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Screening adequacy of unstained 
thyroid fine needle aspiration 
samples using a deep 
learning‑based classifier
Junbong Jang 1,2, Young H. Kim 3*, Brian Westgate 1, Yang Zong 4, Caleb Hallinan 2, 
Ali Akalin 4* & Kwonmoo Lee 1,2,5*

Fine needle aspiration (FNA) biopsy of thyroid nodules is a safe, cost-effective, and accurate diagnostic 
method for detecting thyroid cancer. However, about 10% of initial FNA biopsy samples from patients 
are non-diagnostic and require repeated FNA, which delays the diagnosis and appropriate care. 
On-site evaluation of the FNA sample can be performed to filter out non-diagnostic FNA samples. 
Unfortunately, it involves a time-consuming staining process, and a cytopathologist has to be present 
at the time of FNA. To bypass the staining process and expert interpretation of FNA specimens at 
the clinics, we developed a deep learning-based ensemble model termed FNA-Net that allows in situ 
screening of adequacy of unstained thyroid FNA samples smeared on a glass slide which can decrease 
the non-diagnostic rate in thyroid FNA. FNA-Net combines two deep learning models, a patch-based 
whole slide image classifier and Faster R-CNN, to detect follicular clusters with high precision. Then, 
FNA-Net classifies sample slides to be non-diagnostic if the total number of detected follicular clusters 
is less than a predetermined threshold. With bootstrapped sampling, FNA-Net achieved a 0.81 F1 
score and 0.84 AUC in the precision-recall curve for detecting the non-diagnostic slides whose follicular 
clusters are less than six. We expect that FNA-Net can dramatically reduce the diagnostic cost 
associated with FNA biopsy and improve the quality of patient care.

Fine needle aspiration (FNA) biopsy of thyroid nodules is a safe, cost-effective, and the most accurate method 
for diagnosing whether the thyroid nodule is benign or cancerous1. It is estimated that about 300,000 new thy-
roid nodules occur annually in the United States2. However, about 10% of initial FNA biopsy samples are 
non-diagnostic (i.e., inconclusive results) due to several reasons: cystic fluid or bloody smears in the aspirated 
sample, operator experience, needle type, aspiration technique, vascularity of nodule, and the criteria used to 
judge the adequacy of the specimen2,3. The failure to obtain adequate biopsy samples poses a delay in the treat-
ment of patients with thyroid cancer because the patient must return for another FNA biopsy. Considering a 
5% malignancy rate in patients with initial non-diagnostic FNA4, some patients lose a precious opportunity to 
get treatments promptly.

In the current standard of care, interpretation of FNA results is performed in the cytology department well 
after the biopsy procedure is completed and biopsy samples are stained. Papanicolaou staining makes the nuclei 
of follicular cells dyed blue and dying cells or cell debris in red so that follicular cells are easily distinguished from 
other cells5,6. After staining, pathologists evaluate the adequacy of the FNA samples from patients and decide 
their adequacy. The adequacy of the unstained sample can be assessed by Rapid On-Site Evaluation (ROSE)7,8 
or Rapid On-Site Adequacy Assessment (ROSAA)9 at the time of FNA at the clinics. However, ROSE or ROSAA 
needs trained cytopathologists with limited availability or alternative evaluators who are less accurate10. Even 
though staining is necessary for correct pathologic diagnosis, there is not a significant difference in the accuracy 
of assessing the adequacy between unstained and stained FNA samples smeared on slides11. Therefore, to avoid 
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the additional cost and time involved in the staining procedures, we aim to screen the adequacy of the unstained 
FNA sample automatically by a computational pipeline without trained experts at the point of care.

Distinguishing follicular cells from other cells in the unstained FNA biopsy sample is challenging due to the 
irregular shapes and complex mixtures composed of follicular cells, red blood cells, lymphocytes, macrophages, 
endothelial cells, and stromal tissues. Despite this difficulty, a machine learning algorithm could learn mor-
phological descriptors to detect red blood cells on an unstained slide12. Moreover, the deep learning-based 
model that uses Convolutional Neural Network (CNN) has superior performance to the traditional machine 
learning methods in the classification of ImageNet13. CNN is successfully applied to classify papillary thyroid 
carcinomas in stained FNA biopsy samples14,15 and predict malignancy in whole slide image of thyroid FNA 
samples16. However, to the best of our knowledge, the deep learning method has not been applied to screen the 
adequacy of unstained FNA samples.

