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Abstract

Ion mobility (IM) spectrometry provides semiorthogonal data to mass spectrometry (MS), 

showing promise for identifying unknown metabolites in complex non-targeted metabolomics 

data sets. While current literature has showcased IM–MS for identifying unknowns under near 

ideal circumstances, less work has been conducted to evaluate the performance of this approach 

in metabolomics studies involving highly complex samples with difficult matrices. Here, we 

present a workflow incorporating de novo molecular formula annotation and MS/MS structure 

elucidation using SIRIUS 4 with experimental IM collision cross-section (CCS) measurements 

and machine learning CCS predictions to identify differential unknown metabolites in mutant 

strains of Caenorhabditis elegans. For many of those ion features, this workflow enabled the 

successful filtering of candidate structures generated by in silico MS/MS predictions, though in 

some cases, annotations were challenged by significant hurdles in instrumentation performance 

and data analysis. While for 37% of differential features we were able to successfully collect 

both MS/MS and CCS data, fewer than half of these features benefited from a reduction in 

the number of possible candidate structures using CCS filtering due to poor matching of the 

machine learning training sets, limited accuracy of experimental and predicted CCS values, and 

lack of candidate structures resulting from the MS/MS data. When using a CCS error cutoff of 

±3%, on average, 28% of candidate structures could be successfully filtered. Herein, we identify 

and describe the bottlenecks and limitations associated with the identification of unknowns in 

non-targeted metabolomics using IM–MS to focus and provide insights into areas requiring further 

improvement.
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Liquid chromatography mass spectrometry (LC–MS) remains a powerful technique for 

interrogating perturbations of small molecules in living organisms through non-targeted 

metabolomics studies. To relate detected ion features to biological processes, annotation 

of such features must be performed to assign a structure. This is typically accomplished 

by collecting MS/MS spectra for features of interest and searching against large databases 

of previously characterized or computationally predicted MS/MS databases such as the 

human metabolome database,1 LIPID MAPS structure database,2 and MassBank.3 For well-

characterized cell lines and organisms, database searches will typically annotate 10% or less 

of measured features as the coverage of such databases is still incomplete.4 Annotation of 

this remaining “metabolic dark matter” is a lengthy process and remains a critical bottleneck 

in the field of metabolomics.5

Limited structural information can be gleaned from the fragment masses of a small 

molecule’s product ion MS/MS spectrum, though full structural elucidation is not often 

possible with this information alone. Computed fragmentation trees (e.g., from graph theory) 

have been proposed as a solution to leverage this limited information, providing likely 

substructures in the unknown molecules.6 These trees are visualized as a graph of masses 

and their related molecular formulas showing the logical progression from precursor to 

product ion, neutral and radical losses, and subsequent products resulting from multiple 

fragmentation pathways. CSI:FingerID is an in silico machine learning (ML) method that 

successfully extracts structural motifs (or “molecular fingerprints”) from fragmentation 

trees, which can then be compared against large databases of molecules without archived 

MS/MS data.7 This allows for the molecular fingerprint of an unknown feature to be 

compared against the millions of entries in molecular structure databases such as PubChem 

to produce a list of ranked candidate structures. This approach has shown promise in the 

critical assessment of small molecule identification contests as a part of the SIRIUS 48 

suite of compound identification tools where it was able to correctly identify 74.8% of 

features in the top 10 ranked candidates for positive ion mode LC–MS/MS data.8 Several 

other computational methods have been proposed that similarly offer a large advantage over 

manually reviewing MS/MS data, though all generate large lists of candidates that may or 

may not contain the correct structure in the top ranks.9
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Ion mobility (IM) spectrometry readily pairs with LC–MS analysis (LC–IM–MS) and 

offers semiorthogonal information in the form of collision cross-section (CCS) values, a 

two-dimensional, rotationally averaged representation of molecular size and shape. These 

CCS values can be derived experimentally from the drift time of an ion feature in the case 

of drift tube IM (DTIM) or can be calibrated from known DTIM CCS values in the case 

of traveling wave IM (TWIM).10 CCS databases have been developed recently along with 

machine learning (ML) tools that leverage these experimental values to predict the CCS of 

molecular structures of interest.11-13 As CCS is an intrinsic trait of a given molecule, it has 

been touted as a means to further filter candidate structures generated by in silico MS/MS 

analysis software. ML can then be used to computationally predict CCS values of MS/MS 

candidate structures and filter those by comparison against the measured CCS value.13 This 

process is highly dependent on the accuracy of the analytical IM–MS CCS measurement 

and the ML prediction errors of CCS values, as isomers often vary by less than 2% in 

CCS.14 CCS intra-lab variability is commonly reported to be in the 2% range for DTIM–

MS measurements of small molecules when using carefully matched IM–MS parameters.15 

These differences call into question the true efficacy of CCS as a means of filtering similar 

structure candidates.14 These challenges are further amplified when attempting to compare 

CCS data acquired by TWIM–MS or other IM–MS techniques against DTIM–MS databases 

due to the complexities of the calibration procedures involved.16,17

To evaluate the capabilities of these tools when applied in a complex, non-targeted 

metabolomics scenario, our study centered on the LC–MS metabolomics study of 

Caenorhabditis elegans strains with known mutations to central metabolism pathways. 

