
Article https://doi.org/10.1038/s41467-023-40739-3

Handheld snapshot multi-spectral camera at
tens-of-megapixel resolution

Weihang Zhang 1,6, Jinli Suo 1,2,3,6 , Kaiming Dong 1, Lianglong Li1,
Xin Yuan4, Chengquan Pei5 & Qionghai Dai 1,2

Multi-spectral imaging is a fundamental tool characterizing the constituent
energy of scene radiation. However, current multi-spectral video cameras can-
not scale up beyond megapixel resolution due to optical constraints and the
complexity of the reconstruction algorithms. To circumvent the above issues,
we propose a tens-of-megapixel handheldmulti-spectral videography approach
(THETA), with a proof-of-concept camera achieving 65-megapixel videography
of 12 wavebands within visible light range. The high performance is brought by
multiple designs: We propose an imaging scheme to fabricate a thin mask for
encoding spatio-spectral data using a conventional film camera. Afterwards, a
fiber optic plate is introduced for building a compact prototype supporting
pixel-wise encoding with a large space-bandwidth product. Finally, a deep-
network-based algorithm is adopted for large-scale multi-spectral data decod-
ing, with the coding pattern specially designed to facilitate efficient coarse-to-
fine model training. Experimentally, we demonstrate THETA’s advantageous
and wide applications in outdoor imaging of large macroscopic scenes.

Multi-spectral imaging captures the spectral profile of the target scene,
to quantitatively characterize the constituent energy/colors of the
material’s radiation, and serves as one of the fundamental tools for
material identification due to its wavelength-dependent absorption.
Therefore multi-spectral imaging, especially with large throughput
and a compact design, plays crucial roles in a broad range of applica-
tions, such as agriculture, pollution monitoring, gene sequencing,
astronomy, etc1. Technically, multi-spectral imaging is far from being
as straightforward as RGB imaging, since the Bayer pattern based
mosaicing strategy can not be scaled up to tens or more color chan-
nels. Researchers have explored variousways to capturemulti-spectral
data (a three-dimensional spatio-temporal data cube) and made big
progress in the past decades.

The primary studies focus on measuring the spectral profile of a
single point and the earliest spectrometers enhancing spectral reso-
lution may date back to the middle of the last century2. Later, many
improved spectrometers have been proposed, built on filter arrays3,
quantum point4 and metasurface5. An intuitive way of extending such

single-point spectral recording to two-dimensional scenes is temporal
scanning, via either collecting the spectrum of each scene point in
turn6,7 or capturing the scene appearance at equivalent spectrum
intervals8,9 sequentially using tunable filters10–12, but is too slow for
dynamic scenes.

To address this limitation, researchers have developed snapshot
spectral imaging techniques13 to capture the spatio-spectral cube
within a single image. One representative solution is to compromise
spatial resolution for spectral discrimination, using “super-pixels” to
record different narrow-band spectra of a scene point collectively14,15.
However, direct compromise between spatial and spectral resolution
is limited in scenarios demanding both spatial details and spectral
precision. Introducing an additional high-resolution RGB camera to
build a hybrid imaging system can improve the spectral resolution16–22,
but faces challenges in cross-resolution registration and fidelity
degradation as spectral resolution increases.

For high resolution multi-spectral imaging of dynamic scenes,
researchers utilize the redundancy in nature scenes to encode the
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spatio-spectral data cube into a snapshot compactly, and decode
computationally afterwards23. Researchers have designed various
encoded snapshot spectral imaging setups, in which disperser24–26 or
diffuser27,28 play important roles and emerging metasurface further
promotes theminiaturization29,30. Among theseencoding schemes, the
compressive sensing method enables high spatio-spectral acquisition
and inspires some new setups, including the precedent Coded Aper-
ture Snapshot Spectral Imager (CASSI)31 and its variants for perfor-
mance improvement or system compactness20,32–50. Besides, further
introducing temporal continuity shares the samemathematical model
as CASSI51 and can achieve multi-spectral videography with increased
frame rate52. With an accurate transmission model, the aforemen-
tioned tunable liquid crystal filter53,54 also serves as a controllable
spectral coding approach and integrates information from hundreds
of wavebands into a few acquisitions, thus can be combined with the
coded aperture to achieve joint compression in both spatial and
spectral domains55,56. This scheme demonstrates improved quality of
multi-spectral reconstructionwith several advantages, e.g., ease of use,
high image quality, and light weight despite the need for multiple
measurements, which may limit its applications in dynamic scenes.

For a comprehensive review, please refer to the article by ref. 57 As
for compressive-sensing-based decoding, since multi-spectral data
reconstruction from a snapshot is an under-determined problem,
most algorithms incorporate priors into anoptimization framework or
a deep neural network. The widely used optimization framework
include generalized alternating projection (GAP)58, alternating direc-
tionmethod ofmultiplier (ADMM)59, etc. The diverse priormodels can
be generally classified into pixel level60,61, patch level20,62,63, non-local
similarity21,64, cross channel similarity22 or deep priors learned by a
deep neural network65–70. To improve the reconstruction efficiency
further, researchers try to build end-to-end deep reconstruction net-
work recently71,72. Benefiting from the rapid progress of reconstruction
algorithms, some groups have achieved snapshot spectral light field
imaging73,74.

