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 Abstract 

 Cis  -regulatory elements (CREs) control gene expression,  orchestrating tissue identity, 
 developmental timing, and stimulus responses, which collectively define the thousands of 
 unique cell types in the body. While there is great potential for strategically incorporating CREs 
 in therapeutic or biotechnology applications that require tissue specificity, there is no guarantee 
 that an optimal CRE for an intended purpose has arisen naturally through evolution. Here, we 
 present a platform to engineer and validate synthetic CREs capable of driving gene expression 
 with programmed cell type specificity. We leverage innovations in deep neural network modeling 
 of CRE activity across three cell types, efficient  in silico  optimization, and massively parallel 
 reporter assays (MPRAs) to design and empirically test thousands of CREs. Through  in vitro 
 and  in vivo  validation, we show that synthetic sequences  outperform natural sequences from the 
 human genome in driving cell type-specific expression. Synthetic sequences leverage unique 
 sequence syntax to promote activity in the on-target cell type and simultaneously reduce activity 
 in off-target cells. Together, we provide a generalizable framework to prospectively engineer 
 CREs and demonstrate the required literacy to write regulatory code that is fit-for-purpose  in 
 vivo  across vertebrates. 

 Introduction 

 Our understanding of how CREs impact gene expression has been primarily derived from those 
 elements that exist naturally in the human genome  1–4  .  Major efforts over the past decade have 
 identified millions of putative CREs, yet these sequences generated by evolution represent only 
 a small subset of possible genetic sequences and may not meet expression objectives 
 favorable for therapeutic applications  5–7  . Indeed,  200 base pairs of DNA can encompass over 
 2.58x10  120  possible sequences, more combinations than  atoms in the observable universe. This 
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 unexplored CRE sequence space, combined with our current poor understanding of the 
 underlying principles driving CRE function, limit our ability to leverage CREs for clinical or 
 biotechnological applications  8,9  . Bridging the gap  in knowledge of ‘regulatory grammar’—the 
 syntax of activating and repressing transcription factor (TF) vocabularies, their combinatorial 
 effects, and higher order rules of TF cooperativity—has been a major goal of genomics for the 
 past decade  6,7,10–13  . 

 Recent advances are reshaping our ability to design CRE sequences with cell type-specific 
 activity by overcoming three gaps in knowledge: (1) scalable methods to functionally 
 characterize natural and synthetic CREs to produce generalizable insights (2) accurate 
 ‘regulatory grammar’ models of how genetic sequences lead to CRE activity across cell types, 
 and (3) the ability to repurpose predictive models for directed CRE generation. First, MPRAs 
 can directly characterize CRE activity potential at-scale and across cell types  14–19  . Hundreds of 
 thousands of CREs have been functionally characterized by MPRA, providing initial insights into 
 regulatory syntax and transcriptional specificity  20–24  .  Second, deep learning has emerged as an 
 effective tool to accurately model the relationship between genetic sequences and biological 
 phenotypes  25–33  . While these sequence models are promising  tools for the interpretation of 
 genetic sequences  28,29,32,34  , they have largely been  trained on, and predict, proxies of regulatory 
 activity such as regions of open chromatin demarcated by DNAse Hypersensitivity sites (DHS), 
 rather than direct CRE activity. Lastly, although computational models are millions of times 
 faster than experimentation, they are still only capable of characterizing a fraction of all possible 
 sequence combinations. Efficient frameworks to generate sequences from predictive models 
 could enable rational and interpretable design of candidate CREs  9,35–40  . 

 Programmed, highly precise, cell type-specific transcriptional control CREs would contribute to 
 development of specialized reporters, CRISPR therapeutics, gene replacement approaches, 
 and more. In particular, advances in gene therapies offer a route to ameliorating a rapidly 
 growing list of human genetic diseases, but their widespread use is hindered by a lack of robust, 
 cell type-targeted delivery  41  . While current nanoparticle  42  and viral vector  43  technologies have 
 shown some promise in better targeting of clinically actionable tissues like brain and muscle, 
 they often display many undesirable cell type off-target effects  44,45  . Being able to fabricate 
 synthetic CREs with programmable, highly tissue-specific functions could provide orthogonal 
 tools for such clinical applications as well as basic research. 

 Here we present a method to engineer novel synthetic CREs capable of driving gene 
 expression with cell type specificity. We leverage innovations in modeling regulatory grammar 
 across cell types, efficient sequence space searching, and the MPRA experimental system that 
 can validate thousands of CREs in parallel. We use a recently generated database of uniformly 
 processed MPRA experiments which characterized an unprecedented number of CREs to train 
 an accurate deep-learning model that can rapidly predict activity for any sequence  in silico  . 
 Coupled to sequence generation algorithms, we deploy our model to generate thousands of cell 
 type-specific, synthetic CREs, which we functionally validate using MPRAs and  in vivo  using 
 mouse and zebrafish. 
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 Results 

 Deep learning models can accurately predict DNA  cis  -regulatory  activity 
 We first built an accurate model of CRE activity from DNA sequence alone (  Figure 1a  ). While 
 previous models of CRE activity have primarily used epigenetic states correlated to CRE 
 function  29,30,34,46,47  , we trained our model on the  regulatory output of 776,474 200-nucleotide 
 sequences directly, as assayed by MPRA, a high-throughput reporter system that quantifies the 
 effect of a given sequence on gene transcription (  Supplementary  Tables 1 and 2, Methods  ). 
 These MPRAs were conducted by a single lab using a consistent experimental and analytical 
 pipeline, yielding highly reproducible measurements (  Supplementary Figure 1, 
 Supplementary Table 2  24  , Figure 1b  ). In total, we  collected functional CRE measurements 
 from 155.3 Mbp of unique genomic sequence in each of three human cell types: K562 (erythroid 
 precursors), HepG2 (hepatocytes), and SK-N-SH (neuroblastoma). These well-studied cell 
 types are ideal for high-throughput method development and can provide useful insight for the 
 growing body of experimental gene therapies that target blood cells  48–51  and neurons  52  , but that 
 can induce toxicity in the liver  53–55  . 

 We created Malinois, a deep convolutional neural network (CNN) for  cell type-informed CRE 
 activity prediction of any arbitrary sequence (  Figure  1c, Supplementary Figure 2, Methods  ). 
 We leveraged Bayesian optimization  56,57  to iterate  over one thousand CNN configurations and 
 hyperparameter settings to identify the best model. Malinois accurately models episomal CRE 
 activity across cell types. For sequences held out from training (62,582 elements on 
 chromosomes 7 and 13), Malinois predictions in K562, HepG2, and SK-N-SH correlate highly 
 with empirical activity measurements (Pearson’s  r  0.88-0.89; Spearman’s ⍴ 0.81-0.83) (  Figure 
 1d  ) and demonstrate cell specificity on par with experimental  results (  Supplementary Figure 
 3  ). 