Primary LC–MS analysis was conducted on an Orbitrap platform leveraging its 

high resolution, robust mass accuracy, and iterative data-dependent acquisition (DDA) 

capabilities to accurately facilitate the elemental formula assignment and provide deep 

MS/MS coverage. The Orbitrap data set was used to identify differential features of interest 

to be annotated and generate candidate structures through MS/MS analysis in SIRIUS 4.8 

Following this primary analysis, pooled samples were reanalyzed on a q-IM-TOF instrument 

to measure CCS values for differential features of interest using LC–TWIM–MS. Candidate 

structures with ML-predicted CCS values having >3% error against the experimentally 

measured CCS values were then discarded. CCS predictions proved useful in many cases, 

but it was also observed that the CCS accuracy currently achievable with commercial IM–

MS instruments was sometimes insufficient for unequivocal filtering. These predictions 

were achieved with high accuracy for many metabolites using machine learning. However, 

this was not possible for all ion adducts due to limitations in the available training sets. 

Tandem MS and IM–MS data were successfully collected for 37% of the differential 

features in the study, with about half of these features benefiting from reduction in candidate 

structures through IM–MS measurements. Overall, combining IM–MS CCS machine 

learning predictions with molecular fingerprints obtained from tandem MS fragmentation 

trees to speed up metabolite annotation was seen as beneficial, with further instrumental 

IM–MS developments needed for this approach to reach its full potential.
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EXPERIMENTAL SECTION

Sample Growth.

Two strains of C. elegans (Caenorhabditis Genetics Center strains VC1265 and RB2347 

with alterations to pyk-1 and idh-2, respectively) were selected for their mutations to 

central metabolism pathways and grown in large scale culture plates alongside the PD1074 

reference strain samples as previously described.18,19 Six replicate samples for both test 

strains were prepared with paired reference samples. Mixed-stage worm populations were 

harvested, diluted to 200,000 worm aliquots, flash-frozen in liquid nitrogen, and stored at 

−80 °C. Frozen aliquots were then lyophilized with VirTis BenchTop “K” Series Freeze 

Dryer (SP Industries, Inc.) and stored at −80 °C until extraction.

Sample Extraction.

Samples were evenly divided across two batches to simultaneously accommodate a 

maximum of 24 samples including controls through the extraction process. Each mutant 

strain was represented in both batches to account for extraction batch effects. Lyophilized 

samples were removed from storage at −80 °C, and three 2.0 mm zirconium oxide beads 

and 75 μL volume of 0.5 mm glass beads were added to each sample tube. Samples 

were homogenized in a Qiagen Tissuelyser II for 3 min at 1800 rpm using adapter trays 

chilled at −80 °C. A sequential extraction was performed starting with the addition of 750 

μL LC–MS grade isopropanol (IPA, Fisher Scientific) to each sample. Each sample was 

lightly vortexed to create a slurry of homogenized samples, which was then transferred to 

a new 2.0 mL centrifuge tube. This process was repeated a second time, and so, a total 

volume of 1.5 mL was transferred, leaving behind the homogenizing beads. Samples were 

vortexed for 1 min and stored overnight (12–15 h) at −20 °C. Samples were centrifuged at 

22100G for 5 min, and the supernatants were transferred to new 2.0 mL centrifuge tubes 

labeled for reverse phase (RP) chromatography. These extracts were dried in a Labconco 

CentriVap concentrator until completely dry (4–5 h) and stored at −80 °C until LC–MS 

analysis. The remaining pellet was subjected to a second round of extraction using 1.5 mL 

of 80:20 LC–MS grade methanol:water (Fisher Scientific). The pellet and methanol:water 

mixture was shaken at room temperature (23.0 °C) at 1500 rpm for 30 min using a Fisher 

Scientific Isotemp High Speed Shaker. Samples were again centrifuged at 22100G for 5 min 

and supernatants were transferred to new 2.0 mL centrifuge tubes labeled for hydrophilic 

interaction liquid chromatography (HILIC), dried, and stored at −80 °C.

Sample Reconstitution and Pooling.

Dried IPA extracts were reconstituted with 75 μL IPA containing isotopically labeled lipid 

standards, vortexed for 1 min, centrifuged at 22100G for 5 min, and transferred to 300 

μL LC–MS vials for RP LC–MS analysis. Methanol:water extracts followed the same 

reconstitution steps but were instead reconstituted in 80:20 LC–MS grade methanol:water 

containing isotopically labeled small molecule standards for HILIC LC–MS analysis. 

