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Predictive models in biomedicine need to ensure equitable and reliable outcomes for the
populations they are applied to. Unfortunately, biases in medical predictions can lead to
unfair treatment and widening disparities, underscoring the need for effective techniques to
address these issues. To enhance fairness, we introduce a framework based on a Multiple
Domain Adversarial Neural Network (MDANN), which incorporates multiple adversarial
components. In an MDANN, an adversarial module is applied to learn a fair pattern by
negative gradients back-propagating across multiple sensitive features (i.e., characteristics
of individuals that should not be used to discriminate unfairly between individuals when
making predictions or decisions.) We leverage loss functions based on the Area Under the
Receiver Operating Characteristic Curve (AUC) to address the class imbalance, promoting
equitable classification performance for minority groups (e.g., a subset of the population
that is underrepresented or disadvantaged.) Moreover, we utilize pre-trained convolutional
autoencoders (CAEs) to extract deep representations of data, aiming to enhance prediction
accuracy and fairness. Combining these mechanisms, we alleviate biases and disparities
to provide reliable and equitable disease prediction. We empirically demonstrate that the
MDANN approach leads to better accuracy and fairness in predicting disease progression
using brain imaging data for Alzheimer’s Disease and Autism populations than state-of-
the-art techniques.
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1. Introduction

Precision medicine represents a tailored approach to healthcare, where treatments and inter-
ventions are customized to the individual’s unique genetic, environmental, and lifestyle factors.
This personalized approach has the potential to enhance both the effectiveness and fairness of
medical care. By considering the specific characteristics of each individual, precision medicine
can help to mitigate biases that may arise from a ”one-size-fits-all” approach, where certain
populations might be underrepresented or disadvantaged.

The utilization of artificial intelligence (AI), particularly deep learning (DL), in the analysis
of biomedical data, has emerged as a promising approach for improving healthcare outcomes.
However, there are growing concerns that the blind application of such methods can induce
harm and perpetuate inequities.1 Biases present in both data and AI models can reinforce
disparities in healthcare applications, leading to unequal outcomes across different patient
subpopulations. However, it is crucial to distinguish between bias and fairness. Bias refers
to the systematic error or deviation in predictions or estimates as a result of the model’s
assumptions. Fairness, on the other hand, relates to the equitable treatment of all individuals,
regardless of their membership in certain subpopulations. However, mitigating biases could
reduce disparities, making predictions more equal across different groups. Therefore, ensur-
ing fairness in AI involves creating models that provide accurate diagnostics and unbiased
treatment decisions, irrespective of the patient’s subpopulation, thereby promoting equitable
access to healthcare.2

However, it is difficult to mitigate biases to achieve fair AI/DL for biomedical data analy-
sis.3 One of the key difficulties is identifying and quantifying biases within the data. Once these
biases are identified, an additional challenge arises: preventing these biases from exacerbating
disparities in subsequent AI/DL tasks. Biomedical datasets are often prone to biases that
arise from imbalances in the demographic composition, socioeconomic factors, and disparities
in healthcare practices across subpopulations.4 As a result, predictions based on AI/DL that
are optimized on such data often lead to misleading or wrong findings that can endanger
minority groups.

Various techniques have been proposed to address fairness concerns for AI/ML in
biomedicine. Approaches to bias mitigation typically fall into three gross categories associ-
ated with the pre-processing, in-processing, and post-processing of an ML model.5 In pre-
processing, inequities in data are removed prior to model training.6.7 During in-processing,
the model training process is performed to actively mitigate discrimination during model train-
ing.8910 In post-processing, the output of a trained model is adjusted to achieve fairness.1112

Pre-processing can be performed by resampling existing data, incorporating new data, or
adjusting data labels. In-processing methods use adversarial techniques, impose constraints
and regularization, or ensure fairness of underlying representations during training. Finally,
post-processing entails group-specific modification of decision thresholds or outcomes to en-
sure fairness in the application of model predictions. Different approaches may be optimal
depending on the setting and stage of model development.1314

4.0 License.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2023. ; https://doi.org/10.1101/2023.08.04.551906doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.04.551906
http://creativecommons.org/licenses/by-nc-nd/4.0/