In spite of the big progress, current snapshot spectral cameras
stop at megapixel resolution and are not portable, confronted with
severe challenges in terms of both system design and reconstruction
algorithm development. Firstly, combining dispersion and spatial
random coding is one typical way for CS based spectral camera31, but
scaling up such scheme tomagnitude of ten-megapixel would result in
bulky setup, expertise demanding engineering, or even go beyond the
fabrication capability. Secondly, when the resolution exceeds mega
pixels, the reconstruction algorithm is not readily available yet. Con-
ventional iterative optimization might take months for reconstructing
the spectrum of tens-of-millions pixels, while training an end-to-end
deep neural network would take much longer time since spatially
varying encoding pattern demands learning a large number of region-
specific decoding networks. In spite that researchers are working on
CS reconstruction of large scale data, such as plugin-and-play deep
network70 or fast adaption via meta learning75,76, the performance is
still not competitive to convex optimization and E2E deep network77.
Overall, a lightweight design at tens-mega pixel scale leaves us two
grand issues: First, how to fabricate a lightweight optical element to
encode the large scale spatio-spectral data cube and conduct pixel-
wise encoding without bulky relay optics? Second, how to computa-
tionally decode the multi-spectral data with both high performance
and efficiency?

In this paper, we propose a tens-of-megapixel handheld snapshot
multi-spectral camera (THETA), which combines compact setup
design and algorithm development to push the spatial resolution of
snapshot spectral imaging beyond tens of megapixels. In terms of
hardware engineering, we design an imaging setup to produce a thin
film with structured pattern performing multiplexed wavelength-
dependent encoding, and directlymount the filmonto the bare sensor
of a high-resolution camera, forming a lightweight acquisition system.

Algorithmically, we perform a deep neural network based recon-
struction as shown in Supplementary Fig. 5, with low training and
inference cost while maintaining high performance. As a compact
snapshot spectral camera capable of covering large scale nature
scenes at fine details and with low lost, THETA is of advantageous
performance and holds great promise in applications. we demonstrate
ourmuchhigher throughput than currentmulti-spectralmethodswith
proof-of-concept real applications—large-scale crop identification and
health inspection, real-time monitoring of water pollution. Our
method is expected to be applied on low capacity platforms or hand-
held devices in the future, and hold great promise in agriculture,
environmental science, geography, etc.

Results
The setup
The THETA setup is shown in Fig. 1a, similar to a commercial industrial
camera compatiblewith Fmount lenses,with a thin filmmask attached
in front of the sensor for compressive spectrum encoding (see Meth-
ods for details). The compact and lightweight design facilitates hand-
held photography on low capacity platforms such as drones and
mobile robots.

A magnified look of the filmmask under the microscope is shown
in the left panel of Fig. 1b, covering the 29.8 × 22.4mm sensor with 65
megapixel counts (IDG-6500-M-G-CXP6). From the zoomed-in area
one can observe inter-channel pattern difference and repetitive
structures. We produce the coding mask using a commercial film
camera (Mamiya RB67) and Fujichrome PROVIA 100F color positive
film with exquisite grain, with the light path shown in Supplementary
Fig. 3. Specifically, the mask is fabricated by superimposing a series of
wavelength-dependent binary patterns onto the blank film, via
shooting a photo-etched binary pattern (~18μm resolution, quartz
glass substrate) through a dispersive element that shifts the images of
different wavelengths by varying amounts before entering the film
camera. The disperser is fulfilled by a piece of planar glass (Schott N-
SF66) with a low Abbe number, i.e., large chromatic aberration. We set
the disperser at an acute angle with respect to the optical axis and
place it either in front of the lens or between the lens and the sensor to
conduct wavelength-dependent shifting. The snapshot is captured
under broadband illumination (CME-303 fiber-coupled xenon light
source, 300–2500nm).

Denoting the transmission of the photo-etched binary pattern as
M, the spectra of the broadband environmental illumination and the
blank film, respectively as l0(λ) and tfilm(λ), following the geometrical
optics detailed in Supplementary Fig. 1, the transmission spectrum of
the film mask can be quantitatively derived as

Cðx, y, λÞ=M x � Δx x0, λ
� �

, y� Δy y0, λ
� �� �

l0ðλÞtfilmðλÞ: ð1Þ

HereΔx x0, λ
� �

andΔy y0, λ
� �

are thewavelength-dependent lateral
displacement introduced by the dispersive element, satisfying that

x0 +Δx x0, λ
� �

= x ð2Þ

y0 +Δy y0, λ
� �

= y: ð3Þ

In experiment, we discretize the integral into 12 spectral intervals
and the set of {C(x, y, λ)} can be sequentially acquired by using the
corresponding narrow-band spectral filters.

