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Abstract

Objectives: The balance between proinflammatory IFN-γ Th1 vs. the anti-inflammatory allergy-mediating IL-4-heralded
Th2 reactions is pivotal in IgE-mediated allergic rhinitis (AR). Hypoxia-Inducible Factor (HIF)-1α is inducible by hypoxia and
various cytokines. HIF-1α activates different anti-pathogen and allergic immune cells. This cross-sectional study assessed
the changes in serum HIF-1α and its dependent erythropoietin (EPO) levels among hospital-characterized AR patients.
Type of the immune reaction, Th1 vs. Th2, was stratified based on the calculated IL-4/IFN-γ direct ratio, after being
measured using specific ELISA assays.
Methods: 147 AR patients (83 males/64 females), and age-, BMI-, and gender-matched 24 healthy controls (13 males/
11 females) were sequentially enrolled at ENT Unit, Prince Muteb General Hospital, Sakaka, Saudi Arabia. Measurement of
serum parameters was carried out using specific ELISA assays.
Results: Contrary to the majority of previous publications, all controls and the majority of patients (n = 137/147)
exhibited naive Th0 immune response. IFN-γ and HIF-1α levels were greater in controls than in patients (168.9 ±
173.9 vs 108 ± 94.5 pg/mL; p<.012) and controls had a lower IL-4/IFN-ratio (2.439 ± 0.897 vs 3.33 ± 1.19; p<.001) than
patients. The HIF-1α results disagree with earlier studies. Due to the wide inter-individual variations, serum IL-4 and EPO
levels in controls were non-significantly higher than patients. Lower IL-4 levels (267.3 ± 79.95 vs 353.4 ± 320.6 pg/mL;
p < .01) and the ratio (2.814 ± 1.335 vs 3.431 ± 1.137; p < .05) were associated with obstructive sleep apnea. Lower ratio
was also associated with inferior turbinate hypertrophy (3.051 ± 1.026 vs 3.787 ± 1.310; p < .001). EPO and IL-4 levels
were lower in patients with deviated nasal septum (66.69 ± 26.81 vs 84.24 ± 61.5 pg/mL; p < .021; and 299.5 ± 137.3 vs
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391.1 ± 52.780 pg/mL; p < .001, respectively). Significant correlations were found between the recorded levels and AR
comorbidities.
Conclusion: These results confirmed a pathogenic implication for HIF-1α and IFN-γ in AR that warranted future bigger
and longitudinal studies.
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Introduction

The atopic allergic rhinitis (AR) disease manifests as sneezing,
nasal congestion, clear rhinorrhea, and nasal pruritus. It is an
IgE-mediated immune response induced against inhaled an-
tigens, in the immediate phase, that is followed by a
leukotriene-mediated late phase.1,2 Mucosal immunity is
controlled by a cocktail of cytokines produced by the naı̈ve
CD4+ T helper 0 (Th0) cells upon differentiation either to: (1)
Th1 with interferon (IFN)-γ as the predominant cytokine, and
cytotoxic T cells, natural killer cells, activated macrophages,
and B cells as the cellular machinery, or (2) the antagonistic,
Th2 cells, with interleukin (IL)-4 as the signature cytokine, and
B cells, eosinophils, and basophils as the cellular armament
that coordinate the allergic IgE-mediated or autoimmunity
reaction. Allergy-related asthma and its consequences are
associatedwith a Th2-predominance, whereas Crohn’s disease
and its prognosis are associated with a Th1-predominance. In
immunologic diseases, the Th1/Th2 balance is pathogenic,
prognostic, and theragnostic.3 Th1/Th2 balance can be easily
and directly determined by comparing the ratio of these an-
tagonistic regulatory cytokines, IFN-γ/IL-4. However, genetic
and environmental confounding factors contribute to bias in
Th1/Th2 balance.4,5

Obstructive sleep apnea (OSA), which is characterized by
sleep-interrupting repeated upper airway obstruction during
sleep and intermittent hypoxia, has been linked to rhinitis,
and in particular AR. Mouth breathing, decreased pharyn-
geal diameter, and higher nasal and airway resistance all
contribute to this connection. Additionally, OSA and the
main proinflammatory mediators found in AR, histamine,
IL-1, and IL-4, decrease sleep quality.6 Intermittent hypoxia
increases hypoxia-inducible factor (HIF)-1α that induces
pro-oxidant enzymes, reactive oxygen species production
and oxidative stress.7

