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Abstract
Human growth hormone (GH) is the indispensable hormone for the maintenance of normal physiological functions of the 
human body, including the growth, development, metabolism, and even immunoregulation. The GH is synthesized, secreted, 
and stored by somatotroph cells in adenohypophysis. Abnormal GH is associated with various GH-related diseases, such as 
acromegaly, dwarfism, diabetes, and cancer. Currently, some studies found there are dozens or even hundreds of GH proteo-
forms in tissue and serum as well as a series of GH-binding protein (GHBP) proteoforms and GH receptor (GHR) proteoforms 
were also identified. The structure-function relationship of protein hormone proteoforms is significantly important to reveal 
their overall physiological and pathophysiological mechanisms. We propose the use of proteoformics to study the relationship 
between every GH proteoform and different physiological/pathophysiological states to clarify the pathogenic mechanism of 
GH-related disease such as pituitary neuroendocrine tumor and conduct precise molecular classification to promote predic-
tive preventive personalized medicine (PPPM / 3P medicine). This article reviews GH proteoformics in GH-related disease 
such as pituitary neuroendocrine tumor, which has the potential role to provide novel insight into pathogenic mechanism, 
discover novel therapeutic targets, identify effective GH proteoform biomarker for patient stratification, predictive diagnosis, 
and prognostic assessment, improve therapy method, and further accelerate the development of 3P medicine.
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hormone receptor proteoform · Growth hormone-binding protein · Growth hormone-binding protein proteoform · 
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Predictive diagnosis · Prognostic assessment · Target therapy · Personalized medical service · Primary and secondary care · 
Healthcare efficacy · Individual outcomes · Predictive preventive personalized medicine (PPPM / 3P medicine)

Introduction

Brief description of growth hormone

The human growth hormone (GH), namely somatotropin, 
was first isolated in the 1930s, it is about eight decades since 
today [1]. A series of functions of GH were revealed, includ-
ing promoting growth and development, regulating metabo-
lism, and immunology [2, 3]. While if the GH in the body 
is disturbed, the body will suffer from various GH-related 
diseases, such as acromegaly, dwarfism, diabetes, and cancer 
[4]. Furthermore, an increasing number of GH proteoforms 
in pituitary tissue and serum were identified in plenty of 
studies [5–15], and the types and constitution of GH would 
dynamically vary from different physiological/pathological 
states of organism. However, the exact relationships between 
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GH proteoforms and different physiological/pathological 
states remain unclear. This review proposes that the use 
of “proteoformics” to systematically study the function of 
every GH proteoform and the relationship between every 
GH proteoform and different physiological/pathological 
states to promote the development of predictive preventive 
personalized medicine (PPPM; 3P medicine). This review 
conducted a systematic and comprehensive summary of the 
proteoforms of human GH, GH-binding protein (GHBP), 
and GH receptor (GHR) to find specific biomarkers for GH-
related diseases towards the development of 3P medicine.

Structure and functions of growth hormone

Human GH is a protein hormone with a single peptide 
chain, belonging to the somatotropin/prolactin (PRL) fam-
ily, which is produced by GH-secreting cells, with eosino-
philic granules, in the anterior pituitary [16, 17]. The human 

GH genes locate on chromosome 17q23.3 in humans [18, 
19]. They include five highly homologous and structurally 
similar genes GH-N (GH normal gene; GH1 gene), GH-V 
(GH variant gene; GH2 gene), CS-A (chorionic somatomam-
motropin A), CS-B (chorionic somatomammotropin B), and 
CS-L (chorionic somatomammotropin-like gene) [16, 19, 
20]. GH-N is expressed in the pituitary gland and the other 
four genes are expressed in placenta paralogs [16, 19, 20]. 
The GH-N cDNA encodes GH precursor with 217 amino 
acids (sequence 1–217), which includes a signal peptide at 
amino acid sequence positions 1–26 (Fig. 1A and B). There 
are two main mature forms of GH-22 kD and 20 kD [16, 21, 
22]. The 22 kD GH owns 191 amino acids, and is the main 
existence form in the pituitary, which is necessary for human 
growth and development. In addition, the 20 kD GH owns 
176 amino acids, with a lack in amino acid sequence posi-
tions 32 to 46, accounting for about 5 ~ 10% of total serum 
GH, which is produced by alternative splicing of mRNA [16, 

Fig. 1  The structure and function of human growth hormone (hGH). 
A hGH amino acid sequence and its splicing variants. Data originates 
from Swiss-Prot No: P01241. The curve line represents the removed 

sequence after splicing. B The 3D structure of hGH. Data originates 
from PROTEIN DATA BANK (PDB). C Hypothalamic-pituitary-GH 
axis and the main targeted organs of hGH
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21, 22]. Besides the two monomeric forms in pituitary tissue 
and serum, there are some other kinds of forms, including 
their fragments, homo- and heteropolymers, and complexes 
with binding proteins as well as receptors [3]. Currently, 
it has been found that GH owns more than one hundred of 
forms in circulation. In fact, the expression products of GH 
gene make up a protein family, rather than a single protein 
[3].