To circumvent the big challenge of adhering the film directly onto
the bare sensor and avoid using bulky relay lenses with such large a
space-bandwidth product (SBP), we propose to package a fiber optic
plate (FOP, 9mm thickness) onto the bare sensor and attach the film
mask on its front face for a point-to-point transmission at high quality.
The cross-section illustration of the FOP is shown on the right panel of

Article https://doi.org/10.1038/s41467-023-40739-3

Nature Communications |         (2023) 14:5043 2



Fig. 1b, and one can refer to Supplementary Fig. 4 for the detailed
packaging structure and the influence of FOP. Such a design also
facilitates changing the film easily. During photography, we reserve a
thread of about 9mmbetween the lens and the camera to let the scene
projected exactly on the front face of the FOP.

Encoding scheme and decoding algorithm
After spectrum-dependent coding by C(x, y, λ), the intensity distribu-
tion of the encoded measurement can be derived in the integral form

within the range of the film’s response spectrum [λ1, λ2] as

Iðx,yÞ=
Z λ2

λ1

l1ðλÞ � Sðx, y, λÞtFOPðλÞtrecðλÞ � Cðx, y, λÞdλ: ð4Þ

Here S(x, y, λ) is the spectrum of the target scene, l1(λ) and
tFOP(λ) are the spectral profiles of the illumination and FOP’s
transmission, and trec(λ) denotes the spectral transmission of an
additional customized filter mounted on the camera lens for
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Fig. 1 | A schematic diagram and result of THETA. a The picture of THETA. b A
local image of the proposed mask and the cross-sectional figure of the proposed
system, where the zoomed-in view of the mask is acquired under a 40×micro-
scope. c The encoded measurement and multi-spectral images (left), and synthe-
sized RGB view (right). d The multi-spectral reconstruction in the visible range of

the region marked by the red and blue boxes in (c), respectively, colored by the
RGB value of the corresponding wavelength, and the comparison between the
retrieved spectrum (solid line) and the ground truth (dotted line) of four arrow-
marked regions.
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compensating the imbalanced transmission of the blank film with a
reciprocal curve.

For efficient decoding of multi-spectral data at ten-megapixel
scale, we propose to use an end-to-end deep neural network for
reconstruction and adopt a coarse-to-fine strategy for fast model
training. Sinceweuseperiodically repetitive pattern and the spectrum-
dependent shifting is generally consistent across the film, the final
encodingpattern is approximately structured,which ismathematically
validated in Supplementary Fig. 2. There are around 1000 repetitive
blocks on the film, among which nearby blocks are highly similar and
there exists non-negligible difference among far apart ones, we group
the blocks into 12 groups and learn their respective reconstruction
networks. To further raise the training efficiency, we build a base
model working for all the groups but with low reconstruction quality,
and then adapt them to different groups fast. For each group, we
employ a recently proposed network with state-of-the-art perfor-
mance, designed with a sparse Transformer77, with the network
structure demonstrated in Supplementary Fig. 5 and corresponding
descriptions of implementation details.

System performance
In order to demonstrate the potential of THETA on depicting the
spectrum of large field of view (FOV), we use a wide angle lens (BV-
L1020) for an overhead photography of an urban landscape. The
encoded measurement is displayed in the top-left corner of the left
panel in Fig. 1c. Following the proposed pipeline we perform multi-
spectral reconstruction to output the spatio-spectral data cube, as
shown on the right-bottom half in an overlaid view. The reflection
spectrum of natural objects is characterized by their intensities at
different wavelengths, which can be accurately quantified by THETA.
For an intuitive visualization of the target scene and displaying the
advantageous of multi-spectral imaging over RGB counterpart, we
synthesize a RGB image by accumulating the multi-spectral recon-
struction resultwith the sensor’s responsecurves, as shown in the right
panel of Fig. 1c.

The zoomed-in multi-spectral images of two local regions of
interest (ROIs), highlighted in Fig. 1c are displayed in top two rows of
Fig. 1d. Benefiting from the high spatial resolution, the local details can
be imaged quite well. To further demonstrate our capability of precise
spectrum characterization, we remove the encoding film and place a
set of narrow-bandfilters in front of the lens to record the ground truth
spatio-spectral data cube. The spectral profiles of the regions marked
by the four yellow arrowheads in Fig. 1c are plotted at the bottom of
Fig. 1d. Here, the solid lines are the reconstructed spectrumdefined by
the average spectral profile, and dotted lines depict the ground truth.
Although the four selected positions have the same or similar color in
pairs in RGB image, the proposed approach is able to quantitatively
illustrate their spectral differences, which is quite useful for applica-
tions demanding material identification among objects with close
colors.

Calibration of spatial and spectral resolution
In order to quantitatively test the spatial and spectral resolution of
THETA, we use our setup to capture the ISO12233 Resolution Chart
2000 lines, on which four 2-inch circular band-pass filters and one
broadband high-pass filter are placed over different line groups. The
central wavelengths of narrow-band filters are 440, 550, 590, and
615 nm, respectively. A primary lens with 20mm focal length is used
and the image of 40 × 71 cm resolution chart covers 29.9 × 22.4mm
FOV of the sensor. After calibrating the transmission spectrum of the
coding mask, we apply our reconstruction algorithm to retrieve the
spatio-spectral data cube, with 7000 × 9344-pixel lateral resolution
and 12 spectral channels. The encoded measurement and RGB image
synthesized from the reconstructed spectral data cube and sensor’s
RGB response curves are shown in Fig. 2a. Themulti-spectral images of

the region highlighted with orange box are displayed in Fig. 2b, where
the two of the placed spectral filters with adjacent wavebands are
partially included, demonstrating the precise spectral discrimination
of THETA.