 Given Malinois can accurately and rapidly model CRE activity, we generated genome-wide 
 predictions of sequence activity to compare with orthogonal approaches for characterizing 
 CREs. We observe a strong correlation (Pearson’s  r  = 0.91) between Malinois predictions and a 
 comprehensive MPRA of sequences tiling a 2.1Mb window encompassing  GATA1  (  Figure 1e, 
 Supplementary Figure 4  ). We also find Malinois K562  predictions have strong activity at known 
 markers of CREs identified by DHS sites  58  (  p  <10  -300  ,  two-sided paired  t  -test) and H3K27ac 
 ChIP-seq peaks  59,60  (  p  <10  -114  , two-sided paired  t  -test),  and are correlated with STARR-seq 
 peaks  59,61  (  p  <10  -178  , two-sided paired  t  -test), an  orthogonal measure of CRE activity (  Figure 1f, 
 Supplementary Figure 5, Supplementary Table 1  )  5,62–64  .  This finding is consistent in HepG2 
 and SK-S-SH cells as well (  Supplementary Figure 5)  .  Together, this suggests Malinois 
 predictions provide accurate measurements of CREs, approaching the biological reproducibility 
 of empirical measures. 

 CODA designs CREs with desired functions 
 We next developed CODA (Computational Optimization of DNA Activity), a modular platform for 
 designing novel CREs with programmed functionality. CODA follows an iterative loop of 
 predicting the activity of sequences, calculating a fitness value that quantifies how well 
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 Figure 1. Malinois accurately predicts transcriptional activation by CREs in episomal reporters.  (  a  ) Schematic showing non-coding 
 cis  -regulatory elements (CREs) in the genome drive  gene expression and contribute to cell type specific expression. (  b  ) Overview of how MPRAs 
 enable targeted functional characterization of hundreds of thousands of CREs on transcription in episomal reporters, and can quantify the impact of 
 programmable 200-bp oligonucleotide sequences. MPRAs across multiple cell types enables discovery of cell type-specific activity of CREs. (  c  ) 
 Schematic showing how deep learning enables modeling of cell type-specific CRE effects directly from nucleotide sequence. Malinois, a deep 
 convolutional neural network, predicts CRE activity in K562 (teal), HepG2 (yellow), and SK-N-SH (red). Contribution scores can be extracted from the 
 model to determine how subsequences drive predicted function in each cell type. (  d  ) Malinois predictions  are highly correlated with empirically 
 measured MPRA activity across K562 (teal), HepG2 (yellow), and SK-N-SH (red). Performance for each cell type was measured using Pearson 
 correlation (r) on a test set of sequences withheld from training. Each point corresponds to empirical and predicted activity of a single CRE in the 
 corresponding cell type, and topological lines indicate point density (16.7%, 33.3%, 50%, 66.7%, 83.3%) in the scatter plots. Train/test splits were 
 defined by chromosomes. (  e  ) Malinois activity predictions  for sequences centered on K562-specific DHS peaks activate transcription in K562. This 
 pattern of activation is concordant with quantitative signals measured using STARR-seq, DHS-seq, and H3K27ac seq. (  f  ) Malinois predictions 
 recapitulate an MPRA screen of overlapping fragments derived from a 2.1Mb window centered on the GATA1 gene (Pearson's  r  = 0.91; 
 Supplementary Fig. 4  ). Light blue signal indicates  overlapping signal while dark blue and green regions indicate either higher activity measurements 
 or predictions by MPRA or Malinois, respectively, in the window chrX:48,000,000-49,000,000. 
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 sequences fit the design goals, and then updating sequences to improve fitness. Here, our 
 design goal is cell type-specific CRE activity. Sequence updates in CODA can be controlled 
 using different classes of sequence design algorithms. We implemented three classes of 
 algorithms (evolutionary: AdaLead  37  , probabilistic:  Simulated Annealing  65  , and gradient-based: 
 Fast SeqProp  36  ) for sequence generation. We selected  these methodologies based on their 
 ease of implementation, useful optimization guarantees, or their ability to exploit the structure of 
 deep-learning models. Here, CODA uses Malinois as a fast and accurate measure of CRE 
 activity, providing a scalable model to test billions of CRE designs within the optimization loop. 

 We deployed CODA to rationally design CREs with cell type-specific activity in K562, HepG2, 
 and SK-N-SH cell lines (  Figure 2a  ). This process involves  six steps. We: (i) generate a set of 
 random 200-mer sequences; (ii) predict regulatory activity of each sequence, in each cell type, 
 using Malinois; (iii) transform these predictions using an objective function into a single fitness 
 value of cell specificity; (iv) traverse the fitness landscape towards specificity by (v) modifying 
 the sequence set  in silico  using one of the design algorithms (  Supplementary Figure 6  ); and 
 (vi) continue iterating until a batch of designed sequences reaches a fitness plateau. We define 
 fitness as a function of the gap observed between predicted activity in the targeted cell type and 
 the maximum of the two off-target cell types, herein referred to as MinGap (  Methods  ). 

 To empirically test the effectiveness of CODA, we performed an MPRA to measure activity of 
 the synthetic sequences. For each cell type, we generated 4,000 cell type-specific sequences 
 from each of the three sequence design algorithms in CODA, yielding a total of 36,000 synthetic 
 candidates (  Figure 2b, Supplementary Table 3, Methods  ).  We observed that Malinois induced 
 strong preferences for certain sequence motifs when maximizing specificity (  Supplementary 
 Tables 4 and 5, Supplementary Figure 7a  ). For this  reason, we decided to also explore 
 alternative solutions by encouraging CODA to modify the utilization of highly preferred motifs 
 despite the potential decrease in predicted cell type specificity (  Methods  ). Using Fast SeqProp, 
 we designed a second group of synthetic sequences with a motif penalty incorporated into the 
 fitness function (  Figure 2b  ). Over five iterative  rounds, we generated a total of 15,000 
 'synthetic-penalized' CREs, with 1,000 sequences per round per cell type, while penalizing the 
 top motifs from the preceding rounds in each iteration (  Supplementary Table 4  ). We observed 
 successful reduction in initially enriched motifs and a simultaneous increase in motifs 
 underutilized in earlier rounds (  Supplementary  Figure  7b  ), diversifying the syntax of 
 CODA-proposed sequences for experimental evaluation. 