The dimeric basic helix-loop-helix transcription factor,
HIF-1α/β, was first identified for its role in regulation of
erythropoietin (EPO) gene expression. HIF-1α/β binds to
hypoxia response elements (HREs) in target genes. HIF-1α
is the inducible oxygen-regulated subunit of the dimer and
its stability determines dimer’s transcriptional activity.
While airway epithelial cells are exposed to 21% O2, in
solid tissue cells, O2 concentration is as low as 1%. Under
normoxic conditions, HIF-1α is rapidly degraded by the

ubiquitin-proteasome pathway. Growth factors, nitric oxide,
various inflammatory cytokines, reactive oxygen species,
apoptotic cell debris, infectious pathogens, and allergens
control HIF-1α expression, oxygen-independently.8–10

Oppositely, HIF-1 dimer activates different inflammatory
immune cells associated with infections and allergies,
particularly for nasal allergies—oxygen-dependently and in
normoxia.11–15 Upon activation, HIF-1α translocates to the
nucleus to reprogram (up- or down-regulation) >2000 genes
of cell’s transcriptome to be able to adapt to hypoxia. These
genes include EPO/erythropoiesis, glucose transporters/
glycolytic enzymes, and vascular endothelial growth fac-
tor (VEGF)/angiogenesis. This supports energy metabolism
in inflammatory cells and promotes pro-inflammatory cy-
tokine expression and immune cell adhesion.11,14 HIF-1α is
induced by Th1 cytokines.16

EPO is essential for erythropoiesis, upon the induction
of its expression by the falling tissue O2 pressure under
hypoxic physiological, pathological, and experimental
conditions—mainly from the peritubular fibroblasts of the
renal cortex.17 However, EPO action is also controlled by
cytokines, growth factor, and steroid and peptide hor-
mones. Other than erythropoiesis, EPO is a cytoprotective
agent for blood vessels, heart, kidneys, and brain.18

We planned this study to evaluate the variation in serum
levels of HIF-1α and EPO in correlation with IL-4 and IFN-
γ and their direct ratio. The ratio is used as the biomarker
and classifier for the type of Th cell anti-/pro-inflammatory
reaction in AR patients, as compared to healthy controls.

Methods

Setting and patients

Volunteering 147 AR patients (83 males and 64 females),
and age-, BMI-, and sex-matching 24 healthy accompany
(13 males and 11 females) were sequentially admitted and
reviewed at the ENT outpatients’ clinic of Prince Muteb
General Hospital, Sakaka, Saudi Arabia in the period from
September 2021 to June 2022. This cross-sectional study
was approved by the permanent committee for Ethics of
Scientific Research, Jouf University, Sakaka, Saudi Arabia
(21-08-42). Each participant signed a written informed
consent, in adherence to the provisions of the Declaration of
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Helsinki. Physical characterization of AR by ENTspecialists
was done following the international guidelines.19 De-
identified patients’ and healthy control characteristics and
medical history were recorded. Patients with anemia of all
types, immobility of all causes, endocrine disorders, and
chronic inflammatory and renal and liver diseases were
excluded. Patients were investigated for the presence of
bronchial asthma, nasal polyposis, deviated nasal septum
(DNS), hypertrophy of inferior turbinate (HIT), OSA, and/or
concha bullosa. Also, tobacco smoking was recorded for
patients and controls. Body mass index (BMI) was calcu-
lated for each participant (weight in kg/height in m2).

Sample collection and investigations

Five mL of peripheral venous blood were aseptically col-
lected in plain collection tubes and serum was recovered and
aliquot frozen at –80oC till used. HIF-1α (pg/mL) and EPO
(pg/mL; = x 0.119 mIU/mL) were quantitatively measured
using specific quantitative ELISA assays in triplicates as
instructed (cat# SL0905 and SL0679Hu, Sunlong Biotech
Co. Ltd, Zhejiang, China). Aprotinin (fresh 10x aprotinin to
350 nM) was added to serum. Our lab was the 1st worldwide
to characterize circulating HIF-1α as a hypoxia biomarker.
We did not detect significant HIF-1α degradation in the
extracellular in vitro hypoxic milieu of serum. The patients
were stratified as anti-inflammatory–allergic Th2 type re-
action at IL-4/IFN-γ ratio ≥5, naı̈ve Th0 type reaction at IL-4/
IFN-γ ratio >0.2 to <5, and proinflammatory-tissue dam-
aging Th1 type reaction at IL-4/IFN-γ ratio ≤0.2.20

Statistical analysis

For the statistical analysis and data presentation, GraphPad
Prism 7.00 software was used (GraphPad Software, Inc., La
Jolla, CA, USA). Data presented as frequency and mean ±
SDM were compared with Student’s “t” test and one-way
ANOVA with Bonferroni’s correction post-test for signif-
icance; p ≤ .05 was considered significant at 95% CI.
Correlation among different parameters within each group
or subgroup was analyzed using Spearman’s correlation
coefficient with P and r values presented.