GHR is a member of the GH/PRL/cytokine receptor 
superfamily, and its signaling is mainly transduced through 
the nonreceptor tyrosine kinase pathway [23]. The initia-
tion of the pathway is started with the binding of GH to 
GHRs, then the dimerization of GHRs to activate JAK2 
(Janus kinase 2), one of nonreceptor tyrosine kinases. Once 
activated, JAK2 tyrosyl-phosphorylates both itself and the 
cytoplasmic domain of GHR. The GHR-JAK2 complex can 
recruit and activate the signaling molecules including Stat 
(signal transducers and activators of transcription factors) 
and IRSs (insulin receptor substrates) 1 and 2, and further 
modulate a series of cellular functions. GH has a wide vari-
ation of physiological functions, and the implementation of 
its function cannot be achieved without GHR. GH affects 
almost all tissues and cell types in human body, including 
bone, muscle, fat [24], hair follicle [25], reproductive [26] 
and immune systems [27, 28], and even the hematopoi-
etic system [29] and central nervous system [16, 30, 31] 
(Fig. 1C). The two basic functions of hGH are to stimu-
late the growth of cells, tissues, and organs, and regulate 
metabolism of nutrients [16]. On the one hand, it promotes 
the growth and development of the body through increasing 
the size and number of somatic cells as well as protein syn-
thesis. On the other hand, for the regulation of metabolism, 
the overall effect of GH on protein metabolism is to promote 
anabolism, mainly through promoting amino acid transport 
into cells to increase protein synthesis and inhibit protein 

consumption [32]. Noteworthily, the effect of GH on protein 
synthesis is in harmony with its effect on growth. Further-
more, GH is a lipolysis hormone because it promotes fat 
degradation [24]. The effect of GH on glucose metabolism 
is secondary to its mobilization of fat. The increase of free 
fatty acids in the blood can inhibit glucose uptake by skel-
etal muscle and adipose tissues to reduce glucose consump-
tion and increase blood glucose level, which is manifested 
as “anti-insulin” effect. GH also increases blood sugar by 
reducing the sensitivity of peripheral tissue to insulin.

Moreover, GH can promote the secretion of thymosin by 
thymic stromal cells, stimulate the production of antibodies 
by B lymphocytes, improve the activities of natural killer 
cells (NK cells) and macrophages, and thus participate in 
the function regulation of the immune system in the human 
body [28]. GH also has the effect of anti-aging [33, 34] 
and regulates emotional and behavioral activities [35]. GH 
is also one of the important stress hormones secreted by 
adenohypophysis.

The concept of proteoform and proteoformics

With the development of molecular biology, the 
human genome project identified ~ 20,300 genes, rather 
than ~ 100,000 genes as initially predicted [36, 37]. This 
showed that the cause of the diversity of biological func-
tions is not huge number of genes but protein variety [38]. 
The diversity can originate from allelic variations on the 
DNA level, alternative splicing of RNA transcripts, epige-
netic modifications on DNA and RNA levels, and a serious 
of post-translational modifications (PTMs) on the protein 
level (Fig. 2) [37, 39]. These events work together to produce 
different proteoforms originating from a single gene, which 
can involve in a wide range of biological processes, such as 

Fig. 2  The formation  of proteoform and concept of proteoformics. 
PTM: post-translational modification. Modified from Zhan et al. [37] 
with copyright permission from MDPI publisher open access article, 

copyright year 2019. Modified form Zhan et al. [39] with copyright 
permission from rom Hapres publisher open access article, copyright 
year 2018
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regulations of gene expression, energy metabolism, and cell 
signal transduction.

In 2012, Smith and Kelleher first proposed the term “pro-
teoform” to designate all of the different molecular forms 
in which the protein products of a single gene, including 
changes due to genetic variations, alternatively spliced RNA 
transcripts, and post-translational modifications [40].

With the development of two-dimensional gel electro-
phoresis (2DGE) and mass spectrometry (MS), many pro-
teoforms were identified, thus the concept of “proteoform” 
is enriched. The complete definition for a proteoform is 
that a proteoform is composed of its amino acid sequence, 
PTMs, spatial conformation, cofactors, binding partners, 
localization, and a function [37, 39, 41] (Fig. 2). A protein 
is an umbrella term for all proteoforms encoded by the same 
gene [41]. Proteoform is an objective substance and the term 
“proteoform” has been used for more than 10 years [40]. 
The term “proteomics” is commonly looked as the theories 
and methods to study “proteome” whose components are 
traditionally thought as the canonical “proteins” although 
currently ones look the “proteoforms” as the basic units of a 
proteome, and still use the term “proteomics” as the theories 
and methods to study proteoforms. In fact, to emphasize 
the important scientific merit of the term “proteoform,” it is 
necessary to propose a new term “proteoformics” that is the 
theories and methods to study proteoforms in a proteome 
(Fig. 2) [42]. The aim of “proteoformics” is to study the 
proteoform compositions and their change rules in a cell, 

tissue, organ, and organism as well as the effects of pro-
teoforms on physiological/pathological processes in human 
body (Fig. 3A).