For quantitative evaluation, we firstly capture the ground truth
spatio-spectral data cube by removing the encoding film and
sequentially placing narrow-band filters in front of the camera lens. As
for the spatial resolution, a comparison between the reconstructed
and ground-truth intensity profiles of four line groups on the resolu-
tion target are plotted in Fig. 2c. Under the Rayleigh resolution cri-
terion, we can derive that the average spatial resolution is about 2.16
pixels, i.e., 6.93μm. To calibrate the spectral resolution, we use the
color checker area at the bottom of the resolution target to char-
acterize the spectral accuracy of the reconstruction algorithm. For
visual comparison, we overlay the RGB image of the color checkers
synthesized from their true spectral profiles onto Fig. 2a, above the
reconstructed counterpart. Quantitatively, the profiles of three color
squares are shown in Fig. 2d, in parallel with the ground truth plotted
in dotted lines. One can see that the reconstructed profiles is quite
close to the true value. Further, the spectral resolution can be quan-
titatively depicted by the multi-spectral imaging of the two narrow-
band filters locatedwithin the orange highlighting box in Fig. 2a,which
are with adjacent transmission wavebands. As shown in Fig. 2e, the
same peak positions can be found in both the retrieved and ground-
truth intensity of the two spectral filters, and can be easily distin-
guishable fromeach other. As the central wavelengths of the twofilters
are 590nm and 615 nm, respectively, the spectral resolution of our
method can achieve ~25 nm. Above resolution testing demonstrate
that we can achieve snapshot spectral imaging at full sensor resolution
and with high spectrum fidelity.

Application 1: large area crop monitoring
To demonstrate the usability of THETA for outdoor scenes and
the feasibility of applying for precision agriculture, we conduct over-
head acquisition on a gridded farmland with nine different types of
crops. Here a small-scale host is utilized to form a portable system
that hasbeenproven tobe adaptable tomost acquisition requirements
and environments. As a portable setup, we can easily adjust its position
and pose to flexibly balance the fineness of imaging on the crops and
the field of view. Furthermore, when deployed on a mobile vision
platform such as a drone, the video-rate acquisition allows efficient
scanning of large fields with fine spatial and spectral scales. Specifi-
cally, the drone is only required to navigate stably according to the
planned route and conduct full-frame capture for multi-spectral
reconstruction. Neither is it necessary to hover at specific positions
to capture multiple snapshots, which is time-consuming, nor is the
subsequent registration and deblurring operations, thus reducing the
time cost and complexity, while simplifying the post-processing
process.

The coded snapshot, the RGB images respectively synthesized
from the ground-truth and reconstructed multi-spectral data cube are
shown in Fig. 3a, from left-top to right-bottom. From the RGB image,
one can see that some different crops are of similar appearance and
indistinguishable from each other. Then we conduct clustering on the
reconstructed 12-channel multi-spectral data volume. Specifically, we
firstly adopt K-means algorithm to divide the multi-spectral data into
33 clusters and then introduce spatial coordinates to serve as addi-
tional dimension for a secondary K-means clustering. The cascaded
two-stage clustering divides the expanded data into 10 groups, as
shown in the legend of Fig. 3b. The results show that we can reliably
discriminate different crops of similar RGB intensities and even the
subtle difference of the same crop. The enlarged differentiability
among pixels validates the significance of multi-spectral imaging in
crop monitoring: In case of widely adopted grid management in
modern agriculture cultivating different species of crops in their
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respective regions, it is difficult to observe significant differences in
large-scale RGB images at the early stage of plant diseases, while one
can discriminate by clustering the spectral profiles to find the devel-
opmental anomalies in a wide range of similar crops and aid timely
treatment.

Besides benefiting from the high throughput, the tens-of-
megapixel resolution provides precise discrimination capability for
individual plants with different health conditions, such as the cluster
different from the surrounding plants shown in the green box in
Fig. 3b. One can zoom in to conduct monitoring at finer scales. For
example, the intensity of 12 spectral channels of four zoomed-in
regions, respectivelywith four different types of crops, are provided in
Fig. 3c. In summary, THETA has great potential for large-scale agri-
culture due to its compactness, full-image capture capability, and high
data throughput, as it can distinguishdifferent species, developmental
stages, and health states, etc., based on spectral profiles, and it’s

expected to be used on a continuously navigating drone for multi-
spectral surveys with video rate.