Results

Considering the classification of the immune reaction using
the direct IL-4/IFN-γ ratio, all healthy controls (n = 24)
revealed a naı̈ve Th0 range of immune reaction; > 0.2 to < 5.
A minority of AR patients (n = 10/147) showed the anti-
inflammatory Th2 immune reaction with a ratio > 5 level.
Majority of patients (n = 137) had the naı̈ve Th0 range of
immune reaction; > 0.2 to < 5.

Table 1 presents the characteristics and the investigated
parameters in AR patients and healthy controls. The two
groups were non-significantly different in each of age and
BMI and serum levels of IL-4 and EPO. Serum levels of INF-
γ (p < .012) and HIF-1α (p < .001) were highly significantly
lower, while, IL-4/IFN-γ ratio (p < .001) was highly signif-
icantly higher in AR patients compared to healthy controls.

Comparing AR patients subgrouped for presence of
OSA (n = 25) vs. those without OSA (n = 122), did not
show significant differences for all parameters, except for a
lower IL-4 (267.3 ± 79.95 vs 353.4 ± 320.6, respectively;
p < .01), and IL-4/IFN-γ ratio (2.814 ± 1.335 vs 3.431 ±
1.137, respectively; p < .05).

Patients suffering from HIT (n = 92) presented non-
significant changes in the measured parameters, except for
a significantly lower IL-4/IFN-γ ratio compared to those
without HIT (n = 55) (3.051 ± 1.026 vs 3.787 ± 1.310,
respectively; p < .001).

Patients with DNS (n = 84) compared to those without
DNS (n = 63) showed non-significant changes in the mea-
sured parameters, except for significantly lower EPO (66.69 ±
26.81 vs 84.240 ± 61.5, respectively; p < .021), and IL-4
(299.5 ± 137.3 vs 391.1 ± 52.780, respectively; p < .001).

Patients’ stratification for tobacco smoking, BMI,
presence of nasal polyps, or age did not show significant
differences in the investigated parameters.

Results of the correlation analysis

Table 2 presents the significant correlations observe among
parameters, and AR disease and patients’ characteristics.
BMI correlated positively vs. each of age and IL-4. Age

Table 1. Age, body mass index (BMI), and variations in serum levels of the investigated parameters in healthy controls and allergic
rhinitis patients. Data shown are frequency (n), mean ± SDM (Range), and p value of Student’s t test comparison.

Characteristic Healthy controls (n = 24) AR patients (n = 147) P

Age, years 32.9 ± 18.26 (18–63) 31.7 ± 12.1 (18–63) >0.05
BMI, kg/m2 26.37 ± 5.114 (19.72–40.79) 27.2 ± 4.89 (18–40.9) >0.05
Serum IL-4, pg/mL 412.1 ± 526.8 (154.1–2289) 339 ± 295 (142–2134) >0.05
Serum IFN-γ, pg/mL 168.9 ± 173.9 (57.17–694) 108 ± 94.5 (49.8–661) < 0.012
Serum IL-4/IFN-γ ratio 2.439 ± 0.897 (1.361–4.867) 3.33 ± 1.19 (1.4–10) < 0.001
Serum HIF-1α, pg/mL 272.4 ± 208 (74.32–1109) 186 ± 89.1 (53.6–614) < 0.001
Serum EPO, pg/mL 98.14 ± 109.1 (28.13–497.7) 75.5 ± 47.3 (25.8–313) >0.05
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also correlated positively with nasal polyposis. IL-4 also
correlated positively vs. each of IFN-γ, IL-4/IFN-γ ratio,
HIF-1α, and EPO, but negatively vs. HIT. IFN-γ correlated
positively vs. each of HIF-1α, and EPO and OSA, but
negatively with IL-4/IFN-γ ratio. IL-4/IFN-γ ratio corre-
lated negatively vs. each of HIF-1α, HIT and OSA, but
positively vs. EPO. HIF-1α correlated positively vs. each of
EPO and OSA, but negatively with concha bullosa. Nasal
polyposis correlated negatively vs. each of HIT and
smoking, but positively vs. OSA. Concha bullosa corre-
lated positively vs. each of bronchial asthma and DNS, but
negatively with HIT. HIT also correlated negatively with
DNS. DNS also correlated negatively with OSA. OSA also
correlated positively with bronchial asthma.