GH proteoforms

For human GH, currently, more than one hundred of its pro-
teoforms have been identified in different tissues and sera 
[5, 9–15]. The reasons for the formation of GH proteoforms 
are currently described as gene variation, alternative splic-
ing, and PTMs, and they are enriched with the development 
of proteoformics. The gene to code GH include five forms 
GH-N, GH-V, CS-A, CS-B, and CS-L, and they have expres-
sion tendency [3, 16, 18–20, 22]. GH-N is expressed in the 
pituitary gland, and the other four genes are expressed in the 
placenta. Due to alternative splicing, there are five forms of 
GH [3]. The GH isoform 1 is the most canonical form, with 
an amino acid sequence of 1-217. Differences from canoni-
cal form of GH, isoform 2 owns a missing of amino acid 
sequence 58-72, isoform 3 owns a missing of amino acid 
sequence 111–148, isoform 4 owns a missing of amino acid 
sequence 117–162, and isoform 5 owns a missing of amino 
acid sequence 58–97 (Fig. 1A). Furthermore, GH contains 
a signal peptide with the amino acid sequence 1–26. Every 
isoform of GH contains two forms - the removal and non-
removal of signal peptide. In addition, a number of PTMs 
are also identified [5, 9]; for example, phosphorylation is 
characterized at residues Ser77, Ser132, Ser134, Thr174, 

Fig. 3  The methodology of proteoformics. A The general procedure 
and application of proteoformics. B The 2DE analysis of proteoforms. 
Modified from Zhan et al. [37] with copyright permission from MDPI 

publisher open access article, copyright year 2019. 2-DE two-dimen-
sional gel electrophoresis, LC liquid chromatography, MS/MS tan-
dem mass spectrometry, PTM post-translational modification
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and Ser176, ubiquitination at residue Lys196, acetylation 
at residue Lys171, and deamination at residue Asn178; and 
more kinds of PTMs and PTM-sites will be found. All of 
these PTMs together make up the diversity of GH but the 
specific physiological function of every GH proteoform has 
not been elucidated.

GH proteoforms and diseases

The maintenance of homeostasis of GH levels is signifi-
cantly essential to perform physiological functions of the 
human body. Whereas, once GH levels are disturbed, a series 
of GH-related disorders appears. During childhood, hypose-
cretion of GH will cause dwarfism, whose characteristics 
are slow growth, skeletal hypoplasia, and accompanying 
with sexual organ agenesis or lack of secondary sex char-
acteristics [43–46]. While hypersecretion of GH can cause 
hyperplasia of bone and cartilage, metabolic disorders, and 
complications [47]. For the adult, the disorder of GH, which 
is mainly caused by PitNETs, can lead to acromegaly with 
a typical acromegaly facies, hypertrophy of hands and feet, 
skin hypertrophy, visceral enlargement, and various meta-
bolic diseases and so on.

Techniques to study GH proteoforms

It is estimated that the number of human proteoforms 
exceeds one million [37]. It is very urgent to find an effec-
tive method to achieve a high-throughput test of all pro-
teoforms. Currently, there are two main strategies to study 
proteoforms: top-down mass spectrometry-based strategy 
(Top-down MS), and two-dimensional gel electrophoresis in 
combination with liquid chromatography-mass spectrometry 
strategy (2DE-LC/MS) (Fig. 3). Each strategy has its own 
advantages and disadvantages in the analysis of proteoforms 
[37].

 (i) Top-down MS: the general procedure of top-down 
MS is that, first, protein separation technology, such 
as capillary zone electrophoresis (CZE) and LC, 
is used to separate proteoforms; second, the sepa-
rated proteoforms are analyzed with MS/MS; and 
third, MS/MS data are used to identify the amino 
acid sequence and PTMs against protein database 
(Fig. 3A) [48, 49]. The drawback of this method is 
that its analytical throughout is not high. Currently, 
the maximum analytical throughput is ~ 30,000 
proteoforms derived from 1690 human genes [50]. 
Although this throughput is nearly 10 times more 
than previous studies, it is still much far from the 
number of all proteoforms in the human body.

 (ii) 2DE-LC/MS: the general procedure of 2DE-LC/MS 
strategy is that, first, 2DE is used to separate pro-
teoforms per their isoelectric point (pI) and relative 
mass (Mr); second, the separated proteoforms are 
digested with trypsin, followed by MS/MS identi-
fication; third, MS/MS data are used to identify the 
amino acid sequence and PTMs against protein data-
base [37, 51]. Because each 2D gel spot includes over 
50 to several hundreds of proteoforms, and 2DE can 
separate low-abundance proteoforms, 2DE-LC/MS 
has great potential for high-throughput analysis of 
proteoforms (Fig. 3B) [51].