We present the deep learning-based FNA whole slide classifier (FNA-Net) that can screen the adequacy of 
unstained FNA slides. FNA-Net comprises two models, patch-based whole slide image classifier17 and Faster 
R-CNN18. FNA-Net combines the follicular detection results from two models by overlapping them to make the 
final detection. The patch-based whole slide image classifier has the VGG19 encoder pretrained on ImageNet19, 
effective for a limited amount of data20–23. Moreover, the patch-based whole slide image classifier is trained by 
multi-task learning (MTL), in which auxiliary tasks are regression, image reconstruction and segmentation. Thus, 
we abbreviate the patch-based whole slide image classifier as the MTL classifier. MTL applied to deep learning 
improves the performance of classification20 and clustering24,25 by having the the shared encoder that learns the 
shared representation across different tasks. The previous study employed trainable weight parameters to bal-
ance one classification and two regression tasks by automatically tuning loss weights among different tasks26. 
We utilize this method to train MTL classifier without manually adjusting training loss weights for each task.

Finally, the follicular cluster detection results from every patch of the whole slide are used to classify the 
adequacy of the whole slide by counting the number of patches containing follicular clusters. For evaluation, we 
bootstrapped the test images, representing one slide, into 10,000 slides which are either adequate or inadequate 
based on the number of follicular clusters present in total. Under our simulated setting, FNA-Net achieved a 
0.81 F1 score and 0.84 AUC in the precision-recall curve for detecting the non-diagnostic slides which contain 
less than six follicular clusters.

Results
FNA‑net pipeline.  The FNA-Net pipeline works in two stages. In the first stage (Fig. 1), FNA-Net trains 
on the paired unstained and follicular cluster labeled images in a training set to detect follicular clusters with 
high precision. Two deep learning models, patch-based whole slide image classifier (MTL Classifier) and Faster 
R-CNN trains separately. Their follicular cluster detections are overlapped only for evaluation on the test set. In 
the second stage, the adequacy of the unstained FNA sample is classified based on the total number of detected 
follicular clusters from the first stage. We count all detected follicular clusters in all image patches from a slide 
and classify the slide as adequate if the number of predicted follicular is greater than or equal to the threshold 
predetermined by the user (user threshold). Only the first stage requires training and inference of the deep 
learning models, and the second stage performs simple algorithmic operations based on the results from the 
first stage.

Training dataset.  A low-cost slide scanner (Fig. 2b) attached to a bright-field microscope was used to take 
images of all FNA biopsy samples (Fig. 2c, d). The unstained slides were imaged and then stained with Papani-
colaou stain and reimaged (Fig. 2a). In total, unstained and stained FNA biopsy samples were taken from six 
patients, with 21 slides to evaluate (see Methods for details). Ground truth follicular clusters in the unstained 
images were labeled with the help of pathologists. Follicular cells tend to be clustered together, while other 
morphologically similar cells such as lymphocytes or macrophages tend to be dyscohesive or isolated from each 
other. Compact follicular cell clusters covered by blood or stromal tissues were not labeled since they are chal-
lenging to see through and use for diagnosis.

Patch‑wise follicular cluster classification with multi‑task learning.  We took a multi-task learning 
(MTL) approach for patch-wise classification by adding auxiliary tasks, which are regression, image reconstruc-
tion, and segmentation, to the classification model. For classification and regression tasks, one MLP layer with 
512 hidden units was used. For segmentation and image reconstruction tasks, upsampling structure like U-Net27 
decoder was used (Fig. 1). The classification task detects any follicular cluster in the image patch. The regres-
sion task estimates the size of the follicular clusters in pixels per image patch. The image reconstruction task 
reconstructs the input image as close as possible. The segmentation task predicts the follicular cluster’s location 
pixel-wise.

The total loss is calculated by a weighted sum of classification, regression, image reconstruction (autoencoder), 
and segmentation losses. Since finding optimal loss weights manually is time-consuming and computationally 
expensive, we optimized the loss weights as trainable parameters during training26. Among combinations of 
tasks used to train MTL models, having segmentation tasks together with classification (Model 7) yielded the 
best performance in precision while autoencoder (Model 3) produced the highest recall (Fig. 3a, Tables 1, S1). 
In our application, high precision is preferred to high recall because overestimating the number of follicular 
cells incurs higher medical cost. Adding regression tasks to the MTL model (Model 1) was detrimental to the 
classification accuracy. Instead of having as many tasks as possible, which can lead to negative transfer28, choos-
ing a few relevant tasks for the primary task yields better performance. Also, we showed that optimizing the loss 
weights during training yields higher performance than assigning equal weights to each loss or manually tuning 
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loss weights given limited computational resources. Among the loss weights manually chosen for segmentation 
tasks such as 0.25, 0.5, 0.7, 0.75, 0.8, and 1, the weight 0.75 yielded the best classification accuracy (Model 6). 
However, this manually chosen loss weight did not outperform the loss weights optimized during training.