 We also selected naturally occurring CREs from the human genome to investigate how well 
 these sequences drive cell type-specific activity compared to our synthetic designs.  H3K27ac 
 histone marks and  chromatin accessibility as measured by DHS are common proxies for active 
 CREs  6,58  . Thus, for each cell line we identified 4,000 ‘DHS-natural’ sequences  with cell 
 type-specific chromatin accessibility and overlapping H3K27ac signals  (12,000 total) (  Methods  ). 
 We then scanned the entire human genome for 200-mers predicted to be cell type-specific by 
 Malinois and selected 4,000 `Malinois-natural’ sequences with the greatest on-target expression 
 and minimal off-target expression in each of the three cell lines (  Methods, Supplementary 
 Figure 8a  ). Notably, there was low overlap between elements identified using DHS or Malinois 
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 (0.10%-4.1% intersection depending on cell type of interest,  Supplementary Figure 8c  ). 
 Although DHS-natural sequences displayed high levels of chromatin accessibility, 
 Malinois-natural and both synthetic groups were predicted to have greater cell type specificity, 
 with non-penalized synthetic sequences surpassing all groups (  Supplementary Figure 9  ). 

 Figure 2. CODA effectively designs novel cell type-specific CREs using Malinois predictions.  (  a  ) CODA designs  synthetic elements by iteratively 
 updating sequences to improve predicted function. Cell type-specific CRE activity of all 200 bp DNA oligos induces a topology over a massive sample 
 space. CODA initializes sequences in this space and uses Malinois to predict local topology. An objective function is used by CODA to direct updates 
 of sequences to move as desired through predicted topology. Updated sequences can be further modified  in silico  until a stopping criteria is reached 
 and final candidates are proposed for experimental validation. (  b  ) Composition of the MPRA library designed  to empirically evaluate candidate cell 
 type-specific CREs. A total of 75,000 sequences were selected from the human genome (green hues) or designed  ab initio  using CODA (purple hues) 
 to maximize the MinGap score for a target cell type. Aggregated natural and synthetic sequences are indicated by blue and coral coloring, respectively. 
 Sequences generated using motif-penalization are delineated by the dotted overlay. (  c  ) Computationally-designed  CREs maintain high transcriptional 
 activity in target cells while improving silencing in off-target cells. The three rows of box plots correspond to candidate CREs intended to drive cell 
 type-specific expression in K562, HepG2, and SK-N-SH. Each group of three boxes indicate the distribution of MPRA log  2  fold change (log  2  FC) 
 measurements in K562 (teal), HepG2 (yellow), and SK-N-SH (red) for a set of sequences nominated by the indicated design strategy on the  x  -axis. 
 Boxes demarcate the 25th, 50th, and 75th percentile values, while whiskers indicate the outermost point with 1.5 times the interquartile range from the 
 edges of the boxes. Sequences with a replicate log  2  FC  standard error greater than 1 in any cell type were not included. (  d  ) CODA-designed synthetic 
 sequences achieve higher overall cell type-specific activity than natural sequences. Box plots display distribution of MinGap scores to quantify 
 cell-specific CRE function and color indicates intended target cell type (K562: teal; HepG2: yellow; SK-N-SH: red). Boxes demarcate the 25th, 50th, 
 and 75th percentile values, while whiskers indicate the outermost point with 1.5 times the interquartile range from the edges of the boxes. Sequences 
 with a replicate log  2  FC standard error greater than  1 in any cell type were not included. (  e  ) Top row:  propeller plots for each sequence group. The radial 
 distance corresponds to the distance between the maximum and minimum cell type activity values, while the angle of deviation from an axis quantifies 
 the relative activity of the highest off-target cell type (  Methods  ). Teal, yellow, and red areas represent  sequences in which the MinGap:MaxGap ratio is 
 greater than 0.5. Dot colors are associated with the activity in the minimum off-target cell type. Bottom row: percentages of points in each delimited 
 area rounded to the nearest integer. The point count in the center represents sequences with quasi-uniform activity across cell types, while the gray 
 wedges count sequences with a low MinGap. The groups synthetic and synthetic-penalized were randomly sub-sampled to match the size of the two 
 natural groups (see  Supplementary Fig 13  for full  plots). 
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 All methods used to generate synthetic CREs resulted in groups of sufficiently diverse 
 sequences. We first quantified single-nucleotide similarity by calculating the average 
 Levenshtein distance of each sequence to its 4 nearest neighbors within the corresponding 
 design group, and repeated this process for human promoters and shuffled sequences from the 
 library as controls (  Supplementary Figure 10a  ). DHS-natural,  and non-repetitive 
 Malinois-natural sequences were respectively 1.2%, and 11.8% closer to neighbors than 
 shuffled controls. Depending on the generative algorithm, non-penalized synthetic sequences 
 were 0.57%-2.9% closer to neighbors. Interestingly, synthetic-penalized sequences were on 
 average 0.45%-0.89% further away from their 4 nearest neighbors than shuffled controls, with 
 distances increasing during successive penalization rounds (Spearman’s ⍴=0.73  p  <10  -300  ). In 
 contrast, promoters were 8.9% closer to neighbors than shuffled controls, implying that synthetic 
 sequences are substantially more diverse than promoters. As a more stringent assessment of 
 diversity that can capture reuse of individual sequence motifs, we also quantified the average 
 distance of 7-mer content to the 4 nearest neighbors for all oligos. On average, non-repetitive 
 natural sequences selected by DHS and Malinois were 3.0% and 24.4% closer to their nearest 
 neighbors, respectively, than shuffled sequences. Synthetic sequence pairs showed median 
 levels of 7-mer diversity in between groups of natural sequences, being on average 3.6%-7.2% 
 closer to nearest neighbors than shuffled sequences. Motif penalization significantly reduced 
 neighbor closeness from 6.5% to 0.82% relative to shuffled controls (Spearman’s ⍴=0.75, 
 p  <10  -300  ,  Supplementary Figure 10b  ). On the other  hand, despite the modest reductions 
 compared to shuffle sequences, all groups except Malinois-natural showed less 7-mer similarity 
 than promoters (on average 9.7% closer to nearest neighbors than shuffled sequences), 
 supporting the conclusion the test library provides a diverse collection of CREs for experimental 
 validation. 

 CODA successfully generates synthetic CREs with high cell type specificity 
 We experimentally tested the library of 77,157 natural and synthetic sequences (  Figure 2b  ) to 
 determine if machine-guided sequence design could reliably generate biologically functional 
 elements with desired activity. In total, the library included 51,000 synthetic sequences (36,000 
 standard and 15,000 motif-penalized), 24,000 natural sequences (12,000 DHS-natural and 
 12,000 Malinois-natural), and 2,157 experimental controls. We quantified activity of an individual 
 CRE as the log2 fold change (log  2  FC) of expression  of the reporter gene driven by the CRE 
 compared to a set of negative controls (  Figure 2b,c  ).  Empirical MPRA measurements of this 
 library and Malinois predictions were well correlated (Pearson’s  r  0.79-0.91; Spearman’s ⍴ 
 0.84-0.92;  Supplementary Figure 11  ), suggesting Malinois’  predictive accuracy is not limited to 
 natural sequences. 