In this paper, We introduce the notion of a Multiple Domain Adversarial Neural Network
(MDANN), which is designed to enhance fairness by mitigating biases from multiple sensitive
features simultaneously. Note that sensitive features in this context refer to characteristics
of individuals (e.g., race, gender, age, etc.) that should not be used to discriminate unfairly
between individuals when making predictions or decisions. There are several notable contri-
butions to bias mitigation and fairness enhancement in biomedical data analysis. First, we
extract deep representations of input data from the embedding layer of a pre-trained convo-
lutional autoencoder (CAE). These deep representations contain enriched information within
higher-dimensional spaces. This, in turn, significantly improves prediction accuracy and fair-
ness in disease prediction tasks. Additionally, we show that the CAE is a powerful feature
extractor, contributing to enhanced prediction fairness. Second, we employ an AUC-induced
minimax loss function that takes into account the Area Under the Receiver Operating Char-
acteristic Curve (AUC) score, in contrast to the conventional accuracy-induced loss, such
as cross-entropy. As we empirically illustrate, the minimax loss function outperformed the
standard cross-entropy loss in handling imbalanced data, leading to improved classification
performance and fairness in predictions for the minority class. Finally, we investigated the im-
pact of adversarial modules on prediction performance in the context of bias mitigation using
the MDANN. By addressing multiple sensitive features, we demonstrate that the introduction
of adversarial components effectively enhances fairness in disease prediction.

2. Related Work

2.1. Fairness improvement in machine learning

Fairness enhancement and bias mitigation in DL has been addressed through various method-
ologies. Pre-processing techniques that re-weight or re-sample instances to balance represen-
tation across groups have been employed, but these may overlook latent or structural biases.15

Algorithmic fairness interventions, such as incorporating fairness constraints or regularization
terms during model training, provide nuanced control over fairness but may compromise model
accuracy or generalization16). Recent advancements include the debiasing of embeddings17 and
the certification of disparate impact.18 These are sophisticated solutions, but often require
complex optimization. Investigations into the long-term impact of fairness interventions19 and
the trade-offs between fairness and accuracy16 have further enriched the understanding of
this complex field. Comprehensive surveys have further elucidated these methods and their
multifaceted implications20.21

2.2. Domain adversarial neural network

Domain Adversarial Neural Networks (DANN) have demonstrated significant advancements in
domain adaptation, particularly in scenarios where models are trained on a source domain and
applied to a disparate target domain.22 Essentially, a domain Adversarial Network (DANN)22 is
a machine learning technique used for domain adaptation, a scenario where a model is trained
on a source domain and then applied to a different target domain. DANN was originally
proposed as a way to address the problem of domain shift, where the distributions of the
source and target domains differ significantly, leading to a drop in model performance when
applied to the target domain.23 The primary goal of a DANN is to learn domain-invariant
representations between the source and target domains. This is achieved by adding a domain
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classifier to the model, which is tasked with predicting the domain of the input data (i.e.,
source or target). The domain classifier is trained to make accurate domain predictions, while
the main task of the model (e.g., classification or regression) is trained to make accurate
predictions on the source domain data.24

Transitioning from the theoretical underpinnings of DANN to its practical applications,
it’s important to note that biomedical datasets often exhibit significant variation across dif-
ferent sources, institutions, modalities, and populations. In this context, DANN’s ability to
handle domain adaptation becomes particularly valuable. It allows a model trained on one
domain (source) to be applied to a different domain (target) without significant loss in per-
formance. This is especially beneficial in biomedical contexts where data may be collected
from various hospitals, instruments, or demographic groups.25 While a DANN can address do-
main shift, it may not improve fairness related to patient demographics, medical conditions,
or data collection protocols.26 Furthermore, ethical considerations and the need for careful
validation in biomedical applications add layers of complexity that may constrain the effec-
tiveness of a DANN in fully addressing fairness. These limitations underscore the need for
continued research and innovation in adapting DANNs for the nuanced requirements of fair-
ness in biomedicine. In the context of fairness enhancement, a DANN can be expanded to
multiple-domain adversarial networks, as demonstrated in this study, to address fairness con-
cerns when working with multiple sensitive domains. This is particularly relevant in real-world
applications where machine learning models might be applied to data gathered from various
groups and fairness needs to be maximized for all domains and groups.