Follicular cluster detection by MTL, faster R‑CNN, and FNA‑net.  For final follicular cluster detec-
tion, FNA-Net combines outputs from the best performing MTL model found in the previous section with 
results from separately trained Faster R-CNN. Similar to our MTL models, Faster R-CNN18 also has multiple 
tasks, which are classification and bounding box regression tasks in the architecture. However, Faster R-CNN is 
trained on the whole image without cropping it into smaller patches. Follicular cluster detections by MTL, Faster 
R-CNN, and FNA-Net (the intersection of MTL and Faster R-CNN) models on unstained images are shown in 
Fig. 3b and Supplementary Fig. 1. MTL detects large regions as follicular clusters, which overestimates the size 
of ground truth follicular clusters. In contrast, Faster R-CNN detects a much fewer number of follicular clusters 
that are smaller in size but misses the ground truth follicular clusters. When the detections from MTL and Faster 
R-CNN models are combined by overlapping them, the false detection from MTL is ignored by Faster R-CNN, 
and the false detection from Faster R-CNN is sometimes ignored by the MTL model. As a result, FNA-Net 
increases the IOU and reduces the number of false positives which increases the precision.
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Figure 1.   FNA-Net Architecture. Combination of detection results from Multi-task learning (MTL) classifier 
and Faster R-CNN that take the same FNA biopsy image as an input. MTL classifier crops the large image into 
256 × 256 pixel patches before training or inference. ReLU activation layer comes after every convolutional 
layer marked by blue. GAP is a global average pooling layer that aggregates 256 × 256 × 512 feature maps into 
1 × 1 × 512 feature vectors by averaging the spatial dimensions. The U-Net decoder performs segmentation 
as an auxiliary task during training to improve classification accuracy. Segmentation results from the U-Net 
decoder are not used in the inference step for follicular cluster detection. U-Net decoder has skip connections 
that concatenate encoded features from VGG19 Encoder with the decoded features. MLP layer outputs one 
value through sigmoid activation layer, indicating whether one 256 × 256 pixel patch contains a follicular cluster. 
All patches containing follicular clusters are stitched together to form one detection result on the unstained 
image. During inference, the follicular cluster detection results from the MTL classifier and Faster R-CNN are 
overlapped to finalize inference, the follicular cluster detection.
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For evaluation, we counted the number of true positives (TPs), false positives (FPs) and false negatives (FNs). 
True positive means that one or more predicted follicular cluster boxes overlap with the ground truth box by at 
least one pixel (see Methods for details). There are 41 images in the test set containing 37 ground truth follicular 
clusters in total. The overlapped area is not considered in the evaluation because our goal is to count follicular 
clusters in the slide to assess its adequacy, instead of localizing the follicular clusters. For instance, in one of the 
test set, MTL model has 27 TPs, 10 FNs and 34 FPs. Faster R-CNN model has 16 TPs, 21 FNs and 6 FPs. FNA-
Net has 16 TPs, 21 FNs and 3 FPs. FNA-Net reduced the number of FPs by half while having the same number 
of TPs and FNs as Faster R-CNN model.