 We were able to identify naturally occurring sequences with cell specificity, with Malinois-natural 
 sequences significantly outperforming DHS-natural sequences, suggesting that DHS peaks are 
 a poor predictor of specificity in MPRA. To quantify cell type-specific expression between design 
 groups we used the MinGap score, which is the log  2  FC  in the target cell type minus the 
 maximum off-target log  2  FC. Consistent with  a priori  Malinois activity predictions of genomic 
 sequences, DHS-natural sequences in all three cell types performed poorly as cell type-specific 
 CREs compared to natural sequences identified by Malinois (median MinGap difference 
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 Malinois-natural vs DHS-natural: K562 2.78, HepG2 1.84, SK-N-SH 0.57;  p  <10  -258  for all, 
 one-sided Wilcoxon rank-sum test) (  Figure 2d, Supplementary  Figures 9 and 12  ). These 
 differences in MinGap were primarily driven by weaker on-target activity for DHS-natural 
 sequences compared to Malinois-natural in K562 (median log  2  FC: DHS-natural 2.06, 
 Malinois-natural 4.54) and HepG2 cells (DHS-natural 1.44, Malinois-natural 2.72), while low 
 on-target activity in SK-N-SH in both groups (DHS-natural 0.64, Malinois-natural 0.84) resulted 
 in a lower MinGap difference and reduced SK-N-SH specificity observed in natural sequences in 
 general. 

 Synthetic sequences from all three algorithms outperformed both groups of natural sequences 
 as cell type-specific CREs in all three cell types. Compared to Malinois-natural, the best 
 performing natural sequence group, synthetics displayed a higher MinGap for all target cell 
 types (median MinGap difference synthetics vs Malinois-natural: K562 1.70, HepG2 0.65, 
 SK-N-SH 2.28;  p  <10  -121  for all, one-sided Wilcoxon  rank-sum test) (  Figure 2d, Supplementary 
 Figure 12  ). Performance gains of synthetic sequences  were primarily driven by greater 
 repression in off-target cell types (median off-target log  2  FC: synthetic -0.69, Malinois-natural 
 0.09, DHS-natural 0.41). In addition, synthetic sequences had a higher on-target activity in 
 SK-N-SH (median log  2  FC 3.20) compared to both natural  groups, and higher on-target activity 
 for HepG2 and K562 compared to DHS-natural sequences (  Figure 2c  ). In summary, synthetic 
 sequences consistently achieved the largest quantitative separation between target and 
 off-target cell types when compared to both classes of naturally derived sequences. 

 In addition to evaluating specificity using the MinGap, we quantified and visualized specificity 
 utilizing all three cell measurements. We developed a radial coordinate system where the most 
 specific sequences trend outwards along one of the three cell type axes, while sequences with 
 uniform activity across cell types are drawn toward the origin (  Figure 2e, Methods  ). The system 
 incorporates both the MinGap and the MaxGap (log  2  FC separation between the target cell type 
 and minimum off-target) scores. We categorize CREs as cell type-specific if two conditions are 
 met: (i) the MaxGap is greater than 1, and (ii) the MinGap:MaxGap ratio is greater than 0.5. 
 These two requirements prioritize sequences with on-target preference while avoiding 
 sequences in which one off-target cell type is closer to the target cell type than the other 
 off-target cell type (  Methods  ). 

 Using our criteria to categorize cell type-specific CREs, we observe that most (94.1%) synthetic 
 sequences designed by CODA successfully drive cell type specificity (  Figure 2e, 
 Supplementary Figure 13  ). Depletion of the most optimal  motifs did not impact success 
 substantially, with 92.4% of motif-penalized sequences still driving specificity. Comparatively, we 
 observe that Malinois-natural (73.6%) and DHS-natural sequences (40.6%) were less 
 successful (  Figure 2e  ). When increasing the stringency  of the MaxGap four-fold, synthetic 
 sequences (54.7% specific) further outperformed Malinois-natural (21.5%) and DHS-natural 
 (4.7%) sequences, as well as motif-penalized sequences (30.8%). Overall, synthetic CREs 
 lacking any homology to the human genome (  Methods  )  can drive the most consistently robust 
 cell-specific activity in large part through repression of off-target activity, as well as through 
 some increases in on-target activity. 
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 The TF vocabulary of synthetic sequences drives cell type-specific CRE activity 
 Having found that synthetic CREs are more cell type-specific than both classes of natural 
 sequences, we sought to link sequence content to the responsible regulatory syntax. 
 Transcription is controlled in part by individual TF binding to sequence motifs as well as 
 interactions between TFs  11  . We identified 82 short  (6-15 bp) sequences enriched in our 
 MPRA-tested library, 55 of which can be confidently aligned to a known TF binding motif 
 (  Supplementary Tables 5 and 6  )  66  67  . To interpret  the effect of TF binding on sequence 
 function, we predicted single-nucleotide contributions on regulatory activity in each of the three 
 cell types using a robust modified version of Integrated Gradients (  Methods  )  68  . 

 The regulatory activity contribution scores identify the overall magnitude and direction of the 
 effect of each motif in each of our three cell lines (  Figure 3a  )  .  Of the 82 enriched motifs, 67% 
 had positive predicted contributions to sequence activity while the remaining 33% were 
 repressive. This included well-known activators such as GATA1  69  , a heavily utilized and 
 essential TF expressed in K562, which is correctly predicted by Malinois to drive activity 
 exclusively in K562 (  Figure 3b  ). Likewise, HNF1B and  HNF4A, master regulators expressed in 
 hepatocyte development  70–73  , are used to drive transcription  in HepG2 cells and their 
 contributions are exclusive to HepG2. Motifs displaying negative contributions included the 
 repressors GFI1 in K562  74–76  , and MEIS2 in HepG2 and  SK-N-SH  77–79  . 

 We examined whether motif use differed between natural and synthetic sequences. All of the 82 
 enriched motifs occur at least once in both synthetic and natural sequences, suggesting a 
 shared vocabulary between the two classes (  Figure  3b, Supplementary Figure 14 and 15  ). 
 However, the utilization of motifs differed. For example, motifs for transcriptional activators 
 GATA1 in K562 and HNF4A in HepG2 were deployed at higher rates in synthetic sequences (all 
 synthetics: 65.0%, 62.8%, respectively; all naturals: 28.5%, 26.9%, respectively), as well as the 
 repressors MEIS2 in K562 and GFI1 in HepG2 (all synthetics: 58.5%, 51.5%, respectively; all 
 naturals: 5.4%, 5.3%, respectively) (  Supplementary  Figure 15  ). Overall, fewer motifs were 
 overrepresented (2-fold) in DHS (9/82) and Malinois-natural sequences (18/82) compared to 
 synthetics (38/82). 

