Skip to main content
. 2023 Aug 21;12:giad057. doi: 10.1093/gigascience/giad057

Table 2:

The performance comparison of drug repurposing prediction (DRP) between KGML-xDTD and different baseline models based on test set (described in “Data split” section). The top panel shows the performance of state-of-the-art (SOTA) baseline models; the middle panel shows the performance of variants of the KGML-xDTD model framework; the bottom panel shows the performance of KGML-xDTD model framework

Model Accuracy Macro F1 score MRR Hit@1 Hit@3 Hit@5
TransE 0.708 0.708 0.301 (±0.005) 0.134 (±0.007) 0.327 (±0.009) 0.482 (±0.007)
TransR 0.858 0.855 0.329 (±0.006) 0.150 (±0.009) 0.378 (±0.008) 0.542 (±0.005)
RotatE 0.704 0.704 0.281 (±0.007) 0.098 (±0.008) 0.314 (±0.007) 0.497 (±0.009)
DistMult 0.555 0.495 0.182 (±0.004) 0.042 (±0.002) 0.157 (±0.010) 0.292 (±0.010)
ComplEx 0.624 0.460 0.138 (±0.004) 0.026 (±0.004) 0.106 (±0.007) 0.205 (±0.008)
ANALOGY 0.594 0.465 0.188 (±0.004) 0.044 (±0.004) 0.165 (±0.009) 0.301 (±0.008)
SimplE 0.599 0.472 0.167 (±0.006) 0.036 (±0.006) 0.140 (±0.008) 0.259 (±0.011)
GAT 0.936 0.934 0.002 (±0.000) 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000)
GraphSAGE-link 0.919 0.915 0.002 (±0.000) 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000)
GraphSAGE+logistic 0.791 0.784 0.002 (±0.000) 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000)
GraphSAGE+SVM 0.807 0.793 0.002 (±0.000) 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000)
KGML-xDTD w/o NAEs 0.909 (0.898*) 0.891 (0.892*) 0.159 (±0.003) 0.035 (±0.002) 0.143 (±0.006) 0.262 (±0.008)
2-class KGML-xDTD 0.929 0.925 0.278 (±0.003) 0.183 (±0.006) 0.321 (±0.003) 0.389 (±0.006)
KGML-xDTD (ours) 0.935 (0.930*) 0.923 (0.926*) 0.382 (±0.004) 0.238 (±0.007) 0.425 (±0.006) 0.543 (±0.006)

The values with * inside the parentheses are the adjusted results by excluding the “unknown” category for a fair comparison.

The ranking metrics (e.g., “MRR” and “Hit@K”) are calculated as the mean along with standard deviation based on 10 independent sets of non-true-positive drug–disease candidates generated by the random drug–disease replacement method (i.e., for each true-positive drug–disease pair in test set, we use 1,000 random drug–disease pairs as non-true-positive drug–disease candidates to calculate the rank). See more details in “Drug repurposing prediction evaluation method” section.

The abbreviation “w/o NAEs” in the name of model “KGML-xDTD w/o NAEs” represents without using node attribute embeddings.