Based on the number of TPs, FNs, and FPs, the precision, recall, and F1 scores are calculated (see Methods 
for details) (Fig. 3c, Table S1). FNA-Net achieved significantly higher average IOU than MTL. FNA-Net’s IOU, 
precision, recall, and F1 score are 0.290, 0.688, 0.305, and 0.417, respectively. MTL model’s IOU, precision, recall, 
and F1 score are 0.149, 0.621, 0.466, and 0.521, respectively. Faster R-CNN model’s IOU, precision, recall, and 
F1 score are 0.250, 0.329, 0.505, and 0.359, respectively. Interestingly, the MTL model has high precision and 
low recall, while the Faster R-CNN has high recall and low precision. FNA-Net significantly improved its preci-
sion and IOU over MTL (p-value: 0.0156) by combining two different models with opposite precision-recall 
performance. The precision of FNA-Net was significantly increased over Faster-RCNN (p-value: 0.0156) because 
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Figure 2.   Unstained and Stained image of Fine Needle Aspiration sample. (a) Unstained image on the left and 
its corresponding stained image on the right are taken at 20X magnification. The stained image is approximately 
registered to the original image. The blue and purplish regions in the stained image indicate where follicular 
clusters are likely located. (b–d) Data Acquisition by Low-cost Slide Scanner. (b)Low-cost slide scanner 
comprised of gears, motors, electrical components such as Arduino and the glass slide clip. (c) Low-cost 
slide scanner attached to the bright-field microscope with the glass slide on the clip. (d) Thyroid Fine Needle 
Aspiration sample smeared on a glass slide is taken in order indicated by the green arrows.
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Figure 3.   Follicular cluster detection results by MTL, Faster R-CNN, and FNA-Net. (a) Performance of multi-task learning 
models. The color of each model in the table corresponds to the color of bar in the bar graph. Weights for classification task 
is fixed to 1 and weights for other tasks are specified (✓: variable, the weights are automatically optimized during training). 
The statistical significance between the Model 7 and each of the other models are shown only. Significance was tested by the 
two-sided Wilcoxon signed-rank test. *p < 0.05. Error bars: one standard deviation. (b) The first column is the follicular cluster 
detection by the MTL model. The second column is the follicular cluster detection by the Faster R-CNN model. The third or 
last column is the follicular cluster detection by combing predictions from MTL and Faster R-CNN models. In the corner of 
each image, the number of true positives, false positives and false negatives are indicated next to the letters TP, FP, and FN, 
respectively. Each row has the same underlying image with the same ground truth. The ground truth is colored red, detection 
by the model is colored green, and the overlap between ground truth and detection is colored yellow. (c) The bar graph 
compares the average IOU, precision, recall, and F1 among MTL, Faster R-CNN, and FNA-Net. All four metrics range from 
0 to 1, higher the better. The statistical significances between models within each metric (IOU, precision, recall, and F1 score) 
are shown. Significance was tested by the two-sided Wilcoxon signed-rank test. *p < 0.05. Error bars: one standard deviation.
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FNA-Net mainly reduces the number of false positives, which affects the precision. The detection of follicular 
clusters with high IOU and precision is crucial for minimizing the overestimation of the number of follicular 
clusters in the sample slides as shown in the next section.

Simulated screening adequacy of the slides by bootstrapping.  The follicular cluster detection 
accuracy per image does not reflect the model’s ability to screen thyroid FNA slides. Instead, we need multiple 
slides in a test set to evaluate the screening accuracy. Due to the limited amount of testing set, multiple slides 
with and without adequate follicular clusters were simulated from the test set by bootstrapping, which is random 
sampling with replacement. Hierarchical bootstrapping was used instead of the normal bootstrapping because 
our dataset is multi-level, in which the first level corresponds to patients and the second level corresponds to the 
images from a patient’s FNA biopsy. In this case, hierarchical bootstrapping allows a more balanced sampling 
of follicular and background classes than normal bootstrapping. The ratio between the number of follicular 
and background classes is about 1:20 in normal bootstrapping, whereas, in hierarchical bootstrapping, the ratio 
becomes about 1:3.

To generate new diversified datasets that retain the variability of sample adequacy and the variability of 
images from each patient, we performed the hierarchical bootstrapping comprised of patient-level and image-
level bootstrapping (Fig. 4a). In the patient-level bootstrapping, six patients were randomly sampled with rep-
etition 10,000 times, so that there are 10,000 bootstrapped patient groups comprised of six patients. Then, 41 
testing images were sampled with repetition from each patient group to generate one bootstrapped slide. By 
repeating this step, 10,000 slides with either adequate or inadequate follicular clusters were bootstrapped. Each 
bootstrapped slide has 41 images with the corresponding number of follicular cluster detections and ground 
truth follicular clusters. The histograms in Fig. 4b show that the distribution of bootstrapped follicular cluster 
detection is more skewed to the left than the distribution of bootstrapped ground truth follicular clusters. This 
means that the bootstrapped test set contained fewer follicular cluster detections by the model than the number 
of ground truth follicular clusters because FNA-Net had relatively low recall values.

We define the threshold as the minimum number of follicular clusters to diagnose a slide to be adequate. 
There are two thresholds, the ground truth threshold determined by the medical experts and the user threshold 
that can be adjusted by the user depending on which metric, precision or recall, needs to be higher. The thyroid 
FNA sample smeared on the glass slide is evaluated to be adequate if the slide has at least six follicular clusters, 
each containing about 10–15 follicular cells2,29,30. Therefore, we set the ground truth threshold to 6. We also 
evaluated the ground truth threshold equal to 10, for the case where clinicians want to have a more stringent 
criterion for sample adequacy.