Standards used for each extract are described in Table S1. A total of 5 μL from each 

PD1074 reference sample in the first batch was taken to create a pooled PD1074 sample. 

Similarly, 5 μL from each mutant strain sample was taken to create a pooled mutant sample. 
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Equal volumes from each pool were mixed to create whole batch pool samples. This pooling 

process was repeated for batch two.

LC–MS Analysis.

Instrument runs began and ended with instrument controls, whole batch pool samples, 

mutant pool samples, and PD1074 pools. Individual test samples were randomized 

throughout the middle of the run with three injections of whole batch pool samples 

interleaved.

IPA samples were LC–MS analyzed using a ThermoFisher Vanquish chromatograph and 

Accucore C30 150 × 2.1 mm, 2.6 μm column coupled to a ThermoFisher Orbitrap ID-X 

Tribrid mass spectrometer. Elution was performed using 40:60 water/acetonitrile with 10 

mM ammonium acetate (mobile phase A) and 10:90 acetonitrile:isopropyl alcohol with 10 

mM ammonium (mobile phase B). Methanol:water extracts were analyzed on the same 

system using a Water BEH Acquity UPLC BEH Amide column (2.1 × 150 mm, 1.7 μm 

particle size). Elution was performed using 80:20 water/MeCN with 10 mM ammonium 

formate and 0.1% formic acid (mobile phase A) and MeCN and 0.1% formic acid (mobile 

phase B). Batches were run in positive and then negative ion polarity before running 

subsequent batches. Complete chromatographic settings and mass spectrometer parameters 

for both chromatographic methods are outlined in Tables S2-4.

Full scan MS1 data for each sample were obtained at a resolution setting of 240,000 

full-width half maximum. MS/MS analysis was performed on whole batch pooled samples 

using three rounds of iterative DDA (ThermoFisher AcquireX) at a resolution of 30,000 

FWH using a 0.8 Da isolation window and stepped HCD collision energies of 15, 30, and 45 

V.

Whole batch pooled samples were re-analyzed on a Waters Synapt G2-S paired to a Water 

Acquity I-Class UPLC system using matched chromatography to obtain IM drift times 

from representative samples. Extensive tuning of IMS parameters was performed to limit 

fragmentation of small molecule species. Briefly, wave voltages and nitrogen gas pressures 

within the mobility cell were reduced and a wave velocity gradient was implemented to 

maintain suitable IM resolution. Instrument parameters are described in Table S4. CCS 

calibration was accomplished using poly-DL-(alanine) (n = 2–14) (MilliporeSigma). Multiple 

reference values for poly-DL-(alanine) were evaluated for their ability to yield accurate CCS 

values for a wide range of small molecule standards.

Data Processing.

Compound Discoverer 3.1 (ThermoFisher) was used to extract spectral features from 

the Orbitrap ID-X data sets. Processing steps included retention time (RT) alignment, 

peak picking, feature grouping, peak integration, and gap filling. The first stage of 

feature annotation was performed through Compound Discoverer 3.1 using mzCloud 

(ThermoFisher) and in-house mzVault libraries. For analysis of LC–IM–MS data sets 

acquired on the Waters Synapt G2-S platform, data processing was performed using 

Progenesis QI 2.4 (Nonlinear Dynamics) to extract features from the raw data and assign 

CCS values. To match the CCS values of features measured on the Synapt G2-S platform to 
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features measured on the Orbitrap ID-X platform, the RT of internal standards was used to 

align the chromatographic scales (Figure S1). Following RT correction of the Synapt G2-S 

data using a linear calibration curve, a 10 ppm m/z tolerance and 0.2 min RT tolerance 

was used for matching features between platforms manually. In rare cases where multiple 

features fell within the tolerance window, the Orbitrap ID-X data were manually reviewed to 

determine the elution order to properly match CCS values.

To control for sample variation, a ranked ANOVA approach was used to determine 

statistically significant differential features for each mutant strain (see Figure S2 and 

additional text in Supporting Information). Features were ranked from most intense to least 

intense within each sample and binned across 1,000 bins. ANOVA was then performed on 

the bin number between the mutant and control samples using the Galaxy web platform.20 

Bin numbers for features with p < 0.05 were used to construct orthogonalized partial least-

squares discriminant analysis (oPLS-DA) models within PLS_toolbox 8.9.1 (Eigenvector 

Research, Inc.) with the parameters described in Tables S5-S6. Features with top VIP scores 

were reviewed for proper chromatographic integration and further interrogated for structural 

identification. At least 10 features from each polarity and chromatography mode were 

investigated for both mutants.

Prediction of Candidate Structures and CCS Values.

