs), 
further disinhibiting CTL activity [60].

OV-BiTEs are backed by the strong rationale of enhancing 
tumour inflammation and targeted BiTE delivery and show 
promising preclinical results [64, 66, 67]. These studies sug-
gest that OV-BITE therapy might further synergise with CPIs, 
which are already being explored in 12 clinical trials in com-
bination with the unarmed OV, T-VEC [67]. Preclinical stud-
ies also show that OV-BiTEs can effectively redirect T cell 
cytotoxicity towards stromal cancer-associated fibroblasts, 
which inhibit OV spread throughout the tumour and can 
prevent TIL recruitment [72]. OV-BITE therapy may also 
be combined with CAR-T-cell therapy [66], although this 
undermines a major advantage of BiTEs over CAR-T-cells: 
the former’s capacity as an off-the-shelf treatment.

Other inhibitory pathways in the TME
This paper has focussed on CPIs, costimulation and OVs, but 
other immunosuppressive pathways have been identified as 
potential targets to combine with BiTEs in preclinical studies 
including galectin-1 [73, 74], CD73/A2A [75], and adenosine 
[76]. TAA downregulation is a major predictor of BiTE effi-
cacy [77], and thus methods of maintaining TAA expression 
would be a logical combination therapy to explore for BiTEs. 
Overexpression of IDO-1 in tumour cells leads to immunosup-
pression, putatively attributed to tryptophan depletion lead-
ing to T-cell dysfunction [78]. Hong et al. found that IDO-1 
inhibition synergised with BiTEs targeted against EpCAM in 
mouse models of breast cancer [79]. However, the combina-
tion of IDO-1 inhibition and immunotherapy may be dubious 
given that IDO-1 inhibition combined with pembrolizumab 
failed to show any benefit over pembrolizumab alone in a 
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phase 3 trial for advanced melanoma despite promising pre-
clinical data [80].

Vascular endothelial growth factor (VEGF) contributes 
to several immunosuppressive pathways, but chiefly drives 
tumour angiogenesis resulting in an abnormal vascular ar-
chitecture that prevents infiltration by circulating CTLs (step 
3; Figure 1) [81]. Combination of anti-VEGF mAb with a 
CD3xGUCY2C BsAb improved tumour regression in mice 
xenograft models compared to either monotherapy alone [22]. 
This finding was associated with an increase in infiltrating 
CTLs [22]. Anti-VEGF has been compared to anti-PD-1 in 
combination with a CD3xMUC16 BsAb in preclinical stud-
ies of mouse ovarian cancer. Though both combinations 
performed better than their monotherapies alone, the anti-
VEGF BiTE combination outperformed the CPI BiTE com-
bination in terms of in vivo tumour cell killing and overall 
survival [82]. Given the significant number of clinical trials 
evaluating CPIs in combination with BiTEs (Table 1), and 
that a number of antiangiogenesis agents are already licensed 
as combinations with immunotherapies [81], future studies 
should evaluate the safety of anti-VEGF BiTE combinations 
with the aim of beginning clinical trials.

Conclusion
BiTEs offer an off-the-shelf ability to redirect T-cells towards 
antitumour activity. As we study their capabilities and limi-
tations in the clinic, we are constantly discovering more in-
hibitory pathways that impede BiTE redirection of T-cells. 
Furthermore, techniques including genetic analysis allow 
us to directly elucidate pathways that inhibit BiTE activity 
[77]. Identification of these pathways informs the develop-
ment of new combination strategies covering potential escape 
mechanisms against BiTEs (Figure 3). Clearly, combining two 
immune-activating therapies is only useful if the safety profile 
of the combination is tolerable with CRS being a major dose-
limiting toxicity in BiTEs [83]. In the development of future 
BiTEs, the choice of a CD3 targeting arm can minimise cyto-
kine release whilst maintaining cytotoxicity [84]. Prophylactic 
use of an anti-IL-6 mAb, which is currently used in the man-
agement of CRS, is being trialled with CD3xPSMA BiTE for 
small cell lung cancer (NCT04496674) and may allow an 
increased maximum tolerated dose of the BiTE [85].

The hope is that combinations of BiTEs with other therapies 
may improve response/relapse rates for blinatumomab and 
expand the use of BiTEs into solid tumour treatment. So far, 
most preclinical studies have focused on comparisons of BiTE 
combination therapies against monotherapies. It is anticipated 
that as the field progresses and the efficacy and safety of cer-
tain combinations become more established, comparison of 
combinations against other combinations (as performed re-
cently by Yeku et al. [82]) will become more of a focus, and 
help to inform clinical studies.
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