The scatter plot in Fig. 4c has the red line indicating the threshold value of 10 for both ground truth and the 
predicted minimum number of follicular clusters. These lines separate the plot into four quadrants. Starting from 
the top left quadrant and going clockwise, each quadrant represents false negative (FN), true negative (TN), false 
positive (FP), and true positive (TP), where the positive class is for inadequate (non-diagnostic) slides, and the 
negative class is for adequate (diagnostic) slides. Therefore, the true positive means that inadequate slide is cor-
rectly classified as inadequate (see Methods for details). The total number of points in each quadrant represents 
each of FN, TN, FP and TP. The number of TPs and TNs are the most abundant, and the number of FNs is the 
lowest, suggesting that it is much less likely to classify inadequate slides to be adequate.

Same as the previous section, the precision, recall, and F1 scores are calculated based on the number of TPs, 
FNs, and FPs (see Methods for details). When the user threshold which represents the minimum number of 
predicted follicular clusters, increases from 1 to 39 or to 23 (Fig. 5a, c), recall increases while precision decreases. 
In the case of the ground truth threshold, 10 (Fig. 5a), the classifier reached maximum F1, 0.918 with precision, 
0.884, and recall, 0.955, when the user threshold is 26. Similarly, in the case of the ground truth threshold, 6 
(Fig. 5c), the classifier reached maximum F1, 0.811 with precision, 0.720, and recall, 0.928, when the user thresh-
old is 19. These results show that the user can adjust the user threshold to optimize the classifier performance 
by balancing the values of precision and recall. The user thresholds are much greater than the ground truth 
thresholds because FNA-Net tends to overestimate the number of follicular clusters in a slide.

Table 1.   Patch-wise classification performance of multi-task learning models. Weights for classification task 
is fixed to 1, and weights for other tasks are either 0 or ✓, which means that the weights are automatically 
optimized during training. The mean precision, recall and F1 from sevenfold cross validation are shown for the 
classification results. Reg, Aut and Seg represent regression, autoencoder, and segmentation tasks, respectively. 
The highest value for each metric is highlighted in bold.

Number of tasks

Task weights Classification results

Class Reg Aut Seg Precision Recall F1

1 1 0 0 0 0.483 0.534 0.501

2 1 ✓ 0 0 0.513 0.460 0.474

2 1 0 ✓ 0 0.485 0.562 0.510

2 1 0 0 ✓ 0.621 0.466 0.521

2 1 0 0 0.75 0.576 0.471 0.512

3 1 0 ✓ ✓ 0.538 0.502 0.510

4 1 ✓ ✓ ✓ 0.400 0.361 0.368
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High recall and low precision in the slide classification means that FNA-Net is careful not to classify inad-
equate slides to be adequate but sometimes even classify adequate slides to be inadequate. Clinically, having a 
high recall/low precision is preferred to having a low recall/high precision because it is more costly to have a 
high number of FNs than a high number of FPs. If the model incorrectly classified a slide to be adequate when 
it is inadequate (FN), the inadequacy of the slides would be found after staining the slide a few days later. Then 
the patient would have to revisit the clinic for the second FNA biopsy procedure. Therefore, giving more weight 
on recall than precision when choosing the user threshold can be desirable rather than maximizing F1 score.

