Skip to main content
. 2023 Aug 19;13:13510. doi: 10.1038/s41598-023-40564-0

Table 3.

Comparative results of six different ML algorithms using classification accuracy ± standard deviation.

A1 A2 A3 A4 A5 Avg.
Scheme Lin. RBF
Sp 0.99 ± 0.00 0.96 ± 0.01 0.97 ± 0.00 0.81 ± 0.07 0.92 ± 0.01 0.95 ± 0.02 0.93
St 0.99 ± 0.00 0.92 ± 0.01 0.96 ± 0.01 0.75 ± 0.10 0.93 ± 0.01 0.92 ± 0.01 0.91
Ind 0.99 ± 0.00 0.94 ± 0.01 0.95 ± 0.01 0.92 ± 0.02 0.93 ± 0.01 0.94 ± 0.00 0.94
Sp+St 0.99 ± 0.00 0.97 ± 0.00 0.97 ± 0.01 0.83 ± 0.07 0.93 ± 0.01 0.95 ± 0.00 0.94
Sp+Ind 0.99 ± 0.00 0.96 ± 0.01 0.98 ± 0.00 0.77 ± 0.01 0.95 ± 0.01 0.96 ± 0.00 0.93
St+Ind 0.99 ± 0.00 0.95 ± 0.00 0.97 ± 0.00 0.77 ± 0.10 0.94 ± 0.01 0.97 ± 0.00 0.93
Sp+St+Ind 0.99 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.87 ± 0.10 0.95 ± 0.01 0.96 ± 0.00 0.95

Note that A1, A2, A3, A4, and A5 denote RF, SVM with Linear kernel, SVM with RBF kernel, ANN, NB, and GLM algorithms, respectively. Significant values are in bold.