GH proteoforms in pituitary diseases

GH proteoforms in pituitary tissues

GH presents a variety of proteoforms, including monomeric 
[52–54], an oligomeric series of dimeric to pentameric 
forms [55], and segments/fragments, with different modifi-
cations, such as glycosylation, phosphorylation, acetylation, 
ubiquitination, and deamination [9, 10, 52, 53]. All of these 
factors cause the human GH heterogeneity in structure and 
function, which might be significant to clarify various GH 
functions in various physiological/pathological conditions 
(Fig. 4).

Different GH proteoforms are identified in the pituitary 
gland, and their functions are also clarified partially [5–10, 
56, 57]. In 1990s, the 17 kD GH fragment (amino acid 
sequence 44–191) and the 5 kD GH fragment (amino acid 
sequence 1–43) were identified in pituitary and plasma in 
several studies, and the 17kD GH was found to involve in 
glucose intolerance [6–8, 56]. Later with the development 
of 2DE and mass spectrometry, more GH proteoforms were 
identified. In 2009, 9 kD and 12 kD GH fragments, 20 kD 
GH, 22 kD GH, and 23 kD GH with glycosylation were iden-
tified in the pituitary, and different GH proteoforms show 
different abundance [10]. Furthermore, PitNET has a high 
prevalence and causes huge pain for patients, but its patho-
genesis mechanism has not been clarified. In 2005 and 2021, 
two systematic studies on GH proteoforms were conducted 
[5, 9]. At first, a total of 24 human GH proteoforms [5] were 
identified in normal pituitary with 2DGE coupled with mass 
spectrometry, and those GH proteoforms showed signifi-
cantly different abundance. Moreover, phosphorylation at 
residues Ser-77, Ser-132, and Ser-176, and deamination at 
residue Asn-178 were identified in GH. These findings not 
only enrich the GH proteoform atlas but also provide a new 
perspective to further explore the action mechanisms of GH 
in physiological/pathological conditions of the human body 
(Fig. 5A and B) [5]. Later in 2021 [9], a total of 46 GH pro-
teoforms in GH-secreting PitNETs and 35 GH proteoforms 
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in control pituitaries were identified with 2DE in combina-
tion with LC-ESI-MS/MS, MALDI-TOF-MS, and MALDI-
TOF-TOF-MS/MS (Fig. 5C). Further analysis of every GH 
proteoform found that 11 GH proteoforms only existed in 
GH-secreting PitNETs but not in control pituitaries, and the 
remaining 35 GH proteoforms existed in both GH-secreting 
PitNETs and control pituitaries and had different abundance 
differences in tumors and controls. Different PTMs (acety-
lation, ubiquitination, phosphorylation, and deamination) 
were also characterized in GH proteoforms between GH-
secreting PitNETs and controls. For example, phosphoryla-
tion has been characterized in GH proteoforms with MS/MS 
analysis (Fig. 6), and MS/MS analysis can accurately dis-
criminate phosphorylated peptide and non-phosphorylated 
peptide that were derived from GH proteoforms (Fig. 7). 
This study provides the first human GH proteoform atlas 
and their partial PTMs in GH-secreting PitNETs compared 
to normal control pituitary tissues, which provides novel 
perspective to predict, prevent, treat, and conduct prognostic 
assessment for effective medical service for GH-secreting 
PitNETs, especially insight into development of feasible GH 
proteoformic pattern biomarkers for prediction, prevention, 
diagnosis, patient stratification, and prognostic assessment 
of GH-secreting PitNETs and GH-related diseases in the 
context of PPPM practice [9].

GH proteoforms in serum

The type and concentration of different GH proteoforms in 
sera are not invariable but change constantly with different 
physiological/pathological states [3]. Therefore, exploring 
GH proteoformic pattern in different diseases is of great 

significance, and the specific GH proteoforms related to 
specific diseases have great potential for the development 
of pattern biomarkers. Currently, the number of GH pro-
teoforms in plasma is more than one hundred [3], and the 
forms of GH proteoforms include monomers, fragments, 
homopolymers, heteropolymers, and their combinations with 
GHBPs and other binding proteins [11–13]. For GH mono-
mers, the main forms include 22 kD GH proteoforms, 20 
kD GH proteoforms, and acidic GH proteoforms, probably 
including GH proteoforms with deamidation and N-acyla-
tion, and their ratio is about 75%, 16%, and 9%, respectively 
[14, 15, 52–54]. In addition to monomeric GH proteoforms, 
oligomeric forms, with an oligomeric series of dimeric to 
pentameric GH, are also identified in sera [55]. Furthermore, 
it is significantly worth noting that serum GH is not con-
sistent, but varies dynamically with time and physiological/
pathophysiological states. Therefore, it is very reasonable 
to infer different patterns of GH proteoforms that can play 
various functions to fit a variety of situations that an organ-
ism needs to face.