 Notably, we also observed a higher use of particular motif combinations in synthetic sequences 
 that were almost absent in natural sequences. For example, among synthetic sequences, we 
 see higher rates of GATA1/MEIS2 in K562 (46.8%) and HNF4A/GFI1 in HepG2 (31.1%), 
 compared to natural sequences (1.7% and 2.2% each pair respectively) (  Figure 3c, 
 Supplementary Figure 16, Methods  ). Across all three  cell types, we observed 176 commonly 
 used motif pairs with 100-fold higher utilization in synthetics compared to either DHS or 
 Malinois-natural, and 23 pairs unique to synthetic sequences entirely (  Methods  ). Combinations 
 of two distinct activating motifs were observed in most non-penalized synthetic and 
 Malinois-natural sequences (97.1% and 93.6%, respectively), while activating-repressive and 
 repressive-repressive motif pairs were observed at much lower rates in the natural group 
 (activating-repressive: synthetic 98.5%, Malinois-natural 38.3%; repressive-repressive: synthetic 
 95.5%, Malinois-natural 15.5%), suggesting that natural sequences are less likely to use 
 repressive grammar in constructing cell type-specific CREs. 

 9 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2023. ; https://doi.org/10.1101/2023.08.08.552077doi: bioRxiv preprint 

https://paperpile.com/c/uWXnRF/mKW9j
https://paperpile.com/c/uWXnRF/vqdt2
https://paperpile.com/c/uWXnRF/GWGIx
https://paperpile.com/c/uWXnRF/jcuEq
https://paperpile.com/c/uWXnRF/lExNd
https://paperpile.com/c/uWXnRF/sAMhx+SFNGB+n6RxZ+aioZe
https://paperpile.com/c/uWXnRF/U3IQl+9nvlb+gcbgj
https://paperpile.com/c/uWXnRF/lZ8Nk+xlP40+T7waW
https://doi.org/10.1101/2023.08.08.552077
http://creativecommons.org/licenses/by-nc/4.0/


 Figure 3. Interpreting CRE syntax in engineered elements.  (  a  ) Malinois contribution scores enable nucleotide  resolution interpretation of sequence 
 activity. Shown is a representative synthetic CRE designed to drive HepG2-specific reporter expression. Enriched motifs, demarcated on the upper 
 sequence track, can be combined with model prediction contribution scores, plotted for each cell type on the lower track (K562: teal, HepG2: yellow, 
 SK-N-SH: red), to interrogate and assign functional subunits. Positive and negative values indicate sequences contribute to transcriptional activation or 
 silencing, respectively, in the corresponding cell type. Motifs are labeled with an “M” followed by their STREME output index. Motifs with a strong 
 known-motif match (Methods) have the name of the match in parenthesis preceding their label. “+” and “-” denote forward and reverse orientations 
 respectively. (  b  ) Left heatmap: average contributions  of enriched motifs in K562, HepG2, SK-N-SH (left to right columns). Center bar plot: motif 
 enrichment in synthetic (light gray) and natural (dark gray) sequences. The  x  -axis represents the percentage  of sequences in each group that contain 
 at least one instance of that motif denoted on the  y  -axis. Right bar plot: motif program association  derived from the NMF features matrix. Colors 
 correspond to programs listed in Fig 3e. Only motifs with the top-4 assignments for each topic were included in the figure (see  Supplementary Fig. 14 
 for full figure). (  c  ) Cooccurrences of enriched motifs  are more prevalent in synthetic CREs. Adjusted co-occurrence percentage is calculated by 
 multiplying (i) the percentage of sequences in each group containing a pair of motifs and (ii) the similarity divergence of the motifs (1 minus the 
 Pearson correlation coefficient of the motif logos in their optimal alignment) (  Methods  ; see  Supplementary  Fig. 16  for raw percentages.). Upper and 
 lower triangular percentages correspond to natural and synthetic sequences respectively. Red and blue motif labels denote motifs with mostly positive 
 or negative contribution, respectively. (  d  ) Specific  functional programs drive cell type-specific transcription. Empirical program function calculated using 
 a weighted average of MPRA log2FC scores based on topic mixture displayed in panel  c  . Ten cell type  specificity-driving programs were identified 
 using the same criteria applied to identify cell type-specific sequences (bright colored points; 4 for K562, 3 for HepG2, 3 for SK-N-SH). Four programs 
 are not associated with cell type-specific transcription (pastel points). (  e  ) Synthetic and natural sequences  show distinct patterns of higher order 
 arrangements of TF binding motifs. Colored bar plots generated from NMF decomposition of synthetic and natural sequences based on enriched motif 
 content reveal the functional programs used in each sequence. For each sequence, programs colored based on the key in  d  and are plotted as a 
 fraction of total program content. Note, in a few cases, sequences were not assigned to any program with any frequency yielding a blank bar. Line plots 
 display MPRA log  2  FC scores for the above sequences  in K562 (teal), HepG2 (yellow), and SK-N-SH (red). Sub-panels are organized into rows by 
 expected target cell type and columns by method used to nominate candidate sequences. Sequences in each panel are sorted by hierarchical 
 clustering based on program content. 
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 Further emphasizing the increased use of individual and combinations of motifs in synthetic 
 sequences, we observe that non-penalized synthetic elements showed a greater diversity of 
 unique motifs (types) per sequence (median 2.5-fold vs natural non-repetitive;  p  <10  -300  , 
 one-sided Wilcoxon rank-sum test) as well as a greater number of total motif instances (tokens) 
 (2.3-fold vs natural non-repetitive;  p  <10  -300  , one-sided Wilcoxon rank-sum test) per sequence 
 (  Supplementary Figure 17  ). As expected, penalization rounds for synthetic sequences reduce 
 some individual motif instances, reducing both types and tokens (type median 1.5-fold vs 
 natural non-repetitive; token median 1.33-fold vs natural non-repetitive). However, the 
 type:token ratio, a measure of non-redundant motif deployment, is higher in penalized synthetic 
 sequences than in non-penalized ones due to reduced motif redundancy (median type:token 
 0.78 vs 0.71 respectively;  p  <10  -300  , one-sided Wilcoxon rank-sum test). As these sequences 
 remain highly specific, CODA is able to explore alternative regulatory mechanisms successfully 
 despite increased syntactical constraints posed by penalization. 

 Complex semantic architectures are syntactically differentially deployed in natural and synthetic 
 sequences 
 In addition to single TF-motif usage and pair-wise co-occurrence, cell type specificity is thought 
 to arise through higher-order motif semantics, which can mediate the complex organization of 
 many TFs to impart CRE activity  7,8,11,12  . To aggregate  semantically-related enriched motifs into 
 functional programs, we used Non-negative Matrix Factorization (NMF)  80  to decompose 
 sequences in our library into a mixture of 14 functional programs based on enriched motif 
 content (  Supplementary Figure 18, Methods  ). NMF identified  9 programs associated with cell 
 type-specific activity (4 programs in K562, and 3 in each HepG2 and SK-N-SH), with the 4 
 remaining programs associated with pleiotropic activation and/or repression (  Figure 3d  ). 