MS/MS data were exported from Compound Discoverer 3.1 in.mgf file format and imported 

into SIRIUS 4.9.38 to predict the most likely elemental formula and adduct species for each 

feature based on m/z, isotope intensity, and fragmentation pattern. CSI:FingerID7 was used 

within SIRIUS 4.9.38 to generate candidate structures for each feature. Resulting candidate 

structures were written to.csv files containing the corresponding InChI codes.

To predict CCS values, two data sets were created using the Unified CCS Compendium,11 

one containing all entries for [M + H]+ adduct species and another set for all [M − H]− 

entries (n = 644 and 582, respectively). These data sets were then randomly split 75% into 

training sets and 25% into test sets, which were used to construct a support vector regression 

(SVR)-based ML model using CCSP 2.0,21 as illustrated in Figure 1. Using the optimized 

SVR models, CCS values for any given candidate structure could be predicted for [M + 

H]+ and [M − H]− species from their neutral InChI code. The predicted CCS value for each 

candidate structure was compared against the experimental value obtained from LC–IM–MS 

data. The accuracy of the predictions was evaluated using the following eq 1

CCSexperimental − CCSpredicted

CCSpredicted
× 100 % (1)

Structures with >3% error were discarded.

RESULTS AND DISCUSSION

Challenges Integrating IM–MS in an LC–MS C. elegans Metabolomics Pipeline.

To evaluate the utility of IM–MS for unknown feature annotation under practical conditions, 

we developed and tested an experimental workflow that included several innovative steps 
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(Figure 2). Two C. elegans strains with mutations to central metabolism pathways (RB2347 

and VC1265) were grown alongside reference strain samples to serve as a representative 

case/control case study for non-targeted metabolomic analysis. The samples consisted of a 

complex matrix derived from the nematodes, growth media, and buffers used. Six samples 

of the RB2347 and VC1265 mutant strains were prepared together with a growth-matched 

reference strain sample for each. These samples were sequentially extracted to produce polar 

and nonpolar fractions. LC–MS analysis of each extract was first performed on an Orbitrap 

ID-X (ThermoFisher) in both ion polarities. RP chromatography was used for nonpolar 

extracts and HILIC for polar extracts. This procedure yielded four data sets (RP/HILIC, 

positive/negative, several Gb each). Orbitrap LC–MS results showed high mass accuracy (<3 

ppm), whereas iterative DDA AcquireX runs on pooled samples allowed for deep MS/MS 

coverage. From the collected data sets, pre-selection of statistically significant differential 

features between controls and mutants was performed using a ranked ANOVA approach. 

Once feature selection via ANOVA was completed, it was followed by oPLS-DA modeling. 

From these oPLS-DA models, a short list of features with the highest VIP scores was 

created. These features were used as test cases for attempting metabolite annotation using 

the workflow in Figure 2. A total of 95 features were investigated for structural annotation, 

56 of which had MS/MS data collected by iterative DDA. The remaining features were 

not selected after three rounds of iterative DDA and were not pursued further. Between 

2 and 784 candidate structures were generated for each one of these features in SIRIUS 

48 using CSI:FingerID,7 showing the wide diversity of structures possible from a given 

MS/MS spectrum when only a few informative fragment ions are present. The CCS for each 

candidate structure was predicted using the ML CCSP 2.0 algorithm. CCS prediction was 

not possible for all features as only [M + H]+, [M + Na]+, and [M − H]− adduct species 

had sufficient training data available in the Unified CCS Compendium11 to build accurate 

ML models. A total of 66% of the features were detected as one of these adducts, meaning 

that CCS prediction was possible for approximately two-thirds of the features investigated. 

Creation of training sets for other types of adducts is an area in need of further research, as 

shown in detail in Table S7.

Pooled C. elegans samples were analyzed on the Synapt G2-S platform to collect TWIM-MS 

data and provide experimentally measured CCS values for features of interest. Matched 

chromatography was used, though RT correction using internal standards was required. 

Features detected in the Orbitrap ID-X platform could then be aligned to those measured on 

the Synapt G2-S by matching them with 10 ppm and 0.2 min. RT error after correction. A 

total of 55 out of the 95 differential features were matched using these criteria and could be 

assigned experimental CCS values. The lowest observed success rate was for lipid species 

in the RP data set. Some of these were only observed as dimeric ions (e.g., [2M + H]+) 

on the Orbitrap ID-X but not detected on the Synapt G2-S. It is possible that these dimeric 

ions either do not form as readily in the Synapt instrument ion source or that these species 

do not survive more complex ion optics, which include the higher-pressure IM cell, without 

fragmenting. Features from the HILIC Orbitrap data set were also sometimes missing in the 

Synapt data set, likely due to unwanted ion activation in the mobility stage or differences in 

ion transmission between platforms.
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Fragmentation products observed for labile metabolites during LC–TWIM–MS method 

development with standard metabolites included amino acid deamination, decarboxylation 

of organic acids, and fragmentation of compounds such as hippuric acid. Extensive tuning of 

the IM parameters was performed to minimize unwanted fragmentation of small molecules 

occurring during ion transport from the higher vacuum quadrupole region into the higher-

pressure mobility cell of the instrument. The final IM–MS parameters chosen to minimize 

fragmentation are given in Table S4. Another reason that could lead to the lack of matched 

features between the Orbitrap and Synapt systems is related to differences in their mass 

resolution. It is possible that spectral overlaps in the lower resolution Synapt platform 

resulted in the mass errors that caused features to fall outside the 10 ppm window.