To compare the performance of the three models, we bootstrapped another 10,000 samples from the test set 
using a different random seed to show consistency of our results regardless of which samples are bootstrapped. 
First, we plot precision-recall curves over a wide range of threshold values and calculate their AUC (Area Under 
the Curve) (Fig. 5b, d, e). We also applied the user threshold that maximized the F-1 scores in the previous 
samples (Fig. 5a, b) to the second bootstrapped samples to compare the model performance (Fig. 5f). When 
the ground truth threshold equals 10, FNA-Net has the highest AUC of 0.953 and F1 of 0.915, and MTL follows 
FNA-Net with an AUC of 0.941 and an F1 of 0.866. Faster R-CNN has an AUC of 0.849 and an F1 of 0.348 due to 
low precision over many threshold values. When the ground truth threshold equals 6, the overall performance of 
the models decreased because models overestimate the number of follicular clusters and passes some inadequate 
slides; an AUC of 0.840 and an F1 of 0.790 for FNA-Net, an AUC of 0.807 and an F1 of 0.693 for MTL, and an 
AUC of 0.711 and an F1 of 0.174 for Faster R-CNN. However, FNA-Net significantly achieves higher performance 
than standard Faster R-CNN, regardless of the ground truth thresholds (Fig. 5e, f) (p-value: 0.0156 for RCNN vs 
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Figure 4.   Hierarchical Bootstrapping Procedure and summary of the bootstrapped samples. (a) Hierarchical 
Bootstrapping. Any of six patients are randomly sampled with repetition to create 10,000 new groups by patient 
level bootstrapping. Then, 41 images are randomly sampled without repetition from six patients in a group 
by image level bootstrapping. The red circle represents a patient with an adequate FNA biopsy sample, and 
the green circle represents a patient who does not have an adequate FNA biopsy sample. One patient group 
containing six patients are bootstrapped patient-wise such that there are 10,000 patient groups with different 
combination of patients. (b) Distribution of samples of follicular clusters for ground truth and prediction. The 
orange color represents the bootstrapped predictions from the FNA-Net. The overlap between the ground truth 
in blue and the prediction in orange is shown in darker orange color. (c) Scatter plot of predicted and ground 
truth number of follicular clusters in the bootstrapped samples. Each blue dot represents a bootstrapped sample. 
The linear line in dark blue is fit to the scatter points. The linear line’s slope, y-intercept, and goodness of fit R2 
are on the top of the graph. Red lines are drawn at threshold value equal to 10 which separate the graph into the 
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FNA-Net, Table S3, 4). This is because combining the outputs of the MTL classifier and Faster R-CNN increases 
the IOU and reduces the number of false positives in the follicular cluster detection.
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seed for sampling. (e) Comparison of AUCs of the precision-recall curves in (b) and (d). For both thresholds 
6 and 10, FNA-Net yields significantly higher AUC than Faster R-CNN. (f) Comparison of maximum F1s at 
the optimal user thresholds found in (a) and (c). The performance of models on boostrapped samples at user 
thresholds 6 and 10 are shown in blue and orange, respectively. The statistical significance between models are 
shown. Significance was tested by the two-sided Wilcoxon signed-rank test. *p < 0.05. Error bars: one standard 
deviation.
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Discussion
We showed that our pipeline, FNA-Net, comprised of a low-cost imaging system and deep neural networks, 
can be used by clinicians at outpatient clinics to evaluate unstained thyroid FNA slides in situ and determine 
whether further aspirations are needed. High precision detection of follicular clusters by FNA-Net allowed us 
to build a simple classifier to screen inadequate slides by counting the number of identified follicular clusters. A 
user can flexibly adjust the recall and precision of the detection of inadequate slides depending on the costs of 
Type I/II errors. This will substantially reduce delays and costs in diagnosis and patient revisits related to FNA 
biopsy. Moreover, FNA-Net can be applied to other FNA samples in many benign or malignant diseases if dif-
ferent labels are provided for training.

For a proof of concept, the evaluation of slide screening was performed on simulated slides by bootstrapped 
resampling, due to the limited amount of test set. To deploy our model, we need to train our model with more 
extensive datasets and perform a prospective study to validate it in clinical settings. For more accurate follicular 
cluster detection, unstained images can be taken in higher magnification, such as 100X. At the current magni-
fication of 20X, finding general regions of follicular clusters is possible, but distinguishing individual follicular 
cells are difficult. However, higher magnification will significantly increase the time required to acquire images 
of the slide, so the current magnification of 20X is the most appropriate for fast screening. So far, we have only 
utilized stained images for labeling the follicular, but we can employ the image-to-image translation method31 
to virtually stain the unstained images and train FNA-Net on the stained images. By adding color information 
to the unstained image, FNA-Net may distinguish follicular clusters more easily.

FNA-Net demonstrated appealing deep learning applications to the point-of-care (POC) devices analyz-
ing complex FNA samples. It did not require time-consuming manual staining processes and high-end light 
microscopes, and the deep learning inference can be made at the local device level. Therefore, we envision that 
FNA-Net embedded in POC devices can significantly reduce the diagnosis costs and improve the care of patients.

Methods
Dataset.  FNA was performed on thyroid nodules using plastic syringes with 25- or 27-gauge needles. Two 
to four passes were performed, and the material was placed and smeared on positively charged slides. Then, 
the needles were rinsed in CytoRich Red vials to prepare a ThinPrep slide with the remaining material. The 
smear slides were immediately placed and kept in vials filled with 95% alcohol until they were transported to 
the cytology lab, where they were imaged. Then the slides were stained with Papanicolaou stain and reimaged 
(Fig. 2a). In total, unstained and stained FNA biopsy samples were taken from six patients, with a total of 21 
slides to evaluate. All studies were performed in accordance with the guidelines and regulations of University 
of Massachusetts Medical School institutional review board (IRB) protocol, and approved by the IRB at Univer-
sity of Massachusetts Medical School (IRB ID: H00013974). Patient written consent was waived by the IRB at 
University of Massachusetts Medical School because the research was restricted to the analysis of de-identified 
cytology specimens.