 Natural and synthetic sequences deploy semantically distinct programs (  Figure 3e, 
 Supplementary Figure 19  ). Notably, average program  content in synthetic sequences 
 attributed to cell type-specifying programs was significantly higher (K562  86.7  %, HepG2  76.3  %, 
 SK-N-SH:  70.5  %) than in both DHS-natural sequences  (K562 46.5%, HepG2 37.6%, SK-N-SH 
 18.5%;  p  <10  -300  for all, two-sided Welch’s  t  -test) and Malinois-natural sequences (K562 60.8%, 
 HepG2 73.4%, SK-N-SH 22.7%;  p  <10  -11  for all, two-sided  Welch’s  t  -test) (  Supplementary 
 Figure 20a  ). Despite the increased redundancy of certain  motifs (such as GATA1 and the 
 HNFs) in synthetic sequences, these CREs have more program heterogeneity than 
 DHS-genomic CREs for all cell types (  p  <1.20e-7, two-sided  Welch’s  t  -test) and 
 Malinois-genomic CREs for HepG2 and SK-N-SH-specific candidates (  Supplementary Figure 
 20b  ;  p  <5.92e-96, two-sided Welch’s  t  -test). 

 We next observed that distinct semantic combinations of programs deployed by CODA 
 contributed to improved specificity in synthetic CREs. When only considering cell type-specific 
 programs, we found natural sequences primarily rely on activating programs while synthetic 
 sequences additionally utilize programs that generally drive off-target cell type repression 
 (median repressing program content: DHS-natural 0.37%; Malinois-natural 0.34%; synthetic 
 36.8%) (  Supplementary Figure 20c,d  ). A plurality of  synthetic sequences (45.3%) are 
 substantially composed of both activating and repressing programs, supported by enhancer and 
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 silencer TF motif matches, while relatively few DHS (3.4%) and Malinois (6.4%) natural 
 sequences show this combination (  Methods  ;  Supplementary  Figure 20e  ). These results 
 support our motif-based observations that the improved performance of synthetic sequences is 
 due to a combination of on-target activations and off-target repression. 

 Synthetic CREs drive desired tissue-specific activity  in vivo 
 To assess specificity of synthetic CREs beyond an episomal reporter context in cell lines, we 
 evaluated selected sequences  in vivo  for their ability  to drive cell type-specific expression. Using 
 empirical MPRA results, Malinois contribution scores,  in silico  predictions of tissue-specific 
 epigenetic signals, and element syntax (  Methods, Supplementary  Figure 21  ), we nominated 
 three liver- and three neuronal-specific CREs for  in vivo  characterization in zebrafish embryos 
 (  Supplementary Figure 22  ). 

 We inserted synthetic sequences upstream of a minimal promoter driving GFP to emulate the 
 vector design utilized by CODA during  in vitro  testing  81  .  We injected transposon vectors into 
 embryos and integrated them into the zebrafish genome. To identify the unique expression 
 patterns of each regulatory element, we performed high-resolution, whole-animal imaging at 48 
 and 96 hours post fertilization for neuronal and liver targets respectively. For sequences 
 designed to drive activity specifically in the liver, 2 of 3 sequences demonstrated strong, 
 consistent expression in developing hepatocytes (  Figure  4a, Supplementary Figures 23 and 
 24  ). Remarkably, we detected minimal off-target expression  in non-targeted cell types. 
 Sequences designed for neuronal specificity showed similar success (2 of 3), driving expression 
 in a subset of neuronal cell types (  Figure 4b, Supplementary  Figure 25)  . For both successful 
 neuronal-nominated CREs, we observed GFP expression within cell bodies and axonal 
 projections of the developing brain and spinal cord (  Figure 4b, Supplementary Figure 25h)  . 

 We next evaluated if the activity of the two sequences with neuronal specificity in zebrafish 
 extended to a mammalian mouse model system. We placed each synthetic CRE sequence into 
 a targeting vector upstream of a minimal promoter driving lacZ and GFP, and integrated the 
 construct at the H11 safe harbor locus of the mouse through zygote microinjection  82  . We 
 harvested embryos at embryonic day 14.5, a time point roughly equivalent to that used in 
 zebrafish, and used lacZ staining to the transgenic embryos to examine expression patterns of 
 the reporter construct driven by the synthetic CRE. We observed specific expression for 
 neuronal #1 with localized expression in the developing cortex and no additional expression 
 observed elsewhere (  Supplementary Figure 26a)  . To  localize the expression patterns further 
 within the cortex, we  repeated the reporter assay  with the neuronal #1 CRE and  performed  in 
 situ  staining of the whole brain at 5 weeks postnatal  (  Figure 4c, Supplementary Figure 26c-h)  . 
 We confirmed cortex specific expression with focal activity occurring at neocortical layer 6, 
 confirming its neuron-specific activity. 

 Having designed and validated a novel CRE with strong neuronal specificity, we sought to 
 further elucidate the factors responsible for transcriptional activity in neuronal cells. Using 
 Malinois’ single-nucleotide contributions generated for neuronal sequence #1 in SK-N-SH, we 
 observed two categorically distinct motif classes as contributors to sequence activity: (i) three 
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 primary ETS GGA(A/T) binding domains, and (ii) four CREB-like TGACGCA binding domains 
 (  Figure 4d  ). ETS factors constitute one of the largest transcription factor families, and its 
 members exhibit highly similar binding motifs. Previous work has reported the potential of ETS 
 factors to form heterodimers with CREB  83  , and our contribution scores provided support for 
 three heterodimer pairings in the sequence. In the off-target cell types, ETS and CREB-like 
 motifs were either reduced or absent, with the presence of two additional negatively contributing 
 motifs, closely matching the repressor GFI1 (  Supplementary Figure 22d  ). This suggests that 
 the specificity of neuronal sequence #1 could be partly attributed to the on-target transcriptional 
 activity of cooperative heterodimers and off-target repression by GFI1. 