Currently, the 22 kD GH proteoforms and 20 kD GH 
proteoforms are the most studied, and both of them bind to 
and activate GHR. However, they exhibit different signal 
transmission characteristics; the 22 kD GH proteoforms 
exhibit stronger receptor-binding ability and signaling 
transmission ability than the 20 kD GH proteoforms [57]. 
This finding showed that different serum proteoforms might 
exhibit various effects for the growth and development of 
the human body and the progression of GH-related diseases. 
Therefore, it is urgent to systematically study GH proteo-
forms in sera and draw GH proteoform atlas, further clarify 
the influence of every GH proteoform and every cluster 

Fig. 4  The formation of hGH proteoforms. The broken line represents the splicing methods of hGH exons. Data originates from Swiss-Prot No: P01241
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of different proportion of GH proteoforms to conduct an 
accurate molecular typing of different GH proteoforms 
corresponding to clinical characteristics of GH-related dis-
eases to better clarify mechanisms of their occurrences and 
progression.

GH proteoforms and GH‑binding proteins in serum

GH-binding proteins (GHBPs) were initially characterized 
in two independent studies in 1986 [58, 59]. The researchers 
found that 125I-labeled GH can specifically bind to a protein 
in human plasma, whose pI is of about 5 and Mr is about 
60–65 kD [3, 58].

GHBPs mainly include two forms, namely high-affinity 
GHBP (HGHBP) and low-affinity GHBP (LGHBP) [60–67]. 
HGHBP is a heat-labile, high-affinity, low-capacity bind-
ing protein, which specifically binds to 22 kD GH, with 
pI = about 5.0 and Mr = about 61 kD [3, 56, 60]. Whereas, 

LGHBP is a heat-stabilized, low-affinity, high-capacity 
binding protein, which specifically binds to 20 kD GH, with 
pI = about 7.1 and Mr = about 100 kD [62, 63].

GHBP origins from the shed of ectodomain of GHR 
by specific proteolytic enzymes. Among these enzymes, 
TACE (tumor necrosis factor-alpha converting enzyme) 
is necessary for GHR proteolysis and GHBP generation 
[68, 69]. GHBP is widely distributed in body fluids, bind-
ing about averaged 50.1% (range, 39–59%) 22kD GH but 
averaged 28.5% (range, 26–31%) 20 kD GH [61, 65]. It 
can maintain relatively stable concentration and half-life of 
GH in plasma by regulating the proportion of free GH and 
binding GH by inhibiting GH binding to receptors. Fur-
thermore, it can also regulate metabolism, transport, and 
biological function of GH [66, 67]. It significantly demon-
strates the importance of GHBP to the implementation of 
GH function. The identification of many GH proteoforms 
[9, 52–55] provides a basis to speculate that there are many 

Fig. 5  The hGH proteoforms identified in normal pituitary and GH-
secreting PitNETs. A 2DE image of GH proteoforms in human pitui-
tary tissues. A total of 24 hGH proteoforms were identified with 2DE 
and MS, and labeled in 2DE map. Modified from Zhan et al. [5] with 
copyright permission from Wiley publisher, copyright year 2005. B. 
The MALDI-TOF-MS PMF of GH proteoform in spot 6 in Fig. 5A. 
T means the autodigestion fragments of trypsin. M* means oxidized 
Met; C# means carbamidomethyl-Cys; N@ means deamidated Asn. 
Modified from Zhan et al. [5] with copyright permission from Wiley 
publisher, copyright year 2005. C 2DE image of GH proteoforms in 

GH-secreting PitNETs relative to control pituitary tissues. (a) 2DE 
image of GH proteoforms in GH-secreting PitNETs. (b) 2DE image 
of GH proteoforms in control pituitary tissues. (c) Western blot image 
of GH proteoforms in GH-secreting PitNETs. (d) Western blot image 
of GH proteoforms in control pituitary tissues. Modified from Li et al. 
[9] with copyright permission from Springer publisher open access 
article, copyright year 2021. IEF isoelectric focusing, GH growth 
hormone, 2DGE two-dimensional gel electrophoresis, m/z mass to 
charge
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different GHBP proteoforms besides HGHBP and LGHBP, 
which can bind a great number of GH proteoforms, so as 
to conduct a variety of functions that every GH proteoform 

owned. Further studies are necessary to identify GHBP 
proteoform atlas and reveal the crosstalk between GH pro-
teoforms and GHBP proteoforms.