Candidate structures for the investigated differential features could be filtered once these 

were assigned experimental CCS values from TWIM–MS data, candidate structures from 

Orbitrap MS/MS data, and ML-predicted CCS values. The differences observed between 

ML-predicted vs experimental CCS values are a complex convolution of several factors that 

include (1) the experimental TWIM–MS CCS measurement and calibration errors and (2) 

the SVR model errors inherent to ML predictions. Regarding the latter, multiple attempts to 

accurately predict the uncertainty of SVR models via bootstrap approaches22-24 have been 

done, but none have yet been implemented in the context of CCS prediction algorithms. The 

considerable number of molecular descriptor inputs and the lack of comprehensive training 

data complicate the generation of point-wise confidence intervals for each metabolite of 

interest. Consequently, CCS prediction algorithms typically rely on summary statistics such 

as the root mean square error (RMSE) and the median relative error to set blanket exclusion 

thresholds. Most CCS prediction algorithms in the literature suggest a 3% threshold for 

matching the experimentally measured CCS and the predicted CCS values of their test 

sets.25-27 Though more restrictive (1%) and more permissive13 (4%) thresholds have also 

been investigated, a 3% filtering threshold was adopted here based on the calibration errors 

observed in our experiments and to allow for comparison between our results and those 

previously published.

Machine Learning CCS Predictions.

CCSP 2.0, our in-house ML algorithm for CCS prediction, encodes the molecular structure 

through neutral InChI strings and uses molecular descriptors for such structures to generate 

SVR models that accurately predict CCS for unknown ions (Figure 1). This ML tool 

was created in a Jupyter notebook with freely available open-source Python packages for 

maximum accessibility and to enable the user to modify the code as needed. Prior to 

applying CCSP 2.0 to the C. elegans IM–MS data set, its prediction accuracy was estimated 

through an external validation procedure. All models were created for specific ionic species, 

such as [M + H]+, [M − H]−, and so forth. The CCS prediction error was 1.14% for [M 

− H]− ions and 1.56% for [M + H]+ ions. These errors corresponded to RMSE values of 

4.268 and 5.694 Å2, respectively, which were comparable to or better than other published 

CCS prediction methods.12,13 Further CCS prediction cross-validation results are provided 

in Figure S3, showing an excellent correlation between measured and predicted CCS values. 

This level of prediction accuracy, together with the flexible CCSP 2.0 code environment, 

allows other research teams to adapt the training set to their specific applications and to 
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make use of hybrid calibration strategies combining experimental and predicted CCS values, 

as discussed in the next section and in Figure 3.

Optimizing TWIM Calibration Accuracy for Diverse Data sets.

Minimizing CCS calibration errors is a critical component in obtaining the most accurate 

CCS values for filtering structures generated in SIRIUS 4. TWIM-MS CCS measurements 

(TWCCSN2
28) require calibration of drift times with a series of compounds with known 

CCS values, typically measured by DTIM–MS (DTCCSN2). Poly-DL-(alanine) oligomers are 

commonly used as a calibrant mixture because they exhibit relatively little chemical class 

bias. This makes this calibrant well suited for non-targeted IM–MS analysis.29-32 The source 

of DTCCSN2 reference values plays a large role in the quality of the results produced by 

TWIM–MS following drift time calibration. Ideally, calibration should be performed using 

data from the database source that will ultimately be used for comparisons. For example, 

TWIM–MS drift times calibrated using Unified CCS Compendium11 DTCCSN2 values will 

have the highest agreement with other CCS data from this source if compared to data from 

alternative sources such as AllCCS13 and CCSbase.12 However, the CCS reference database 

of choice often may not include complete data for the desired calibrant series. In our case, 

the Unified CCS Compendium11 only reports CCS values for poly(alanine) down to the 

n = 4 oligomer ([M + H]+ = m/z 303.1668) though the range of differential metabolites 

investigated spanned m/z values between 70 and 1050. While power-law calibrations can 

be used to extrapolate CCS values outside of the calibrated range, it is possible that 

including additional calibration points to cover the expected m/z range may further improve 

results. To achieve greater CCS calibration coverage, we tested four different calibration 

methods. The basic method only used the poly(alanine) CCS values from the Unified 

CCS Compendium.11 A second method supplemented the Unified CCS Compendium 

poly(alanine) data with Compendium values from tryptophan and dimethylglycine. A third 

calibration method used the full poly(alanine) CCS reference data from Hines et al.,30 which 

includes the n = 2–3 oligomers. The fourth and last calibration approach used ML-predicted 

CCS values for the n = 2–3 oligomers obtained when using Unified CCS Compendium11 

data for the training set.