3. Methods

In this section, we introduce the MDANN approach for fairness enhancement in disease predic-
tion. Source codes are available at https://github.com/shilab/MDANN. Fig. 1 depicts the
architecture of the MDANN. The MDANN architecture is tailored to the unique demand for
fairness enhancement and is composed of three fundamental and synergistic modules (shown
in bold): 1) Feature Extractor: A pre-trained convolutional autoencoder designed to delve
into the complex structure of biomedical data, extracting deep and meaningful representations
that serve as the foundation for subsequent calculation. 2) Adversarial Module: A novel
and innovative approach to improve fairness, utilizing multiple adversarial networks to learn
fair patterns across various domains, reflecting our commitment to equitable treatment across
diverse demographic groups. 3) AUC-induced Min-max Loss Function: A carefully de-
signed loss function that focuses on the AUC, providing a robust and sensible metric for
imbalanced data classification, and underscoring our nuanced understanding of the challenges
posed by imbalanced biomedical data. In summary, these three modules form an integrated
and end-to-end learning network, each contributing unique strengths and working in harmony
to extract informative representations, mitigate multiple biases, and promote fairness against
label imbalance problems. In the following sections, we will introduce each module, detailing
their design and functionality within the MDANN framework.3.1. Feature extractor

The feature extraction process employed in this study entails the utilization of a pre-trained
convolutional autoencoder (CAE) model, consisting of convolutional layers serving as the
encoder and deconvolutional layers acting as the decoder. The CAE model is designed to ac-
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Fig. 1. The MDANN architecture. Three fundamental modules have been incorporated into
the MDANN including a feature extractor, an adversarial module and an optimizer. The feature
extractor is essentially a pre-trained convolutional autoencoder (CAE) to extract the embedding
content as a deep representation from imaging samples. The adversarial module contains several
adversarial components (ACs) which are used to learn distributions of multiple sensitive features
simultaneously and pass back the negative gradients through an averaged gradient reversal layer.
The optimizer is based on the min-max function with an AUC-induced minimax loss to address the
label-imbalance problem to mitigate biases in input data.

quire underlying patterns in the data to generate images resembling the original input images.
Within the context of the MDANN framework, deep representations of imaging samples are
extracted from the last convolutional layer (bottleneck) of the model. This approach facili-
tates the transformation of 2D images into high-dimensional vectors in latent space through
multiple convolutional calculations. The resulting deep representations possess an enriched
level of grayscale and texture details, rendering them conducive to mitigating the influence
of biased information. By adopting this feature extraction methodology, our research endeav-
ors to enhance the fidelity and informativeness of the extracted representations, ultimately
contributing to the reduction of biases and promoting fairness in the subsequent stages of
predictive modeling.
3.2. Adversarial module

The adversarial module within our framework is implemented through the incorporation of
adversarial components, each composed of two linear layers acting as predictors. These com-
ponents are seamlessly integrated with the feature extractor by employing a gradient reversal
layer, which exerts its influence during backpropagation-based training. Specifically, the gradi-
ent reversal layer operates by multiplying the averaged negative gradient, thereby facilitating
the adversarial alignment of feature distributions across biased groups. The primary objec-
tive of the adversarial module is to achieve robust adversarial learning, wherein the feature
distributions pertaining to different sensitive attributes are rendered as indistinguishable as
possible for each component.

A significant contribution of our approach lies in the simultaneous mitigation of multiple
biases through the use of multiple adversarial networks. This innovation enables the MDANN
to effectively address biases across various sensitive features simultaneously, as opposed to
traditional approaches that may tackle biases in a sequential or isolated manner. By incor-
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porating multiple adversarial components, each catering to a distinct sensitive attribute, the
model is endowed with the capability to learn specialized representations that are invariant
to the influence of sensitive attributes. Consequently, our approach facilitates the reduction
of biased predictions based on these attributes, fostering fairness and equitable predictions
across diverse groups.