A low-cost slide scanner attached to a bright-field microscope was used to take images of all FNA biopsy 
samples. The size of the glass slides was 75 by 26 mm and about 1 mm thick. Ground truth follicular clusters in 
unstained images were labeled with the help of two pathologists. The label has two categories: follicular cluster 
and background. Follicular clusters are colored white, and the background is colored black.

From 21 slides of unstained FNA biopsy samples from six patients, we obtained 287 images of size 2592 × 1944 
pixels with three channels. Each unstained image was matched with its corresponding stained image to label the 
location of follicular clusters. On each unstained image, we labeled follicular clusters containing at least 10–15 
cohesive follicular cells2,29,30. Images without any follicular clusters are classified as background class. The ratio 
of follicular cluster class to background class among 287 images is about 1:4. Images from unstained smears 
were taken at 20× magnification, and images from stained smears were taken at 100× magnification for accurate 
identification of follicular clusters and labeling.

Slide scanner.  Whole slide imaging is one of the ways to collect digital images for primary diagnosis, but 
it is not available in many pathology departments32. Therefore, we built a low-cost slide scanner that is more 
affordable than commercially available whole slide scanners to take digital images of the whole slide. The scanner 
moves a slide vertically and laterally on a flat surface via small knobs. The entire device fits in a footprint about 6 
inches by 3 inches and stands less than 3 inches tall. Also, it is lightweight and can be placed on any microscope 
stage with a simple hand clamp (Fig. 2b, c). OMAX mechanical stage was chosen as the foundation to develop 
automated capabilities. This device was automated by mounting two 26Ncm NEMA 17 motors next to the knobs 
and connecting them with large gears. A 12 V, 2Amp DC power supply was used to power the motors. The 
mounting frames and gears were all custom designed, and 3D printed to fit desired constraints. An Arduino 
CNC shield was used as the motor controller because it was very small, inexpensive, and could operate through 
a serial port interface. The Arduino mounts directly to the device on the clamping platform. Arduino in LSS is 
interfaced with an Amscope USB camera through the serial port connection. The script written in Python sends 
G-code commands to incrementally step through all locations on a slide, taking pictures at each step (Fig. 2d). 
LSS takes images of the entire slide surface in 3 min at 20× magnification.

Dataset preparation.  Images from six patients were combined, randomly shuffled, and split into 7 smaller 
groups, each group containing 33 images in background class and 8 images in follicular class. One of the groups 
is left out as a test set, or validation set, and the remaining 5 groups were used for training (Table 2). To train deep 
learning models, images of size 2566 × 1966 pixels were cropped into 256 × 256 patches with 50% overlap with 
neighboring patches. Overlapping has the effect of data augmentation and preventing small follicular clusters 
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from being ignored when the follicular cluster area is split into two patches during cropping. Given ground truth 
labels for follicular clusters, we considered the patch to contain follicular clusters if the ground truth follicular 
cluster’s area was greater than 655 (256 × 256 × 1%) pixels in the patch.

Multi‑task learning for patch‑wise classification.  Classification loss is the sigmoid focal loss to reduce 
the effect of too many negative examples in the imbalanced dataset. Regression loss is the mean absolute error 
(MAE). Autoencoder, or image reconstruction loss, is mean squared error (MSE). The segmentation loss is 
binary cross-entropy loss used for segmentation by U-Net27. In the equations below, yi represents the ground 
truth value and ŷi represents the predicted value by the model. β and γ are equal to 0.5 and 2, respectively. In the 
total loss, α is the trainable parameter and is first initialized to 0 such that each loss starts with equal weights. The 
final three terms are for regularization to prevent each loss weight from converging to 0. We didn’t put any train-
able weight for the classification task because we empirically observed that the accuracy of the model increases 
without trainable loss weight for the classification task.

Object detection algorithm.  Instead of pixel-wise classification in semantic segmentation, object detec-
tion draws a rectangular box around the object which the model was trained to detect. Since our goal is to screen 
the adequacy of the FNA biopsy sample, accurate segmentation of the follicular clusters is not necessary. Instead, 
counting follicular clusters per image suffices the need. Among various object detection models, some have a 
fast inference time, such as YOLO33, while others have higher accuracy with slow inference time. Our criterion 
for choosing the model is the high accuracy with a total inference time of less than several seconds. Using 
Tensorflow Object Detection API34, we trained Faster R-CNN with Inception-Resnet v235 backbone and atrous 
convolutions on our training/validation dataset.