The accuracy of these four calibration methods was compared by measuring CCS values 

of 14 chemical standards covering the m/z 104–241 range in positive ion polarity. A single 

IM–MS data set was acquired and then calibrated using each of the four calibration methods. 

Calculated CCS values were then compared against those reported in the Unified CCS 

Compendium. Resulting errors are shown in Figure 3. On average, the least agreement 

(% average absolute error = 1.84) was observed when calibrating with data from Hines et 

al. and comparing against the Unified CCS Compendium (Figure 3c). These differences 

likely arise from benchmarking data calibrated with reference values from one laboratory 

against the values from another laboratory. It may also arise from the inherently different 

TWIM and DTIM gas-phase separation mechanisms. CCS data calibrated using only CCS 

Compendium poly(alanine) values yielded the lowest average absolute error (1.23%, Figure 

3a). Calibration with additional standards (Figure 3d) produced an absolute error of 1.68% 

on average, and calibration supplemented with ML-predicted points performed similarly 

to the approach involving additional standards, with an average absolute error of 1.62% 
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(Figure 3b). The latter results illustrate the possibility of enhancing TWIM calibrations with 

ML-derived values in cases where the reference database is incomplete. Figure 3e shows 

the results for each of the individual standard compounds tested. Based on these results, 

the method depicted in Figure 3a was selected moving forward as it yielded absolute errors 

ranging from 0.02 to 2.98%. Based on these calibration errors, the chosen CCS threshold of 

3% for comparing predicted and experimental CCS values was in line with literature results.

Distribution of ML CCS Prediction Errors for SIRIUS 4-Derived Structures.

The errors of the experimentally measured versus ML predicted CCS values for each 

candidate structure generated in SIRIUS 4 were calculated for all 19 differential features 

investigated. Histograms of these measured versus predicted CCS error distributions are 

shown in Figure 4. The overall success of the annotation workflow CCS filtering step can be 

evaluated from the results shown in Figure 4a. A total of 1580 (45%) candidate structures 

were filtered out from the original 3495 structures proposed by SIRIUS 4. Interestingly, 

an overall shift toward negative errors was observed in the histogram. This effect can 

likely be attributed to the choice of polyalanine for converting TWIM drift times to CCS 

values (Figure 3e). Bias in the calibration may be introduced by the nuanced interactions 

of the chosen calibrants with the transient electric fields present in the TWIM drift cell. 

These interactions change based on the chemical class in ways not accounted for in typical 

power-law drift time calibrations, such as the one used here.16 As a result, chemical class 

differences between the calibrant and analyte manifest as CCS biases in the same direction, 

positive or negative.17 While poly(alanine) serves as a general calibrant offering reasonably 

good structural similarity for a variety of compounds,29-32 other calibrants could likely 

exhibit better calibrant–analyte structural similarity. This is important for non-targeted 

metabolomics studies dealing with a variety of chemical classes, such as those involved 

in central metabolism mutant C. elegans strains. However, chemical class matching of 

the calibrants to the unknowns is only possible with a priori knowledge of the chemical 

class of the investigated features. Moreover, current experimental CCS databases often lack 

sufficient representation from compounds of a certain class of interest, such as adduct ions 

that could match the ionic species detected.

Error histograms for individual features displayed similar Gaussian-like distributions due to 

the high similarity of the structures generated from in silico analysis of a given MS/MS 

spectrum. The overall success of CCS filtering was 45%, highlighting the usefulness of the 

proposed annotation workflow, but it must be borne in mind that the success varied on a 

feature-by-feature basis. Many candidate structures fell within ±3% of the center of each 

error distribution, and thus, the percent of features filtered by CCS was dependent on how 

far the center of such error distribution was shifted from the experimental CCS value. A 

successful case is shown in Figure 4b where the distribution was centered at roughly −4% 

error. In this case, the correct structural annotation (N-acetyl aspartate) fell on the right 

shoulder of the distribution, just within the ±3% CCS cutoff. The identity of the correct 

compound was confirmed with a pure standard and through searches in mzCloud during 

data processing. N-acetyl aspartate represents an almost ideal case where CCS can filter 

>50% of candidate structures while retaining the correct annotation. Out of the 57 candidate 

structures within the ±3% CCS cutoff (Figure 4b), N-acetyl aspartate was the #1 ranked 
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SIRIUS 4 candidate. This example, however, is not typical. A less successful scenario is 

shown in Figure 4c for a yet-unidentified feature at m/z 175.0713 and RT 8.02 min, where 

only 19% of candidate structures fell outside the ±3% CCS cutoff. Figure 4d depicts a case 

of an unknown with a CCS error distribution shifted toward positive values. In this case, 

33% of candidate structures were filtered. The MS/MS and CCS data on the remaining 

45 structures were insufficient to make a conclusive annotation. These results highlight 

the importance of reducing the CCS cutoff value by improving overall CCS measurement 

accuracy.