Among the healthy controls, BMI correlated positively vs.
each of age (r = 0.556/p < .011), EPO (r = 0.391/p < .05), and
IL-4 (r = 0.348/p < .05). IL-4 correlated positively vs. each of
IFN-γ (r = 0.392/p< .029), IL-4/IFN-γ ratio (r = 0.559/p< .001),
HIF-1α (r = 0.394/p< .028), andEPO (r = 0.365/p< .048). IFN-
γ correlated positively vs. each of IL-4 (r = 0.392/p< .029),HIF-
1α (r = 0.631/p < .001), and EPO (r = 0.432/p < .05), but
negatively with IL-4/IFN-γ ratio (r = -0.402/p < .026). HIF-1α
correlated positively with EPO (r = 0.480/p < .025).

Discussion

We conducted the current investigation with the expecta-
tion that our AR patients would exhibit a predominately
Th2 immune response. The data, however, showed that
there was a mixed majority of naı̈ve Th0 and a minority of
Th2 reactions. All of the controls exhibited a naı̈ve
Th0 immune profile with considerably greater IFN-γ levels
than AR patients, which resulted in a lower IL-4/IFN-γ
ratio. This was not the only unanticipated result we found.
Serum HIF-1α and EPO levels, as cellular hypoxia bio-
markers, were expected to be higher in AR patients, par-
ticularly those suffering from OSA, nasal polyposis, HIT,
and DNS than healthy controls. These contrary findings
could be reasoned to environmental factors and adminis-
tration of anti-allergic over-the-counter (OTC) and herbal
medications that the patients admitted taking. Controls
showed significantly higher levels of HIF-1α. The wide
inter-individual variations in IL-4 and EPO levels made
their higher contents in the controls non-significantly
different from patients. Levels of these cytokines signifi-
cantly correlated with AR comorbidities. OSA caused
significantly higher IL-4 levels but lower IL-4/IFN-γ ratio,
HIT had lower IL-4/IFN-γ ratio, and DNS revealed lower
EPO and IL-4 levels.

HIF-1α expression is regulated by hypoxia and oxygen-
independently by various cytokines and growth factors.
Similarly, during both of hypoxia and normoxia, HIF-1α
activates different immune cells during the inflammatory
processes associated with infections and allergies,

particularly for nasal allergies.11–15 In airways of children
with allergic asthma, IL-4/IFN-γ ratio in condensate of
exhaled breath is increased, consistent with predominance
of Th2 cells. Steroid treatment lowers IL-4 but not IFN-γ.21

After the recognition of antigen, the IL-12/IFN-γ-primed
Th1 immunity ensures defense against intracellular path-
ogenic microorganisms, tumor cells, viruses, and fungi.
This employs cytotoxic T cells, NK cells, activated mac-
rophages, and B cell antibodies. The huge amount of IFN-γ
produced empowers Th1 shift of the immune reaction
while dampening Th2 cytokines and immunity develop-
ment. The IL-4-primed Th2 immunity ensures immunity
against extracellular pathogenic microorganisms, bacteria,
and parasites. It utilizes B cell antibodies, eosinophils and
basophils. Strongly biased immunity to Th2 arm induces
production of large amounts of IL-4, IL-10, and IL-5. This
leads to allergic IgE-mediated reaction or specific auto-
reactive antibodies-mediated reaction. Further production
of IL-4 by these cells enhances Th2 immune pathway while
inhibiting the development of Th1 immunity. Therefore,
the ratio of these two contra-regulatory cytokines, IL-4 to
IFN-γ, dictates which of these two pathways is dominant or
depressed.4,5

HIF-1α is induced by Th1 cytokines.16 Discordance
between EPO and HIF-1α in our results may be reasoned to
the further regulation of EPO, expression, and action, by
cytokines, sex hormones, growth hormone, and IGF-1.18

Inhibitor of retinoic acid receptor-related orphan was able to
relieve experimental AR through reducing the expression of
tissue HIF-1α and VEGF, and serum IL-17 level.9 In support
of that, in the same cohort of AR patients, we have previ-
ously reported significantly reduced levels of all-trans-
retinoic acid, the major physiological ligand for retinoid
receptors.22 HIF1A gene single nucleotide polymorphisms
(SNPs) were significantly associated with various diseases.
Of which, is the regulatory intronic rs79865957 SNP that
was associated with AR, asthma and inflammation, despite
the unknown functional consequences of this SNP. HIF-1α
inhibition decreases Th2 inflammation as measured by re-
duced IL-4, IL-5, and IL-13.23,24 In other experimental AR
models with Th2 cytokine profile, reduction of HIF-1α and
VEGF expression, decreasing the apoptosis-resistant eo-
sinophilia and prevention/neutralizing the induced cytokines
were ameliorative, while their induction exacerbates the
inflammation.25–29 Similar Th2 profile was not observed in
our study that may explain why HIF-1α and EPO expression
were rather lower in our patients.