Furthermore, our approach is bolstered by the utilization of the gradient reversal layer,
which plays a pivotal role in achieving robust adversarial learning. By aligning feature distribu-
tions across biased groups, the model is encouraged to minimize discrepancies in its predictions
between majority and minority groups. This mechanism ensures that the model incurs sub-
stantial penalties for mispredictions on the minority group, thereby promoting fairness and
equitable outcomes. The combination of specialized representations for sensitive attributes
and the robust adversarial learning mechanism contributes to the model’s ability to reduce
biased predictions and achieve equitable and reliable predictive performance across diverse
groups, making it a promising advancement in the field of biomedical data analysis.

3.3. Optimizer on imbalanced data with a minimax loss

The conventional loss function based on optimization of accuracy, serves as a widely employed
approach for binary and multi-class classification tasks. However, its effectiveness is limited
when dealing with imbalanced biomedical data, where the presence of skewed class distribu-
tions poses significant challenges. In such scenarios, the model is susceptible to encountering
a stagnation point during training, wherein all test samples are consistently predicted as the
majority category. This phenomenon yields excessively high accuracy but results in very low
precision or recall, indicating poor performance in classifying the minority class. Consequently,
the conventional loss function fails to offer adequate guidance in addressing the inherent label
imbalance, impeding the achievement of fair and equitable predictive outcomes.

To tackle the issue of label imbalance in biomedical data analysis, recent studies have
focused on optimizing the Area Under the Receiver Operating Characteristic Curve (AUC), a
sensible and robust metric for imbalanced-based data classification tasks2728.29 The distinctive
property of AUC lies in its aggregation across different threshold values for binary prediction,
decoupling the issues of threshold setting from the model’s predictive power. Moreover, AUC
takes into account both precision and recall metrics, providing a comprehensive evaluation of
the model’s performance, especially in the context of biased data. Given the superior prop-
erties of AUC for handling label imbalance, it is logical to directly optimize the adversarial
module based on the AUC score in our MDANN framework, instead of relying solely on the
conventional accuracy-optimized cross-entropy loss function. This optimization approach al-
lows the adversarial module to focus on improving performance in the minority class, which
is crucial for enhancing fairness in the model’s predictions. To this end, Ying et al.29 proposed
a loss function for the AUC maximization problem, we call it minimax loss, incorporating
various parameters to facilitate the computation of the AUC score.

minmaxL(w, µ1, µ2, θ; a, b) = (1− p)(f(w; a)− µ1)
2⊮(b = 1)

+p(f(w; a)− µ2)
2⊮(b = 0)− p(1− p)θ2

+2(1 + θ)(pf(w; a))⊮(b = 0)− (1− p)f(w; a)⊮(b = 1))

(1)
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This minimax loss function incorporates various parameters, including the weights of the
model w, the features of the samples a, and the labels b. The rate of positive samples to
all samples is represented by p. The model’s prediction for a given sample with features
a and weights w is given by f(w; a). Additional trainable parameters used to compute the
AUC score are µ1, µ2, and θ, which are optimized along with the weights of the model.
The loss function includes terms that contribute to the loss when the true label b is 1 or 0,
with squared error terms measuring the difference between the model’s prediction and the
parameters µ1 and µ2. These terms are weighted by (1− p) and p, the proportions of negative
and positive samples, respectively. A regularization term −p(1− p)θ2 penalizes large values of
θ, and additional terms adjust the model’s predictions based on θ and p. Indicator functions
⊮(b = 1) and ⊮(b = 0) ensure that each term in the loss function is only active for samples of the
corresponding class. The goal of this function is to find the model weights and parameters that
minimize the maximum loss over all samples, thereby improving the model’s performance on
the minority class and enhancing fairness in the model’s predictions. Note that a mini-batch
ADAM Stochastic Gradient Descent (SGD) method is used to update parameters for the
entire MDANN. The SGD optimizer can significantly reduce the time to compute gradients
at each state as well as has low chances to overfit. Additionally, ADAM has the advantage
that its learning rate is adaptively adjusted, which helps all adversarial components to learn
a different learning rate based on its own label distribution, especially in cases where they are
responsible for learning highly biased attributes.