Results in Figure 4e indicated a general trend observed in the data set for lipid species. 

These were especially challenging to annotate due to the multitude of possible isomeric 

structures of similar molecular size and shape. In silico prediction of such structures from 

MS/MS spectra yields fewer structures than for other classes of compounds, but these all 

have very similar predicted CCS values. Effectively, this results in a narrower CCS error 

distribution that is more difficult to filter by TWIM-MS measurements. As expected, this 

effect was more commonly observed for features in the RP data sets as the extraction step 

used resulted in lipid-rich systems.

Structural Annotation of Differential Features in C. elegans Mutants.

A total of 95 features were identified as differential between the mutant and control strains 

and further investigated with the proposed workflow. Matched MS/MS and CCS data were 

successfully collected for 34 of these features. Of these 34, only 19 could be processed 

through the entire workflow. The effectiveness of CCS filtering for each of these 19 features 

is shown in Figure 5. Both the number of candidate structures generated and the percent 

of structures filtered by CCS varied substantially on a case-to-case basis. An average of 

183.9 candidate structures were generated for each feature with a mean reduction of 28% 

of structures on an individual basis using CCS filtering. The average percent of features 

filtered individually was considerably lower than the overall filtering rate of 45%, as features 

with more candidate structures tended to have more structures filtered by CCS. Notably, six 

features had no reduction in candidate structures, meaning that all structures had predicted 

CCS values within 3% of the measured CCS. For a differential feature at m/z 738 and RT 

3.1 min in the RP data set, only two of the 233 candidate structures could be filtered. This 

shows that while many structures may be possible for a given formula, MS/MS data will 

often constrain the possibilities to those of highly similar molecular size and shape, and 

therefore, CCS values. For the 15 features which could not be processed through the full 

annotation workflow, several unique failure points were identified. As previously mentioned, 

sufficient training data were not available in many cases to construct accurate ML models 

for the measured type of ion adduct. Other points of failure include (1) no candidate 

structures from MS/MS data produced by SIRIUS 4, (2) TWIM–MS ion rollover identified 

as an abnormally small CCS value due to the ions not clearing the mobility cell during 

a single scan, and (3) incorrect processing of TWIM–MS drift time data by Progenesis 

software yielding incorrect drift times. A full description of identified challenges for each 

of the 15 non-identified features is given in Table S7. Though ion rollover and incorrect 

arrival time assignment could be rectified through follow-up experiments and manual data 
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processing, it is important to note the challenges in designing an automated workflow that 

would work universally well on every feature without exception.

Certain assignments were confirmed for three of the 19 successfully investigated features 

using pure analytical standards by matching RT and drift time from the Synapt G2-S 

and matching MS/MS spectra from the Orbitrap ID-X. Two of these features were also 

identified first within mzCloud: N-acetyl aspartate and guanine. While these compounds 

only marginally benefited from CCS candidate structure filtering, CCS still helped as an 

effective reassurance of the annotation (Figure S4). The MS/MS spectra from N-acetyl 

aspartate generated 376 candidate structures, 85% of which were filtered by CCS. Guanine 

produced 365 candidate structures, 54% of which were filtered by CCS. The measured CCS 

values for both features were within 3% of the predicted CCS for the correct structure.

Perhaps the most useful application of the proposed workflow was for the feature at m/z 175 

and RT 8.3 where only two candidate structures were generated. One of these two structures 

could be discarded by CCS, leaving only the possibility for allantoic acid, which was later 

confirmed by m/z, RT, and MS/MS matching to a pure standard.

CONCLUSIONS

In this article, we have explored the utility of augmenting non-targeted metabolomics 

workflows with an ion mobility candidate structure-filtering step to establish the 

performance of this approach under “real world” conditions involving complex samples. 

The results indicated that the number of filtered structures was highly variable and 

limited mainly by the accuracy of CCS measurements and ML predictions achievable 

with current instrumentation and calibration approaches. With the current CCS cutoff of 

3% typically used in the literature, filtering efficacy depended on chemical class and the 

amount of information that could be gleaned from MS/MS fragment ions. On average, a 

mean reduction of 28% of structures on an individual basis was observed. These results 

demonstrate both the promise for applying IM–MS to aid in metabolite identification efforts, 

but also the need to improve current IM–MS instrumentation to improve accuracy.