Fig. 6  Phosphosites identified in hGH in spot 6 in Fig. 5A. A Neu-
tral loss scanning of phospopeptides with LC-MS/MS data (only 
ion [M + 2H–98]2+ generated a signal after neutral loss scanning of 
phosphate group). B  MS2 spectrum of phosphopeptide 126SLVYGA 
pSDSNVYDLLK141 (pS = phosphorylated Ser; RT = 44.87  min in 

(A)). C  MS2 spectrum of phosphopeptide 172FDTNpSHNDDALLK184 
(pS = phosphorylated Ser; RT = 31.61  min in (A)). D  MS3 spectrum 
of the fragment ion [M + 2H–98]2+ at m/z 736.35 in (C). RT retention 
time, m/z mass to charge. Modified from Zhan et  al. [5] with copy-
right permission from Wiley publisher, copyright year 2005

Fig. 7  MS/MS analysis discriminates two different tryptic peptides 
with the same [M +  H]+ values, which are derived from hGH in spot 
36 in Fig. 5C(a). a Tryptic peptide 46LHOLAFDTYQEFEEAYIPK64. 
b Phosphopeptide 121SVFANSLVYGA pSDSNVYDLLK141(pS = phos-

phorylated Ser). m/z mass to charge. Modified from Li et al. [9] with 
copyright permission from Springer publisher open access article, cop-
yright year 2021
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The relationship between GH proteoforms 
and the invasiveness of GH‑secreted PitNETs

GH-secreted PitNETs are usually benign, but some of them 
are invasive and can cause serious outcomes similar to malig-
nant tumors. The invasive tendency is accounted for 49.7% 
of all GH-secreted PitNETs [70, 71]. Not only the normal 
anterior pituitary gland can synthesize and secret GH, but 
the tumor cells of GH-secreted PitNETs can also synthesize 
and secret GH, and the GH synthesized and secreted by GH-
secreted PitNETs is closely related to its invasive behavior 
[71–75]. Acromegaly is caused by excessive secretion of GH 
and is commonly caused by GH-secreted PitNETs [75]. A 
meta-analysis of surgical therapy of GH-secreted PitNETs 
found that preoperative GH level is an important outcome pre-
dictor of the remission rate of acromegaly [73]. GH-secreted 
PitNETs are divided into two subtypes, namely sparse gran-
ular type (SG) and dense granular type (DG) [73]. Studies 
showed that SG are more often associated with aggressive 
features, such as local invasion and cavernous sinus invasion, 
and when preoperative GH levels were correlated with histo-
logical subtypes of GH-secreted PitNETs, the tendency was 
found for SG tumors to be associated with lower basal GH 
levels. Although most studies have shown that SG adenomas 
are more often associated with invasive features, histological 
subtypes of SG and DG do not absolutely predict invasive 
behavior. There are various hypotheses about the reasons for 
the invasive behavior to grow under the saddle of GH-secreted 
PitNETs [74], including the effect of GH itself on sella thin-
ning, GH proteoforms of anterior pituitary, and the promotion 
of bone degradation by GH [74]. All of these show GH pro-
teoforms are highly related to the invasive behavior of GH-
secreted PitNETs. Therefore, exploration of GH proteoform 
atlas between invasive and non-invasive GH-secreted PitNETs 
will further clarify the relationship between GH proteoforms 
and the invasive behavior of GH-secreted PitNETs.

Future perspectives

Serum GH proteoforms and GHR proteoforms 
in target organs

GH has a series of functions-mainly promote the growth and 
development, modulate metabolism, and regulate immunity 
[16, 24, 27–32]. However, serum GH cannot perform its func-
tions unless it binds to human GHR in target organs. The 
main targeted organs of GH include the liver, bone, muscle, 
and immune system [16, 27–29, 32]. Thus, GHR is vitally 
crucial to transduction of downstream signals of GH and the 
implementation of different GH function. Therefore, it is very 
reasonable to infer that there are different GHR proteoforms in 
different targeted organs corresponding to various functions.

There are nine exons encoding GHR in chromosome 5 
[76–78]. Among them, the exons 2 to 7 encode extracellu-
lar part of GHR, binding specifically to GH. Currently, two 
human GHR mRNAs are identified, one contains exon 3 and 
the other excludes exon 3, and their expressions are tissue-
specific, thereby exon 3 might influence receptor signaling 
[76–78]. The dysfunction of GHR gene is found to relate 
to GH-related diseases. Laron-type dwarfism is an autoso-
mal recessive inheritance, with the characteristics of high 
concentration GH and low concentration IGF-1 (insulin-like 
growth factor-1) in the circulation [78]. Characterization of 
GHR gene from nine patients with Laron-type dwarfism 
showed that two patients have a deletion of a large portion 
of the hormone-binding domain of GHR gene, showing the 
defect of GHR gene is tightly related to Laron-type dwarfism 
[78]. Another analysis of the GHR-gene RNA transcripts 
revealed that Laron-dwarfism is caused by GHR gene abnor-
mality, and it may vary from family to family [79].

All of these studies indicated that there is not just one 
form of GHR, and different GHR proteoforms have different 
functions, and GHR proteoforms have a close relationship 
with GH-related diseases. However, currently, only several 
GHR proteoforms have been characterized, and their exact 
physiological functions and their relationships to GH-related 
disease have not been well clarified. Therefore, it should be 
laid emphasis on finding more GHR proteoforms and clari-
fying their physiological effects and pathogenesis of GH-
related diseases to promote the development of 3P medicine 
in GH-related diseases.