HIF-1α contributes to AR, bronchial asthma, and chronic
sinusitis. HIF-1α protein levels in nasal airways correlate with
the severity of AR in mice. Induction of HIF-1α sustains the
allergic effector cell survival and function, with an important
pathogenic role in chronic sinusitis and polyposis. Such
unfavorable role of HIF-1 in allergic airway inflammation is
attracting more attention, as its inhibition may prove
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therapeutically useful in AR—through suppressing IgE local
and systemic Th2 cytokine expression, airway hyper-
responsiveness, and vascular permeability.8,9,11,23,30 HIF-1α
plays a crucial role in interferon production by dendritic cells
and subsequent cytotoxic T cell activation.31 There is in-
creased expression of HIF-1α in chronic rhinosinusitis
without nasal polyps.32 Hypoxia due to closure at the os-
tiomeatal complex is widely considered one of the major
pathogenic mechanisms leading to chronic inflammation in
chronic rhinosinusitis.33 A positive relationship is detected
between each of HIF-1α and HIF-2α protein expression in
epithelial cells and the endoscopic score in nasal polyp
samples. However, there is a negative correlation between
HIF-1α expression and each of the degree of eosinophil in-
filtration and IL-17A expression.34 House dust mite extract
induces HIF-1α and its target genes’ expression in human
primary cultured nasal epithelial cells and in the nasal mucosa
of an ARmurine model.27 In in vitro primary cultures, human
eosinophil-infiltrated inferior turbinate chronic rhinosinusitis
mucosa expressed higher IFN-γ and HIF-1α compared to
control mucosa. Eosinophil-infiltrated mucosa from nasal
polyps secreted more IFN-γ than control mucosa under
normoxic condition; however, the difference was abolished
under hypoxic incubation. Under hypoxia, chronic rhinosi-
nusitis eosinophil-infiltrated and none-infiltratedmucosa from
nasal polyps expressed lower nuclear HIF-1α level, whereas
mucosa from inferior turbinate of chronic rhinosinusitis pa-
tients and controls expressed higher cytoplasmic HIF-1α
levels.35 These findings partially support our results.

We depended on patient surveys to specify the inducing
allergens of AR. The survey revealed indoor and out-door
exposure to dust, animals, grass, weather changes, and
smoke, perfumes, and incense to be the main elicitors. This
indicates the possible diagnosis of mixed type AR. The
severe symptoms we observed in the overwhelming ma-
jority of patients support such a notion. Nevertheless, not
determining the specific allergen(s), using skin prick test
and/or total and allergen-specific IgE assessment, is a
limitation of the current study that will be done in future
bigger studies. We also cannot exclude destabilization of
HIF-1α by a disease-lifestyle-environment interaction
(local dry sandy atmosphere most of the year) and patients
administration of OTC and herbal homeopathy.36 This gets
some credit from the observed parallel reduction in the
levels of the very stable EPO. The relatively small sample
size is another limitation that might have affected our
results, too.

Conclusion

This study revealed an overwhelming majority of patients
with the naı̈ve Th0 immune profile that was recorded also
for all healthy controls. Controls had significantly higher
levels of IFN-γ and HIF-1α but lower IL-4/IFN-γ ratio than

patients. Controls had non-significantly higher IL-4 and
EPO levels compared to AR patients, attributable to the
wide inter-individual variations. Levels of these parameters
significantly correlated with AR comorbidities. OSA
caused higher IL-4 levels but lower IL-4/IFN-γ ratio,
hypertrophy of inferior turbinate caused lower IL-4/IFN-γ
ratio, and deviated nasal septum caused lower EPO and IL-
4 levels. Along with the cytokine and their balance, the
significant difference between patients and controls in
serum HIF-1α points to a pathogenic role that warranties
future bigger and longitudinal studies. The unanticipated
immune profile and HIF-1α/EPO levels could be attributed
to: (1) life-style/environmental factors, since activation of
aryl hydrocarbon receptor competes with HIF-1α for gene
responsive sequences, (2) subclinical co-infections, (3)
mixed type AR in most of patients, and/or (4) homeopathic
administration of AR-relieving herbal decoction and/or
OTC medications.
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