 Figure 4.  In vivo  validation of synthetic elements  using zebrafish and mouse.  (  a  ) A synthetic liver-specific  CRE drives 
 transgene expression in the larval zebrafish liver. Brightfield, GFP, and merged whole animal imaging 96 hours post-fertilization 
 indicates that the synthetic CRE reproducibly drives transgene expression in zebrafish liver (white arrows). Lateral view, anterior to 
 the left, dorsal up. (  b  ) CODA-designed SK-N-SH-specific  CRE drives GFP expression in embryonic zebrafish neurons (white 
 arrows). Brightfield, GFP, and merged imaging of the brain and anterior spinal region of animals 48 hours post-fertilization show 
 transgene expression in the developing brain and spinal cord. Embryo 2 shows additional incidental off-target expression in vascular 
 tissue. Lateral view, anterior to the left, dorsal up. (  c  ) Synthetic SK-N-SH-specific CRE drives transgene  expression in 5-week-old 
 postnatal mice. X-Gal staining for LacZ of the medial section of the brain reveals specific transgene expression at layer 6 of the 
 neocortex. (  d  ) Malinois contribution scores reveal  the role of ETS and CREB-like binding domains in mediating synthetic CRE 
 activity in neurons. Subsequences of high predicted contribution to SK-N-SH activity overlap with ETS- and CREB-like binding 
 motifs based on visual inspection. 
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 Discussion 

 In this study, we developed CODA, an effective strategy to design novel synthetic CREs that 
 can direct cell type-specific gene expression by understanding the complex combinatorial rules 
 of  cis  -regulatory control. CODA builds on previous attempts to design CREs  7,9  , by uniquely 
 combining advances in sequence generation algorithms with the accuracy of Malinois, our CNN 
 model of CRE activity. Synthetic sequences easily outperform natural sequences in driving cell 
 type-specific gene expression, which suggests that novel functions can be programmed into 
 CREs and interpreted by human cells. Using high-throughput characterization methods and  in 
 vivo  reporters, we empirically validated that CODA  can design specific CREs with high success 
 rates. 

 The dearth of natural sequences capable of achieving exquisite cell specificity in our study 
 highlights the difficulty of using human genomic sequences to achieve non-natural objectives for 
 which evolution has not necessarily optimized. Furthermore, DHS elements exhibited both weak 
 on-target activity and poor specificity, possibly a reflection of selective pressure that has shaped 
 DHS elements across mammalian evolution to be optimized for redundancy, versatility, and 
 modular function  84,85  . Without human input, CODA deploys  unique combinations of strongly 
 on-target activating and off-target repressing TFs within a short sequence that are not 
 commonly found in the human genome, to yield highly specific synthetic CREs. This suggests 
 that our models have learned a component of the foundational rules governing CREs, and 
 possess the ability to extrapolate this knowledge to unobserved or rarely observed syntax 
 combinations. 

 Using Malinois, we were able to identify sequences in the genome with moderate proficiency for 
 cell-specific activity, albeit to a lesser degree than synthetics. It was striking that these 
 cell-specific natural sequences represented a broad range of genomic annotations and were 
 less likely to be attributed to known CREs that were found using epigenomic signatures. This 
 highlights the need to carefully consider sequences outside the typically studied candidate 
 CREs when generating libraries with the intent to train high-performance models. 

 Our high success rate in modeling, generating, and testing sequences  in vitro  prompted us to 
 extend assessment  in vivo  . Despite potential challenges  of incomplete conservation of tissue 
 types, heterochrony, and lineage-specific regulatory grammar, our CREs displayed conserved 
 cross-species activity in zebrafish and mice. Our results suggest that CREs designed for 
 tissue-specific targeting can work across species, even in the brain, which has been an ongoing 
 challenge to target with viral-based delivery approaches  41  .  An integrated framework leveraging 
 human cell lines in conjunction with whole organism models may thus be a viable approach to 
 rapidly identify CREs to execute novel functions in humans. 

 We expect that the CODA platform can be extended by integrating additional advancements in 
 deep learning and generative AI, conditioning models on orthogonal data modalities, modeling 
 CRE function in more tissue types, and tasking different biological objectives. While we only 
 tested three cell types here, there is a growing list of clinically actionable tissues that could be 
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 benefited, as well as cell types that suffer toxic off-target tropism that could be mitigated by 
 engineered CREs paired with delivery systems. Applying MPRA in additional cell types with 
 greater clinical relevance will enable CODA to better design CREs with specificity tailored for 
 therapeutic applications. While we successfully deployed CODA to maximize cell type 
 specificity, the platform is designed to be flexible to any objective function. We could deploy it to 
 design CREs for drug responsiveness (e.g. glucocorticoids), fine tune expression outputs, or to 
 respond to the complex syntax specific to cancer cells.  CODA has improved our ability to write 
 regulatory code tailored to diverse purposes, and could serve as a valuable platform for 
 improving specificity of gene therapies. 
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 Methods 

 Training Malinois, a model of MPRA activity of CREs 
 To enable systematic evaluation of parameters governing data preprocessing, model 
 architecture, and training we developed tools for limited automatic machine learning in PyTorch 
 (  https://github.com/sjgosai/boda2  ). We implemented  support for regression based on DNA 
 sequences using convolutional neural networks. We deployed a containerized application based 
 on this library in conjunction with the Vertex AI platform on Google Cloud to tune all 
 hyperparameters using Bayesian Optimization. 

 Data preprocessing 
 To construct the train/validation/test dataset to train Malinois, we aggregated the log  2  FC output 
 of sequences tested in K562, HepG2, and SK-N-SH from multiple projects. The majority of 
 projects focused on testing the allelic effects of human genetic variation with the remaining 
 projects testing only the reference sequences of the human genome. In total, 776,474 (  813,051 
 before applying filters)  unique oligos were aggregated,  originating from 10 independent 
 experiments (from three different projects: UKBB, GTEx, BODA). Oligos with a plasmid count 
 less than 20 or no RNA count in any cell type were discarded. The log  2  FC of oligos present in 
 more than one UKBB library was averaged across libraries. If an oligo in UKBB was also found 
 in GTEx or BODA, only the UKBB readout was collected and the others were discarded. If an 
 oligo in GTEx (but not in UKBB) was also found in BODA, only the GTEx readout is collected 
 and the BODA readout was discarded. Non-natural sequences from BODA were discarded. 
 Also, oligos with a log  2  FC 6 standard deviations below  the global mean were discarded (less 
 than 10 oligos). Sequences were padded on both sides with constant sequences from the 
 reporter vector backbone to form 600-bp sequences and converted into one-hot arrays (i.e., A := 
 [1,0,0,0], C := [0,1,0,0], G := [0,0,1,0], T := [0,0,0,1], N := [0,0,0,0]). Oligos from chromosomes 
 19, 21, and X were held out from the parameter training loop as a validation set guide 
 hyperparameter tuning. Oligos from chromosomes 7, 13 were held out from both parameter 
 training and hyperparameter tuning loops as a test set for reporting performance. Data 
 augmentation was performed by including into the training set the reverse complement of the 
 (600-bp) sequences, and duplicating oligos that had a log  2  FC greater than 0.5 in any cell type. 

 Model architecture 
 The final Malinois model is composed of three functional segments: (1) three convolutional 
 layers with batch normalization and maximum value pooling, (2) a linear layer to integrate 
 positional and feature information from the previous layers, and (3) a stack of branched linear 
 layers such that each output feature is a function of 4 independent linear transformations. As the 
 first two segments are based on the Bassett architecture  46  ,  Malinois accepts batches of 4 x 600 
 arrays corresponding to one-hot encoded DNA sequences, so predictions are made by padding 
 inputs on both sides with constant sequences from the reporter vector backbone. 