An important limitation of our study was that focus was placed only on those discriminating 

features for which we were able to collect informative MS/MS information. For species 

without fragmentation information, the number of structure candidates is even higher 

and therefore annotation becomes more challenging. In these cases, CCS filtering can be 

leveraged to remove some of the unlikely structures, but full annotation would require 

complementary approaches such as retention time matching with predicted retention time 

values or NMR spectroscopy on isolated fractions.

As higher resolution and higher accuracy IM–MS instrumentation is developed, and CCS 

prediction ML models for additional ionic species become available, we expect that the 

utility of CCS candidate filtering for metabolite identification will also improve. While 

many recent advancements have resulted in IM–MS platforms with considerably higher 

resolution, the work presented here highlights the need for improvements in CCS accuracy, 

not only resolving power. A greater agreement in measured CCS between platforms 
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is also highly desirable, requiring improvements in calibration approaches and platform 

interoperability. New IM–MS platforms, such as trapped IM, cyclic IM, and structures 

for lossless ion manipulations (SLIM) IM, offer much improved separation capabilities 

compared to the more standard TWIM–MS platform tested here, but the variance between 

DTIM CCS values and those platforms is still >1% in most cases. Our results highlight 

that the current level of accuracy of CCS values is still insufficient for reaching the full 

potential of IM–MS-based metabolite annotation efforts. Improvements in ML prediction of 

CCS values through better training sets will also likely reduce one of the main sources of 

variance in the CCS filtering approach..

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
CCSP 2.0 is an SVR-based machine learning algorithm for predicting CCS values from 

2D structures represented by InChI strings. Two-dimensional structural data are first used 

to calculate up to 1613 quantifiable descriptors for each string in the training set through 

the Python Mordred package, generating a matrix of descriptors matching the matrix of 

experimental CCS values. Descriptors not applicable to molecules in the training set are 

culled and an initial SVR model is constructed. Optimization of the model is performed 

by limiting the number of descriptors used to those with the highest weights and then 

identifying the fewest descriptors that can be used to yield the lowest CCS prediction error. 

The calculated descriptors for any candidate 2D structure arising from SIRIUS 4 can then be 

plugged into the model to yield a predicted CCS value.
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Figure 2. 
Graphical overview of the metabolomics workflow employed in this study. C. elegans 
mutant strains were grown in tandem with growth-matched PD1074 reference strain samples 

(a). These cultures were harvested to aliquots of 200,000 worms, lyophilized, and then 

sequentially extracted, yielding nonpolar and polar fractions (b). All samples were analyzed 

on a Thermo Orbitrap ID-X platform. Pooled samples were reanalyzed on a Waters 

Synapt G2-S to provide complementary ion mobility data (c). Orbitrap data were used 

for differential analysis to select significant features of interest (d). Orbitrap MS/MS data 

were imported to SIRIUS 48 to generate candidate structures using CSI:FingerID7 (e). 

The CCS value for each candidate structure produced by SIRIUS 4 was predicted using 

CCSP 2.0, an SVR-based machine learning algorithm trained with the McLean Unified CCS 

Compendium11 data (f). Synapt ion mobility data were matched to Orbitrap data to provide 

experimental CCS values for differential features (g), which were then used to eliminate 

candidate structures falling outside the 3% error band (h).
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Figure 3. 
Accuracy of four CCS calibration strategies was evaluated using a panel of 14 standards 

covering the 104–241 m/z range. Plot (a) shows a power law calibration curve using 

Unified CCS Compendium11 data covering poly(alanine) oligomer lengths n = 4–14 (black 

points). To further extend the range of calibration, this series may be extended using ML 

predicted CCS values for poly(alanine) n = 2–3 (red points) as shown in plot (b) or by using 

poly(alanine) data from an alternate source (c). Alternatively, the poly(alanine) series may 

be supplemented with additional standards as in (d) where dimethylglycine and tryptophan 

(blue points) were used. CCS values for these 14 standards were calculated using each of the 

four power-law calibration curves, and then compared against Unified CCS Compendium11 

reported values for each standard. Errors for each calibration procedure are shown in (e).
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Figure 4. 
Histogram describing the percent error between ML-predicted CCS values of SIRIUS 

4 candidate structures (n = 3495) vs experimentally measured CCS. The error in these 

predictions was defined as in eq 1. Shown in (a) is the summation of errors for all the 19 

differential features investigated, demonstrating an overall filtering success of 45.2% (1580 

out of 3495). A negative bias toward lower-than-predicted experimental CCS values was 

observed. Individual errors for four features of interest are shown in plots (b–e). The solid 

black line represents the experimentally measured CCS value. The red dashed lines represent 

the ±3% CCS cutoff. The solid green line represents the error of the correct compound 

validated with a chemical standard.
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Figure 5. 
Overall results from CCS-assisted annotation of unknown features. Each investigated feature 

is represented by a bubble with the size defined by the total number of MS2-generated 

candidate structures and color defined by the percent of total candidates, which could be 

discarded by their CCS value. A background of gray dots represents all detected features.
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