To efficiently update model parameters, the mini-batch ADAM Stochastic Gradient De-
scent (SGD) method30 is employed for the MDANN. ADAM’s adaptive learning rate property
proves advantageous in the context of MDANN, as it enables each adversarial component to
adapt its learning rate based on its specific label distribution. This adaptability is particularly
valuable when adversarial components are responsible for learning highly biased attributes. By
focusing on the performance of the minor class, this AUC-induced optimization methodology
promotes more equitable predictive outcomes, advancing the reliability and ethical consider-
ations of predictive models in critical medical applications.

4. Experimental Setup

All experiments are conducted on a cluster server with four NVIDIA RTX A5000 GPUs. We
evaluate the performance of the MDANN with a varying number of adversarial components.
The grid-search method is performed to fine-tune the parameters in experiments. The result
under each set of experiments was averaged across five runs.

4.1. Datasets

In this work, we focus on two biomedical datasets. The first is from Autism Brain Imag-
ing Data Exchange II* (ABIDE II),31 which is a repository aggregating and openly sharing
resting-state functional magnetic resonance imaging (R-fMRI) data sets with corresponding
structural MRI and phenotypic information with autism spectrum disorder (ASD) and typical
controls (TC). We have collected MRI imaging as well as phenotypic data from 212 individ-

*ABIDE II data used in paper are available on
http://fcon 1000.projects.nitrc.org/indi/abide/abide II.html
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uals, with 110 ASDs and 109 TCs. The second dataset is collected from Alzheimer’s Disease
Neuroimaging Initiative** (ADNI) database. The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). We have collected 670 MRI imaging data with demographic infor-
mation labeled as three categories: 350 normal cognitive (NC) samples, 152 MCI samples, and
168 AD samples. The labeling strategy employed in this study is designed to facilitate binary
classification. Specifically, for the autism dataset, ASDs are labeled as 1, and TCs are labeled
as 0. This labeling reflects the objective to distinguish between individuals with ASD and
typical controls. In the case of the ADNI dataset, NC is labeled as 0, and both MCI and AD
are collectively labeled as 1. This approach enables the differentiation between normal cogni-
tive function and conditions indicative of cognitive impairment, including both mild cognitive
impairment and Alzheimer’s disease.

In the context of demographic data, majority labels refer to specific categories or groups
that may have advantages or are favored in a particular context. These labels often correspond
to characteristics or attributes that are considered ”normative” or ”majority” within a given
society or dataset. Therefore, the majority and minority groups for the two datasets are
defined as shown in Fig. 3. For the Autism dataset, right-handedness and male are considered
majority groups, mitigated by one MDANN model with two adversarial components. For the
ADNI dataset, we consider aged over 78 years, educated over 18 years, and right-handedness
as majority groups. Therefore, three adversarial components are needed to mitigate biases
within these three attributes.

4.2. Evaluation metrics

To quantitatively evaluate fairness, we applied two different metrics to analyze and address
fairness that would be present in the training data. We use AUC for binary classification
problems, which measures the ability to distinguish between false positive rates and false
negative rates. It’s important to note, however, that while AUC is a valuable measure of a
model’s performance, it does not inherently provide a measure of fairness. To measure fairness,
it is crucial for adversarial components to distinguish between the minority (represented as 1)
and majority (represented as 0) attributes, which makes AUC a necessary metric for MDANN.
We also employ the Disparate Impact (DI), which is a metric to evaluate fairness.32 It compares
the proportion of individuals that receive a positive output for two groups: a minority and a
majority group. The calculation of DI is as follows,

DI =
Pr(Y = 1|D = minority)

Pr(Y = 1|D = majority)
, (2)

**Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI con-
tributed to the design and implementation of ADNI and/or provided data but did not participate
in analysis or writing of this report. A complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how to apply/ADNI Acknowledgement List.pdf
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where Pr(Y = 1|D = minority) is the proportion of the minority group that received the
positive outcome and Pr(Y = 1|D = majority) is the proportion of the majority group that
received the positive outcome. The DI value ranges from 0 to infinity, with 1 indicating no
disparate impact, meaning that the model treats all groups equally in terms of favorable out-
comes. Values greater than 1 indicate a positive disparate impact, suggesting that the majority
group receives more favorable outcomes than the minority group, which may indicate bias in
favor of the majority group. Conversely, values less than 1 indicate a negative disparate im-
pact, suggesting that the majority group receives fewer favorable outcomes than the minority
group, which may indicate a bias against the majority group.