Faster R-CNN is the two-stage object detection algorithm. In the first stage, features are extracted by the 
backbone CNN and several regions of interest are selected by the region proposal network using extracted 
features. In the second stage, proposed regions are transformed to have the same size through the ROI pooling 
layer, and multiple fully-connected (FC) layers are used to perform multiple tasks such as classifying regions and 
estimating the location of each region to draw a boundary box around.

Training details.  The MTL classifiers were configured with the following hyperparameters: Adam optimizer 
with learning rate = 10–5, batch size = 64, input size = 128, output size = 68, early stopping patience = 10. VGG19 
was ImageNet pretrained and fine-tuned without freezing any weights. The binary cross-entropy was used as a 
loss function for training. To avoid overfitting, we used the early stopping, so training stopped when the valida-
tion loss did not decrease during the three consecutive epochs. Early stopping patience was 3, and the maximum 
epoch was 100. Early stopping ends the training when there is a sign of overfitting, which decreases training loss 
when validation loss is increasing. For all other parameters, default values in the Tensorflow library were used. 
MARS-Net23,36 was used to train MTL classifiers. For Faster R-CNN with Inception-Resnet v235 backbone and 
atrous convolutions, changing the default hyperparameters provided by the Tensorflow Object Detection API34 
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Ltotal = Lcls + eα1Lreg + eα2Laut + eα3Lseg + α1 + α2 + α3.

Table 2.   Split dataset into train, validation, and test sets.

Follicular Negative Total

Training set 40 165 205

Validation set 8 33 41

Test set 8 33 41

Total 56 231 287
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did not improve its performance so default hyper parameters were used except for decreasing the number of 
output classes to 2 from 90. All models were trained by TensorFlow v2.4 and RTX Titan GPU, and CUDA v11.3.

Evaluation of follicular cluster detection.  IOU is calculated by dividing the intersection between the 
ground truth follicular cluster and the predicted bounding box by the union of the ground truth follicular cluster 
and the predicted bounding box. Then, the IOU from each image is used to calculate an average IOU. The image 
is not used in the calculation of IOU if the image does not contain any ground truth follicular cluster and the 
model does not make any false positive predictions on that image.

For evaluation of follicular cluster detection, we considered the overlap between the predicted box and the 
ground truth box to be a true positive if the overlapped area contains at least one pixel. This is because the high-
est F1 score, precision and recall happen at the one pixel overlap threshold, as shown in Supplementary Fig. 2. 
Since our goal is to count the number of follicular clusters in the image, instead of precisely locating the follicular 
clusters, we used one pixel overlap threshold for evaluation. When there are multiple predicted box nearby one 
ground truth box, only one of predicted boxes is counted as a true positive and the other predicted boxes are 
ignored. If the region has a ground truth box without a predicted box, it is a false negative. If the region does not 
have a ground truth box but has a predicted box, it is a false positive. We did not count true negatives since true 
negative is not necessary to calculate precision, recall, and F1 score.

From the follicular cluster detection predicted by the trained models, we counted True Positive (TP), True 
Negative (TN), False Negative (FN), and False Positive (FP). TP means that the ground truth follicular cluster is 
correctly classified as a follicular cluster. TN means that the ground truth background class is correctly classified 
as the background, not the follicular cluster. FN means predicting a region to be a background location when 
that region has a follicular cluster. FP represents predicting a region to be a follicular cluster when that region is a 
background. Using TP, TN, FN, and FP, we calculated Precision, Recall, and F1 score with the following formulas.

7‑Fold cross validation for evaluation.  To compare performance of models reliably, we used seven fold 
cross-validation for evaluation of MTL classifiers, Faster R-CNN, FNA-Net on follicular detection per image and 
on bootstrapped samples. In seven fold cross validation, the dataset is split into 7 folds without redundant data. 
Among 7 folds, 5 of them are used as the training set, one of them is used for the validation set and the last one 
of them is used for the test set. In total, there are seven different combinations of training, validation and test sets. 
The same neural network is trained on seven different combinations of training sets to produce seven different 
trained models. Each of trained models are evaluated on the different test sets, which yields seven values for 
each of the model performances such as IOU, precision, recall and F1 score. We computed average and standard 
deviation from those seven values and assessed the significance of model performance differences by the two-
sided Wilcoxon signed-rank test, which does not assume Gaussian distribution.

Data availability
The datasets used in the current study are available from the corresponding author on a reasonable request.

Code availability
The code used in the current study is available at Github repository (https://​github.​com/​kleel​ab-​bch/​FNA).
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