Serum GH proteoforms and GHR proteoforms 
in pituitary tissues for invasive behavior 
in GH‑secreting PitNETs

Currently, some studies have found GH concentration in 
serum is related to the invasive behavior and therapeutic 
effect of GH-secreted PitNETs [73, 74]. GH proteoforms in 
GH-secreting PitNETs show a significant difference, includ-
ing species, abundance, and PTMs compared to normal pitu-
itary glands [5, 9]. Moreover, different GHBP proteoforms 
and GHR proteoforms also show close relationship with GH 
signal transduction and GH-related diseases [3, 66, 67, 78, 
79]. Based on these studies, we can reasonably infer that 
serum GH proteoforms and GHR proteoforms in pituitary 
tissues may play an essential role in tumorigenesis, develop-
ment and its invasive behavior of GH-secreting PitNETs, and 
more studies are needed to explore the relationship among 
GH proteoforms, GHR proteoforms in pituitary tissues, and 
PitNET invasive behavior, which will reveal the mechanism 
of invasive behavior of GH-secreting PitNETs, develop tar-
geted drugs, and find specific biomarkers to achieve precise 
patient stratification and proper therapy methods, promoting 
3P medicine of GH-secreting PitNETs.
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Clinical problem‑driven study design for GH 
proteoforms

The judgement of invasiveness and drug resistance of Pit-
NETs is an intractable clinical problem. We emphasize the 
following studies on GH proteoforms: (i) it is a problem-
driven urgent work to find key molecules that are involved 
in the invasive behaviors of PitNETs. It is a valid study to 
compare the differences of GH proteoforms among inva-
sive PitNETs, non-invasive PitNETs, and normal control 
pituitary tissues or patient plasmas, which has huge poten-
tial for the development of targeted drugs to treat invasive 
PitNETs (Fig. 8). (ii) Currently, no specific drugs are used 
to treat PitNETs, especially invasive PitNETs; only sev-
eral drugs are used to lower the secretion of hormones or 
relief clinical symptoms; however, a relatively high rate 
of drug resistance occurs in the actual clinical practice. 
Thereby, the comparison of GH proteforms among drug-
resistant PitNETs, drug-sensitive PitNETs, and normal 
control pituitary tissues or patient plasmas is necessary 
to reveal the molecular mechanism of drug resistance, 
and guide precise clinical medication (Fig. 8). (iii) The 
comparison of GH proteoforms between PitNET tissue 
and plasma from the same patient can identify the same 
proteoforms between tumor tissue and plasma, which 
might be developed as biomarkers to screen invasive and 

drug-resistant patients for proper treatment, this screening 
can be achieved with non-invasive serological examina-
tion (Fig. 8). (iv) The previous publications demonstrate 
that many post-translation modifications, including gly-
cosylation, acetylation, ubiquitination, phosphorylation, 
and deamination occur in GH proteoforms. However, the 
functions of these modifications remain unclear. It is 
necessary to study the functions and action mechanism 
of each specific modification with multiple methodolo-
gies such as knock out, knock down, and overexpression 
of specific GH gene. (v) GH is involved in cell signal 
transduction, which might participate in the occurrence 
and progression of GH-secreted PitNETs. It is of great 
significance to clarify the functions of every GH proteo-
form and its relationship with GH-related diseases. (vi) 
2DE in combination with western blotting has a powerful 
capability to detect and separate different GH proteoforms 
according to their pI and Mr. However, how to purify and 
enrich each GH proteoform is still a technique bottleneck 
for top-down MS analysis. It is necessary to develop a 
new method to purify and enrich every GH proteoform. 
(vii) The structure of a biomolecule decides its specific 
function. It is worth studying the structures of every GH 
proteoform in future GH proteoformics to in-depth reveal 
the functions and mechanism of each GH proteoform in 
GH-related disease.

Fig. 8  The experimental 
flow-chart of GH proteofor-
mics analysis among invasive 
vs. non-invasive GH-secreted 
PitNETs compared to controls 
in tissues and plasma, or among 
drug-resistant vs. non-drug-
resistant GH-secreted PitNETs 
compared to controls in tissue 
and plasma. Red shape means 
invasive or drug-resistant GH-
secreted PitNETs. Orange shape 
means non-invasive or non-drug 
resistant GH-secreted PitNETs. 
Blue shape means normal 
controls. 2DE two-dimensional 
gel electrophoresis, LC liquid 
chromatography, MS/MS tan-
dem mass spectrometry
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Conclusions and expert recommendation 
in the framework of 3P medicine

GH, known as one of the most indispensable hormones for 
the growth and metabolism of human body, is identified to 
have a variety of proteoforms, and different GH proteoforms 
might have different functions and roles, and might have 
different relationships with different GH-related diseases. 
It is a significantly urgent work to clarify the function of 
every GH proteoform and its relationship with GH-related 
diseases. The clarification of different function of GH pro-
teoforms will help to find specific biomarkers to predict the 
risk of diseases, achieve early diagnosis and classification of 
diseases, and further conduct proper treatment for the best 
prognosis. Therefore, GH proteoformics offers great poten-
tial for insight into molecular mechanisms of GH-related 
diseases, and construction of effective biomarkers for predic-
tive diagnosis, prognostic assessment, and even discovery of 
novel therapeutic targets in the framework of PPPM.