Application 2: real-time large-FoV water pollution monitoring
We further validate the potential of the lightweight spectral camera for
real-time observation. Considering that dynamic detection of sewage
discharges is highly demanded for water health monitoring and of
great significance to environmental protection, we build a miniature
landscape of rugged terrain to simulate upstream sewage discharges
and conduct overhead multi-spectral videography using THETA.
Experimentally, we sequentially discharge two different pollutants,
with similar RGB colors but different chemical substances, from the
upstream water inlet. Figure 4a shows the encoded measurement and
the RGB image synthesized from the 12 reconstructed channels at
99.6 seconds, while Fig. 4b shows the set of narrow-band images
separately. The reconstructed video further shows the diffusion

a

c

d

23
1

b

560nm 586nm 615nm

470nm 500nm 529nm

406nm 427nm 445nm

640nm 660nm 684nm

e

Fig. 2 | The spatial and spectral resolution. a The encodedmeasurement and the
synthesized RGB image corresponding to the reconstructed multi-spectral data of
the 2000-line resolution test target. The upper color checker area presents the
ground truth of the color checker area under the response function of the adopted
sensor.bMulti-spectral reconstruction result of the regionmarked in orange box in
(a), colored by the RGB value of the corresponding wavelength. c The spatial line
profiles for four regions on the resolution target, highlighted in green, yellow, red

and purple boxes in (a), respectively. The orange lines represent the reconstructed
results, and the blue lines the ground truth. d The spectral profiles for three spatial
points marked by the yellow arrows in the color checker area in (a), plotted in
orange, red and green lines, respectively. eThe average spectral profiles for the two
narrow-band spectral filters with adjacent transmission wavebands in the orange
box in (a),marked in brown and red, respectively. In both (d) and (e), the solid lines
represent the reconstructed results, and the dotted lines the ground truth.
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process of the two different colors in the water, as shown in Supple-
mentary Movie 1.

In the upper rowof Fig. 4c,we show six synthesizedRGB frames of
the whole field of view, and the zoomed-in view of the highlighted
region in (a) is shown in the upper row of Fig. 4d. The spreading
boundary and the increasing concentration cannot be observed
directly. According to the spectral profiles of candidate pollutants, the
multi-spectral data can be simply decomposed into components tell-
ing the location and concentration of multiple sewage types (see the
lower row in Fig. 4c, d, in whichwe use two pseudo colors labeling two
pollutants and the intensity characterizing their concentration). Please
refer to SupplementaryMovie 2 displaying the dynamic distribution of
two pollutants. From the pseudo-color visualization of the sewage
components and their diffusion, we can distinguish two types of
sewage, quantitatively measure their concentration, and clearly infer
their respective diffusion directions as well. Specifically, the sewage
discharged earlier comes from the right side of ROI in Fig. 4d, while the
later one comes from the bottom. The identification of diffusion
amount, rate and source from the retrievedmulti-spectral data cube is

of great help to the successive pollution traceability and treatment.
Moreover, by integrating with a portable host, THETA can be easily
mountedon a low-capacity drone for environmentalmonitoring over a
large area with high precision.

Discussion
In this paper,weproposeahigh-resolutionhandheld snapshot spectral
camera (THETA), bypassing the grand challenges when encoded
snapshot spectral imaging goes beyond megapixels, such as bulky
setup, high cost, expertise demanding engineering, ultra-long infer-
ence time, etc. For compact encoded recording, we design an
approach generating a thinplanar spatio-spectral encoding element—a
color film, and mount it onto the camera sensor for wavelength-
dependent random coding without complex relay optics. In order for
efficient decoding, the pattern on the film is designed to be approxi-
mately periodic. Such structured pattern facilitates efficient learning
of decoding deep neural networks, via building a base model and
performing fast adaption. Such property is specially important for
tens-of-megapixel level reconstruction. To validate the proposed

Zea mays (mature stage) Zea mays
Oryza sa�va Ipomoea batatas
Gossypium hirsutum Glycine max
Sorghum Panicum miliaceum
Pho�nia x fraseri Road

Types of crops

a

b

c

406nm

445nm

470nm

500nm

529nm

560nm

586nm

615nm

640nm

660nm

684nm

427nm

Fig. 3 | Multi-spectral reconstruction of gridded farmland. The encoded mea-
surement, the RGB image from ground-truth and reconstructed spatio-spectral
data volume. Top left: encoded measurement, middle: ground truth RGB image,
bottom right: synthesized RGB image from the reconstructed result. b K-means

segmentation result of the reconstructedmulti-spectral data, showing the inherent
spectral distinction of the 9 types of crops and the field path, where the green box
marks the individual plants with different health conditions from their congener.
c Multi-spectral image of the four regions marked in (a) and (b).
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t=40s t=64s t=96s t=128s t=160s t=192s
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Fig. 4 |Multi-spectral imaging of the diffusionprocess of sewage in aminiature
landscape of a river. a The encoded measurement (upper left corner) and RGB
synthesized result at t = 99.6 s. b Multi-spectral reconstruction result at t = 99.6s,
colored by the RGB value of the corresponding wavelength. c RGB synthesized
time-lapse images and the corresponding heatmap generated from the multi-

spectral data, showing the process of sewage diffusion. The brightness of the green
and blue colors represent the concentration of the two types of sewage. d RGB
synthesized time-lapse images and the corresponding heatmap for the region in
white box in (a).
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approach,webuild aprototype achieving full resolution (65-megapixel
spatial resolution) 12-band multi-spectral snapshot videography,
which holds promise in capturing the spatio-spectral data cube over a
large field of view, at high resolution and with spectrum fidelity.