5. Results

5.1. Fairness enhancement achieved by the feature extractor

The input values have been fed to a pre-trained convolutional autoencoder (CAE), which is
used to extract deep representations from the embedding layer. By learning to reconstruct the
input, the autoencoder encourages the embedding to capture the most important and informa-
tive aspects of the data, while minimizing the impact of biased information. In MDANN, the
CAE module contains several convolutional layers as the image encoder and the same number
of deconvolutions layers as the decoder. Each layer employs a 5×5 kernel with a step size of
2 for its calculations. Table 1 shows the prediction result of MDANN using the pre-trained
CAE with different sizes of encoders and decoders. We have tested pre-trained three CAEs
as the extractor of deep representations for original images. The size of deep representations
is equal to the output size of the last convolutional layer in the encoder. To assess the image
quality generated by the CAE modules, we adopted the Fréchet inception distance (FID) as
a metric.33 A lower FID score indicates an improved distribution of generated images. Exper-
iments show that CAE-2 could reach the maximum accuracy of 0.73 and averaged DI of 0.77
for sensitive attributes for AD prediction. In contrast, MDANN achieves only 0.63 accuracy
and 0.68 averaged DI when utilizing original data without any feature extraction (as depicted
in the first row of Table 1). This substantiates the assertion that deep representations encap-
sulate an enriched trove of information within higher-dimensional spaces, thereby enhancing
the model’s fairness in prediction.

Furthermore, more embedding layers might enable better reconstruction, preserving more
details of the input data. However, this improvement does not always translate into better
performance for specific downstream tasks. When the number of convolutional layers is in-
creased to 3 (CAE-3), we got a lower FID score than the score of CAE-2. Thus, the CAE-2 has
been selected as the best feature extractor for the following experiments. Illustrated in Fig.
2 are the generative images of CAE-2 during a 100-epoch training process for a single sample
image. Notably, the output image converges satisfactorily over the course of these epochs. In
order to obtain a stable deep representation, CAE training was extended to 200 epochs.
5.2. Improved optimization strategies to handle label imbalance

Since each sensitive label for training is imbalanced, (i.e., Nmajority

Nminority
> 2) we can further ex-

plore if all ADs collaboratively optimize the loss function to learn the best model parameter
against label imbalance. Fig. 3 shows the specific label distribution of each sensitive feature

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2023. ; https://doi.org/10.1101/2023.08.04.551906doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.04.551906
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Performance of MDANN using different CAE modules

Module Embedding Size # of Conv layers FID score Accuracy Averaged DI

N/A N/A N/A N/A 0.63 0.68
CAE-1 64×64×128 1 556.74 0.63 0.67
CAE-2 32×32×256 2 490.98 0.73 0.77
CAE-3 16×16×512 3 555.54 0.66 0.72

Fig. 2. The training results of CAE-2 module. As illustrated by the generated images for
one real sample image with 10, 40, 70 and 100 epochs respectively. The trained model is prone to
converge at epoch 100.

in two datasets. It can be obverse that the number of majority groups is greater than that
of minority groups. Generally, the label-imbalance problem could lead to a biased prediction.
Specifically, the machine learning models are prone to predict the minority class as the ma-
jority class. Thus, we have tested and plotted the performance of two prediction tasks using
the same model with two different loss functions (minimax loss and standard cross entropy
loss function as a comparison) during the training process, as shown in Fig. 4. Results of the
prediction utilizing different losses and optimizers are shown as two rows, ACC-induced Cross-
Entropy Loss and AUC-induced Min-max Loss. Each row contains four columns, showing the
classification performance (ACC) for each sensitive feature and the global AUC score for the
predictor. AUC results show that a minimax loss does improve the classification performance
while using cross-entropy loss could only achieve around 0.6 AUC score, tending to be less dis-
tinguishable between minority (represented as 1) and majority (represented as 0) attributes.
Particularly, the prediction accuracy of two categories for handedness converges at 0.6 since
it did not learn any relation between features and labels due to the high-imbalanced data
(Nmajority