We strongly recommend GH proteoformics studies in 
GH-related diseases towards PPPM practice. GH is encoded 
by GH gene. However, many factors such as PTMs, alter-
native splicing, conformation, binding proteins, and others 
cause different GH proteoforms at the protein level under 
the different pathophysiological conditions. We hypothesize 
that GH proteoforms are different in GH-related diseases 
vs. normal controls, invasive vs. non-invasive PitNETs, and 
drug-resistant vs. drug-nonresistant PitNEts. The abnormal 
GH proteoforms or abnormal GH proteoform patterns are 
the important resource for insight into molecular mecha-
nisms of GH-related diseases, invasive PitNETs, and drug-
resistant PitNETs, discovery of effective therapeutic targets, 
and construction of GH proteoform biomarkers for patient 
stratification, and personalized medical services towards 
PPPM. The GH proteoformics offers the PPPM innovation 
in the following three aspects.

 (i) Predictive approach: GH proteoformics is a com-
pletely innovative concept, which enables to clarify 
the fine structure and function of GH in GH-related 
diseases, such as GH-secreting PitNETs. Invasive 
behavior is the challenging clinical problem. Cur-
rently, the GH concentration in plasma has been 
found to be related to the invasiveness of GH-
secreted PitNETs [71–75]. The higher the plasma GH 
level, the more likely the GH-secreted PitNETAs is 
to be invasive. Moreover, per-operative plasma GH 
half-life is also found to be related to the complete-
ness of surgery in acromegaly [80]. However, pre-
vious studies were only conducted from the overall 
level of plasma GH. If more in-depth and detailed 
studies can be conducted from the level of GH prote-
oform and GH proteoform pattern unique to invasive 

GH-secreted PitNETs are found, it would be very 
inspiring to use the unique GH proteoform pattern 
to predict the invasiveness of GH-secreted PitNETs, 
guide doctors to make clinical decisions based on the 
judgement of tumor invasiveness, and conduct the 
prognosis of patients as the follow-up indicator. 2DE-
LC/MS is an effective method to array and identify 
GH proteoform pattern changes in invasive vs. non-
invasive PitNETs. The changed GH proteoform pat-
tern might be the effective predictive biomarkers 
for early-stage predictive diagnosis and prognostic 
assessment of invasive behaviors of PitNETs towards 
the innovative predictive approach.

 (ii) Targeted prevention: different GH proteoforms 
derived from the same GH gene are related to differ-
ent GH-related diseases. For example, identification 
of any GH proteoform specific to invasive behaviors 
of PitNETs, and if this GH proteoform is involved 
in the molecular mechanism of PitNET invasive 
behaviors, then it is possible to develop the inhibi-
tors or transform them, further reducing or eliminat-
ing the invasiveness and maximizing the benefits to 
the patients, which will be the innovative therapeutic 
target for targeted prevention and targeted therapy of 
invasive GH-secreting PitNETs. In addition, the GH 
must bind to its receptor in the targeted cells, targeted 
tissues and targeted organs to implement its function. 
If the tumor is aggressive, the GHR proteoforms may 
be changed. Therefore, if the unique GHR proteo-
form pattern of invasiveness is found, it is possible 
to develop the inhibitors or transform them, further 
delaying or reversing the patient’s clinical symptoms. 
it is possible to develop the inhibitors or transform 
them, further reducing or eliminating the invasive-
ness and maximizing the patient's recovery.

 (iii) Personalization of medical services: the 2DE pattern 
of GH proteoforms can be developed as effective bio-
markers for patient stratification, predictive diagno-
sis, prognostic assessment, and personalized treat-
ment towards innovative personalization of medical 
services. If GH proteoform pattern unique to invasive 
GH-secreted PitNETs are found, it would be used to 
predict the invasiveness of GH-secreted PitNETs and 
guide doctors to the make clinical treatment accu-
rately based on the judgement of tumor invasiveness, 
further providing personal medical services.

In summary, quantitative GH proteoformics can detect, 
identify, and quantify GH proteoforms, and GH proteo-
form pattern alterations, which is an innovative area for 
GH-related diseases, such as PitNETs. The abnormal GH 
proteoforms, or GH proteoform pattern will provide novel 
insight into molecular mechanisms, therapeutic targets, and 
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discovery of effective biomarkers of GH-related diseases 
towards predictive diagnosis, targeted prevention, and per-
sonalized medical service. This present GH proteoformics 
demonstrates an innovative, GH proteoform-based state of 
the art contributing to the paradigm shift from reactive medi-
cine to PPPM in human GH-related diseases.
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