Advantages and wide applications
The core technical contributions are the multiplexed spectrum-
dependent encoding film and the compact packaging technique. The
proposed design contributes to the advantageous features of THETA:
First, from the perspective of imaging mechanism, the film mitigates
the expertise demanding high-precision optical engineering and
expensive optical modulation components such as spatial light mod-
ulator (SLM) and disperser. The film is thin, light, cheap, open for
structured pattern customization, and can go beyond the resolution
upper limit due to physical constraints. Second, the packaging via FOP,
leads to a lightweight imaging system that is significantly smaller in
size and weight than existing hyperspectral imaging systems, which
need bulky relay optics for pixel-wise encoding. The compact packa-
ging and the customized encoding film together lay the foundation for
the high throughput lightweight implementation. The size and weight
can be further reduced if there exist new ways coupling the film
directly onto the sensor plane. Third, in view of fabrication, the film
surprisingly can be produced via film photography and simulated
explicitly following geometrical optics. Moreover, it can be produced
in batch with a commercial film camera under the same setting. In
other words, the film can be manufactured via mass production.

As the imaging result of a highly complex natural scene in Sup-
plementary Fig. 6 shows, the achieved resolution of 65 megapixels is
guaranteed by both the hardware setup and the algorithm used, and
does not merely serve as an interpolant to a conventional imaging
device with much lower resolution. On the one hand, the proper sys-
tem settings for film production cause both pixel-level encoding and
pixel-level code shifting between adjacent spectral channels. There-
fore, most of the effective information can be reserved by recon-
structing statistically redundant natural scenes according to the
principle of compressive sensing. On the other hand, the used
transformer-based network is of well-designed architecture and has
been trained on spectral data of various natural scenes, achieving
performance superior to convex optimization. Furthermore, the pro-
posed efficient reconstruction is highly scalable and can be applied to
images with higher resolution. Although a higher resolution sensor
with a larger sensory region may reduce the spatial consistency of the
lateral displacement, the training time will not increase a lot since the
coarse-to-fine adaption is fast. In terms of inference, the increased
resolution only leads to linear growth in running time or graphics
memory in parallel calculation.

As a general multi-spectral imaging approach, THETA can easily
equip a commercial gray scale sensor with spectral imaging capability
with only slight modifications, i.e., attaching a specific film with tai-
lored resolution and size onto the sensor. For example, miniaturized
spectroscopic cameras can be build on small commercial compact
cameras. Likewise, the approach is equivalently compatible with sen-
sors of higher spatial resolution, in spite of the challenges of devel-
oping higher efficiency reconstruction algorithm to match the pixel
resolution.

Due to its high throughput and lightweight design, THETA has a
wider range of applications besides smart agriculture and pollution
monitoring demonstrated in this article. We expect that the camera
can be mounted on different platforms and play roles in various fields
such as geography, bio-medics, oceanology, etc.

Future work
The encoding scheme is also applicable for microscopy, effectively
discriminating different fluorescence excitations. We believe that this
method can obtain broad applications in long-distance, wide-field

observation and multi-color fluorescence imaging of small molecules.
For example, in high-throughput gene sequencing and detection, our
method is expected to effectively distinguish fluorescence excitations
of different sequences, where spectral resolution plays an important
role78. In monitoring and controlling of biological/chemical
dynamics79–81 the single-shot encoding scheme we applied could
effectively improve the time resolution of imaging and help reveal the
principle ofmicroscopic phenomena. To integrate our filmmask into a
microscope setup for scientific observations, we have begun to
explore the modification and packaging of high-sensitivity scientific
sensors, which can be quite expensive and differs to some extent from
current industrial design. Besides, the implementation of FOP in
commercialmicroscopy systems can result in amismatch in the length
of the mount, requiring a custom mount design.

Extending to lensless microscopy for high throughput on-chip
analysis is a topic worth further investigation, as lensless spectral
imaging has already been studied and demonstrated advantageous in
the size of the field-of-view, cost-effectiveness, and portability.

Similar to other imaging taskswith snapshot compression, altered
noise levels or rich textures can lead to degradation of the perfor-
mance and spatial resolution of the reconstruction. The former usually
occurs when the noise in the measurement or calibrated masks is
different from that in the model training. However, this can be miti-
gatedby estimating the noise82,83 andfine-tuning the networkwith data
overlaid with the appropriate noise level. It has also been shown that
increasing the number of spectra-aware hashing attention blocks
makes the model perform better in the original paper of the adopted
network77. The latter requires a shorter working distance to achieve
effective coding by zooming in on the details, at the expense of the
field of view (FOV). Another option is to select a sensor with a finer
pixel size to achieve a higher resolution. Another factor worth men-
tioning is that in video capture, slight image distortion can occur due
to the sensor’s on-chip recording loss, resulting in degraded perfor-
mance compared to static scenes. Using more advanced sensors can
address this issue and further enhance the use of THETA in highly
dynamic scenes. Recall that the experimental setup for film fabrication
should be adapted to the modified sensor according to the geometric
principles outlined in the “Film making” section of the Supplementary
Information.