Nminority
= 12.33). The second row shows that the weighted min-max loss overcame the label-

imbalanced problem, where the AUC score increased to 0.8 demonstrating that employing a
minimax loss significantly increases the accuracy for minor classes. The predictor gained an
accuracy of 0.8 for patients who were left-handed while was only 0.6 if using a classical cross-
entropy loss. Note that hyperparameters and model architecture are kept the same except for
the loss function. These results support that we have implemented an effective approach to
address the label-imbalanced issue which is a big concern for biomedical data.
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Fig. 3. Demographic Distribution in Autism and ADNI datasets. (a). the distribution
of Handedness and Sex in the Autism dataset. The left chart illustrates the proportion of left-
handed and right-handed individuals, while the right chart delineates the gender distribution. (b).
the distribution of Age Groups, Handedness, and Education in the ADNI dataset. The left chart
categorizes individuals into two age groups, the middle chart shows the distribution of left-handed
and right-handed individuals, and the right chart divides the population into two education levels.
The majority groups are represented in orange color and minority groups are in blue color.

Fig. 4. Prediction results addressing the label-imbalance problem. Three sensitive at-
tributes from ADNI datasets were included: age (with aged over 78 years as the minority group),
educated years (with educated over 16 years as the minority group), and handedness (with left-
handed as the minority group). Rows represent the prediction metrics with different loss functions:
cross-entropy loss and minimax loss. The first three columns show the accuracy of the predictor when
predicting sensitive features respectively, and the last column shows the AUC score of the predictor.

5.3. Bias mitigation via multiple components in the adversarial module

Next, we investigated the impact of the number of adversarial components on prediction per-
formance in the context of fairness enhancement. To do so, we trained the MDANN while
simultaneously addressing multiple sensitive features for AD prediction tasks. We systemati-
cally compared three variants of the MDANN with differing numbers of adversarial modules.
Fig. 5 depicts the predictive performance. In this figure, panel (a) illustrates the accuracy
and AUC score of predictors employing different numbers of adversarial components while
incorporating cross-entropy loss into the MDANN. The red line represents the baseline, which
corresponds to regular training without an adversarial module. When optimizing the model
using cross-entropy loss, we observed that increasing the number of adversarial components
led to a reduction in prediction performance, as evidenced by diminished accuracy and AUC
scores. Specifically, the lowest accuracy of 0.65 was obtained for disease prediction when the
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MDANN simultaneously mitigated four attributes. This outcome is attributed to the inclusion
of more imbalanced features during the training process, which the cross-entropy loss cannot
effectively address. Additionally, Fig. 5 (b) illustrates the accuracy and AUC score when
employing minimax loss for training. We observed that during regular training (baseline), the
accuracy initially reached a peak and then declined, eventually stabilizing at an accuracy of
0.76 over 1000 epochs. This behavior reflects the outcome of the AUC-induced minimax loss,
given its objective of maximizing the AUC, and thereby precluding a guarantee that accu-
racy is consistently optimized. Fortunately, increasing the number of adversarial components
proved effective in mitigating this issue. As the number of imbalanced labels increased, the
number of negative gradients propagated backward also increased, leading to a reduction in
the convergence speed. Consequently, employing more adversarial components overcame this
challenge and effectively combined the advantages of the loss function, ultimately achieving
the highest accuracy of 0.85 for AD prediction.

Fig. 5. Validation accuracy (Acc) and AUC score for ADNI disease prediction under
two scenarios. (a). MDANN trained with cross-entropy loss. (b). MDANN trained with minimax
loss. Three biased attributes: age, handedness, and educated years, were used as three embedded
adversarial components (ACs) for bias mitigation. The baseline was the regular machine learning
model trained without any AC. All images have been fed to a pre-trained CAE with two convolutional
layers (with deep representations size of 32×32×256).