The number of spectral channels determined by the minimum
wavelength interval with distinctive coding masks in our proposed
method does not appear to be as large as in other CASSI-type imple-
mentations, but can be further improved by optimizing the capability
of the dispersion components, the choice of the film camera, and the
pixel size of both the lithographymask and the sensor. Specifically, the
displacement between adjacent spectral channel masks generated by
dispersionmust be at least as large as the pixel spacing of the sensor to
enable effective spectral encoding. Theoretically, the displacement
depends on the system setup for film fabrication, as described in the
Methods and Supplementary Information: A smaller distance from the
aperture to the lithography mask, a lower Abbe number, and a larger
thickness of the dispersive element result in a larger lateral shift.
However, there is a trade-off among sufficient lateral shift, the effec-
tiveness of encoding, and film quality. First, a smaller object distance
means a larger systemmagnification, which in turnmeans that the size
of each mask cell recorded on the film significantly exceeds the pixel
size of the sensor due to the limited precision of lithographic fabri-
cation, making pixel-wise encoding difficult. An object distance less
than the minimumworking distance of the film camera can also cause
image distortion. An optimized object distance can be achieved by
exploring other types of film cameras and other manufacturing
methods for binary masks with higher precision. Second, increasing
the thickness of the dispersion element simultaneously increases the
lateral and axial distances between the imaging results of the different
spectral channels. While the former benefits spectral encoding, the
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latter can lead to defocusing of the image. In addition, internal dis-
persion in thick media affects image quality to some degree. Selecting
dispersion elements with better performance can overcome this lim-
itation. Third, the lower the Abbe number of the dispersion element,
the stronger the dispersion, but this presents the same challenge as
increasing the thickness for axial displacement. In summary, the film
fabrication process is the key factor on which the number of spectral
channels and the spectral resolution of our proposed system depend.
Using the existing pixel size (3.2mm) as the lower limit of the shift, we
properly set the experimental parameters (see the “Film making”
section in the Supplementary Information for details) and obtained
information frommulti-spectral channels with a number of 12, which is
expected to be optimized by modified hardware.

For the film itself, despite its low cost and portability, there also
exist some inherent limitations. On the one hand, the film absorbance
would result in reduced luminous flux and suffer from noise under
dark illumination. On the other hand, the spatial resolution of the film
is fundamentally determined by its granularity and might be of insuf-
ficient modulation capabilities for smaller pixels. We are looking for
newmaterials that can record the patterns in finer detail and serve as a
better spectrum encoding element.

Besides, applying the proposed method for some task-specific
analysis other than reconstructing the whole spectrum may be
expected to further simplify the system, raise the running efficiency or
increase the SBP.

Methods
Fabrication of the encoding film
In order to achieve spatio-spectral random encoding applicable for
tens-of-megapixel image systems in a compact form, we propose to
generate a film with color-dependent random transmission patterns.
The fabrication is conducted by introducing spectrally distinctive
shifting during film photography of a binary random pattern. Specifi-
cally, we use a commercialfilm camera and color-positive film to shoot
a high-resolution binary pattern etched on a plate glass by lithography
through an oblique planar diserperser, which shifts the different
spectral components of the etched random pattern by different off-
sets. The lighographic pattern is designed to be array repetitive, and
the shifting is approximately uniform across the field of view, so the
final recorded spectral code is of a globally structured layout, which
facilitates efficient training of reconstructionmodels corresponding to
different regions.

In implementation, we use Mamiya RB67 film camera and Fuji-
chrome PROVIA 100F color-positive film for recording. The grid size of
the chrome mask is 3.84μm, and the grid is arranged by periodically
repeating the 256 × 256 random pattern. The magnification of the film
camera imaging system is about 0.83×. The dispersion is generated by
a piece of Schott N-SF66 glass (thickness 7mm) placed in front of the
lens at a certain angle (around 40°). During acquisition, we illuminate
the lithographic patterns with a fiber-coupled xenon light source
(CME-303 solar simulator manufactured by Microenerg), which has a
relatively uniform spectrum in the visible spectrum. Besides, we fur-
ther design a conjugated two-arm setup—film and digital for high
precision adjustment of optical path, with the output of digital camera
for real time monitoring of the expected quality of film pattern, as
shown in the diagram in Supplementary Fig. 3.

It can be verified (see Supplementary Fig. 2 and corresponding
descriptions) that the shifting is spectrally distinctive and the
spectrum-specific displacements are roughly consistent across the
camera sensor, which ensures the spatial periodicity of the fabricated
film mask. The conclusions are further illustrated by the correlation
heat-maps of masks at different wavelengths and positions, respec-
tively, demonstrating that our approach can generate high spatial
resolution mask with high spectral encoding capability and spatial
periodicity.

Compact integration of the coding mask
The proposed multi-spectral imaging system THETA is composed of
the IDG-6500-M-G-CXP6 camera with 65 million pixels, mounted with
an M58 to F-Mount adapter to be compatible with commercial
F-Mount lenses. Since a lightweight relay lens with the space-
bandwidth product covering 65 million pixels is rarely commercially
available, and directly attaching the film on a bare sensor is expertise-
demanding, risky, and experimentally irreversible once packaged, we
propose to use an FOP to transmit the coding mask onto the sensor.

In THETA, we use a 31 × 23 × 9mmFOP to relay the filmmask onto
the sensor plane. For easier engineering, we use a sensor with remo-
vable cover glass to facilitate mounting the FOP on the bare sensor
surface in a dust-free environment. Then the film mask is fixed on the
outer surface of the FOP with a customized piece of cover glass. The
experiment in Supplementary Fig. 4 proves that FOP copies the ima-
ging of the front surface to the rear counterpart with low frequency
loss and high transmittance.

When using the customized sensor for encoded multi-spectral
imaging, one can simply fine-tune the image plane of the target scene
onto FOP’s front surface, and then the scene is encoded by the film
mask and its encoded measurement is relayed and recorded by the
sensor.

System calibration
A series of band-passfilters (Central wavelength/Guaranteedminimum
bandwidth (nm): 406/15, 427/10, 445/20, 472/22, 500/24, 529/24, 560/
25, 586/20, 615/24, 640/14, 660/13, 686/24) produced by Semrock are
used to calibrate the masks at different wavelengths, and the 12 cali-
brated masks and coded acquisition are jointly fed to the reconstruc-
tion network to retrieve the multi-spectral images. The intrinsic
transmittance of the system (including film and FOP) at the imaging
wavelengths is obtained by capturing the whiteboard at the same
exposure setting.

Encoded imaging model
The intensity of encoded measurement at coordinate (x, y) is jointly
determined by the spectrum of the light source, the spectrum at the
corresponding position of the target scene S(x, y, λ), the intrinsic
transmission spectrum of the FOP tFOP(λ) and that of the film mask
C(x, y, λ), i.e.,

Iðx,yÞ=
Z λ2

λ1

l1ðλÞ � Sðx,y,λÞtFOPðλÞtrecðλÞ � Cðx,y,λÞdλ, ð5Þ

where [λ1, λ2] is the range of film’s response spectrum, l1(λ) is the
spectrum of the illumination (after flat field correction) and trec(λ) is
the “reciprocal” transmission curve of blank film to correct the inher-
ent unbalanced spectral response of the film.

According to the geometrics of the light path for film mask fab-
rication (please see Supplementary Fig. 1), the transmission of wave-
length λ at position (x, y) is equal to that of the binarymask at position
(x0, y0), with its offset

�
Δx x0,λ

� �
,Δy y0,λ

� ��
being introduced by the

dispersive element. Besides, the codingmask is also jointly determined
by the spectrum transmission of film tfilm and the illumination used for
fabricating the mask l0(λ), i.e.,

Cðx,y,λÞ=M x � Δx x0,λ
� �

,y� Δy y0,λ
� �� �

l0ðλÞtfilmðλÞ, ð6Þ

where M0 is the original binary mask, while Δx( ⋅ ) and Δy( ⋅ ) calculate
the derived lateral displacement after inserting the disperser
(see Supplementary Information).

Multi-spectral reconstruction
It is non-trivial to decode tens-of-megapixel multi-spectral data with
both high quality and efficiency. Benefiting from the structured layout
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of the encoding film, we propose to use a state-of-the-art neural net-
work that embeds spectral sparsity into transformer and train 12 net-
works in a coarse-to-finemanner77 for block-wise reconstruction of the
whole spatio-spectral data cube.

The network takes the snapshot encoded measurement and cali-
brated multi-spectral masks as input, and consists of two subsequent
U-Net structured modules for decoding, with the network structure
illustrated in Supplementary Fig. 5. The first module is a sparsity esti-
mator, which depicts the regions with the sparsity of spectral infor-
mation and produces a sparsity mask M. The second one filters the
regions with dense spectral information according to the binarized
sparsity mask, and guides the focus of the multi-head self-attention
(MSA) mechanism84. Different from the ordinary MSAmechanism, the
network uses hashmapping to divide the pixels in each selected region
into buckets and applymulti-roundMSA respectively, which limits the
self attention within related regions and raises running efficiency lar-
gely (see Supplementary Information for details). Themodel training is
conducted via minimizing following loss function

L= k S� S*k2 + λ� k M�M*k2: ð7Þ

Here the first term penalizes large deviation from the true spectrum S
and the estimation S* of the target scene; while the second term forces
the estimated sparsity mask M to be close to its reference M*, which
demonstrates the distribution map of required attentions derived by
the channel-wise average difference between S and S*.

Data availability
The source image and source data in thefigures generated in this study
have been deposited under DOI link85. The raw data generated in this
study for the statistical plots in Figs. 1 and 2 are provided in the Source
Data file. Source data are provided with this paper.

Code availability
The code used in this study is available from the Zenodo repositories,
respectively, for the adopted network86 and the simulation of
dispersion87.
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