5.4. Combined mechanisms for fairness enhancement

Having elucidated the individual contributions of the feature extractor, minimax loss, and
adversarial module through experimental data, we now turn our attention to a comprehen-
sive evaluation of these components within the MDANN framework. We analyzed three fair-
enhancing mechanisms applied to biomedical datasets, and we present their efficacy as modules
in the MDANN. To investigate MDANN’s potential in enhancing fairness, we performed ex-
periments to combine these modules in an integrated manner. We tested the MDANN while
simultaneously addressing multiple sensitive features for Autism prediction tasks. A compari-
son was conducted across various approaches, including two variants of MDANN with differing
numbers of adversarial components, and two other methods referred to as Zhang et al.34 and
Ganin et al.22 The examination encompassed two sensitive features: sex and handedness.
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Fig. 6 depicts the performance of different models in alleviating biases and enhancing
fairness in predictions. For the sensitive feature of sex, Zhang et al. yielded an accuracy of
0.479, an AUC of 0.5, and a DI of 0.386. These results indicate both poor predictive perfor-
mance and significant bias, suggesting limitations in the method’s ability to generalize across
multiple domains and mitigate bias effectively to enhance fairness for biomedical data. Ganin
et al. showed improvement with an accuracy of 0.63, an AUC of 0.63, and a DI of 0.673, but
still exhibited shortcomings in handling disparities between the majority groups and minority
groups. While the proposed MDANN method demonstrated superior predictive performance
and fairness with an accuracy of 0.71, an AUC of 0.73, and a DI of 0.841 for the variation with
2 adversarial components. The results reflect the MDANN’s ability to differentiate between
classes and correctly classify instances, as well as its commendable increase in fairness.

A similar pattern emerged for the mitigation of handedness. Zhang et al. performed the
worst, with an accuracy of 0.488, an AUC of 0.53, and a DI of 1.604, reflecting the method’s
inability to adequately address the challenges of fairness enhancement. Ganin et al. improved
on these figures but were still surpassed by MDANN, which achieved an accuracy of 0.70, an
AUC of 0.73, and a DI of 1.192 for the variation with 2 adversarial components.

Fig. 6. Comparative performance of different methods on sex and handedness. Four
methods have been tested: Zhang et al., Ganin et al., MDANN with 0 adversarial components (AC),
and MDANN with 2 ACs, across two sensitive features: (a) Sex and (b) Handedness. The three
performance metrics are represented by different line styles and markers: Accuracy (ACC) is shown
in blue with circular markers and a solid line, Area Under the Receiver Operating Characteristic
Curve (AUC) is depicted in green with square markers and a dashed line, and Disparate Impact
(DI) is illustrated in red with triangular markers and a dash-dot line. A horizontal black dashed line
at y=1 serves as a reference for the DI metric, where values closer to 1 indicate enhanced fairness.
The results highlight the superior performance of MDANN, particularly the variation with 2 ACs,
in terms of both predictive accuracy and fairness.

6. Conclusion

In this study, we introduced an MDANN framework, which incorporates three modules to
perform fair prediction on biomedical imaging datasets. Our empirical findings highlight the
efficacy of adversarial modules in the MDANN framework, effectively mitigating biases and
promoting fairness by addressing multiple sensitive features. Additionally, the utilization of
AUC-based minimax loss functions demonstrates their superior handling of label imbalance,
leading to improved classification performance for the minority class. Furthermore, we show-
case the potential of deep representations extracted from a pre-trained convolutional autoen-
coder, resulting in enhanced prediction accuracy and fairness in AD and Autism prediction.
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The investigations underscore the promising potential of MDANN as a method for fairness
enhancement, particularly in scenarios where the sensitive attributes of sex and handedness
are of concern, simultaneously. Our experimental results provide intuition into the reasons for
MDANN’s superiority, reflecting its potential as a valuable method for enhancing both predic-
tive performance and fairness. Nonetheless, there are future opportunities for extending and
enhancing MADNN. First, we will use a generative adversarial network (GAN)35 for feature
extraction rather than CAEs. Second, it should be recognized that the current structure of
adversarial components is simple and uniform in MDANN. We will extend MDANN by inte-
grating adversarial components with distinct architectures. Such an approach would enable
the training of specialized components tailored to each sensitive feature, accommodating its
unique distribution characteristics.
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