 Model fitting 
 We trained Malinois using the Vertex AI API on the Google Cloud Platform (GCP). This enabled 
 optimization of all tunable parameters controlling data preprocessing, model architecture, and 
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 model training. To do this, first we generated a docker container 
 (gcr.io/sabeti-encode/boda/production:0.0.11) with an installation of CODA using a GCP VM with 
 the following specifications: Debian based Deep Learning VM for Pytorch CPU/GPU operating 
 system, a2-highgpu-1g machine type, and 1 NVIDIA Tesla A100 40G GPU. The container 
 entrypoint was set to a python script for model training (boda2/src/main.py). Using this container 
 we deployed Hyperparameter Tuning Jobs using the default algorithm to optimize the indicated 
 hyperparameters (  Supplementary Table 7  ). 

 Correlation of Empirical and Predicted MPRA Activity 
 When comparing Malinois’ predictions to empirical MPRA, we discard any oligo with a replicate 
 log  2  FC standard error greater than 1 in any cell type.  Malinois’ predictions for the (padded) 
 forward and reverse complement sequences are averaged into a single prediction. 

 Optimization of Cell Specificity 
 The objective function to guide the sequence design with Simulated Annealing (minimize 
 energy) was the MinGap (Malinois log  2  FC prediction  in the target cell type minus the maximum 
 off-target cell type log  2  FC prediction). The objective  function used with the algorithms Fast 
 SeqProp and AdaLead (minimize loss or maximize fitness respectively) was the bent-MinGap, 
 which is defined as follows. Let  y  +  be the Malinois  log  2  FC prediction on the target cell type, and 
 y  -  the maximum of the log  2  FC predictions on the off-target  cell types of a given sequence (so 
 MinGap =  y  +  -  y  -  ). We constructed a bending function  g  (x) =  x  -  e  -x  + 1 to preprocess predictions 
 such that the objective function becomes bent-MinGap =  g  (  y  +  ) -  g  (  y  -  ). We applied  g  (  x  ) to the 
 predictions to incentivize greater MinGaps with low expression in the off-target cell types. For 
 three generative algorithms, Malinois predictions were clippled to an interval (default: [-2, 6]) to 
 avoid prioritizing sequences with pathologically unrealistic log2FC activity predictions. 

 Iterative Maximization of Sequence Fitness Using Iterative, Generative, and Evolutionary 
 Sequence Generation Algorithms 
 Fast SeqProp  36  . We implemented this algorithm as described  in previous work but we removed 
 the learnable affine transformation in the instance normalization layer and drew many one-hot 
 encoded samples from the categorical nucleotide probability distribution in each optimization 
 step to more confidently estimate the gradients of the learnable re-parameterized input 
 sequence. The input parameters were randomly initialized (drawn from a normal distribution) 
 and optimized using the Pytorch implementation of the Adam optimization algorithm with a 
 learning rate of 0.5, along with a Cosine Annealing scheduler with a minimum learning rate of 
 10  -6  over 300 training steps. In each training step, the loss function value was the negative 
 average bent-MinGap of 20 sequence samples drawn from the categorical nucleotide probability 
 distribution at that step. Once optimization is finalized, instance normalization is applied to the 
 learned input and 20 sequences were sampled from the obtained distribution, and the sequence 
 with the highest predicted bent-MinGap was collected unless the value was less than 3.6. 

 AdaLead  37  . We implemented this algorithm as written  in the GitHub repository associated with 
 the original paper. In each run, 20 randomly initialized sequences are optimized over 30 
 generations with mu=1, recomb_rate=0.1, threshold=0.25, rho=2, using bent-MinGap as the 
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 fitness function. Once optimization is finalized, only the sequence with the highest predicted 
 bent-MinGap is collected unless the MinGap was less than 2. We chose to collect only one 
 sequence per run to maximize diversity in the global batch collected from all runs. 

 Simulated Annealing  65  . We implemented Simulated Annealing  based on the 
 Metropolis-Hastings algorithm for Markov Chain Monte Carlo simulations. Proposals were 
 generated symmetrically at each step by mutating 3 random bases. We used negative MinGap 
 (without bending) to simulate the energy landscape of the theoretical system. During 
 optimization the temperature term was reduced using a monotonically decreasing function with 
 a diverging infinite sum. (INSERT EQN temp = 1 / ((1+step)^0.501)). To produce sequences 
 with high target-specific activity we used negative MinGap (without bending) to simulate energy 
 of the system. 

 Motif Penalization 
 For each target cell type, the iterative sequence generation penalizing motifs from previous 
 rounds was done in 4 “tracks” (a total of 12 penalization tracks). Each penalization track 
 generates a total of 1750 sequences as follows. First, a batch of 500 sequences (round 0) is 
 generated free of any motif penalty in the objective function besides target cell specificity. Then, 
 round-0 sequences are analyzed for motif enrichment (10 motifs of length 8 to 15) using 
 PyMemeSuite, and the top motif from the enrichment output list is added to a pool of 
 unwelcome motifs in forward and reverse complement orientations. The next batch of 250 
 sequences to be generated (round 1) has an additional term in its objective function that 
 penalizes the presence of motifs from the pool of unwelcome motifs. This process iterates to 
 complete 5 penalization rounds, 6 rounds in total (500 unpenalized sequences and 5*250 
 penalized sequences). The motif penalty is calculated using the PWMs (log probabilities) of the 
 motifs as filters of a convolutional layer that scans and scores a batch of sequences. The sums 
 of motif scores above a certain motif threshold in each sequence are averaged and divided by 
 the batch size and the number of filters in the convolutional layer. Each motif threshold is 
 calculated as score_pct * max_score, where max_score is the PWM score of the motif 
 consensus sequence and score_pct is a scaling parameter (0 for K562, 0.25 for HepG2 and 
 SK-N-SH). We also included a penalty weight to each motif in the pool to slightly emphasize the 
 penalty of motifs from earlier rounds as the pool increases. The penalty weight is defined as 
 (current_round_index - motif_round_index)^(1/3) where motif_round_index is the index of the 
 round from which a motif was extracted and added to the pool. Each penalty weight scales the 
 PWM of its respective motif. 

 In  Supplementary Figure 7b  , the motif-presence score  (  y  -axis) of a motif in each sequence 
 was calculated by summing all the motif-match scores that pass the patser score threshold as 
 defined in Biopython  86  , and then dividing by the maximum  possible motif score (the match score 
 of the motif consensus sequence). 

 Homology search using Nucleotide Blast 
 We conducted homology search using NCBI ElasticBLAST to determine if synthetic sequences 
 had measurable homology the any sequences in Nucleotide Collection. We used the blastn 
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 algorithm, the dc-megablast task, and a word size of 11 and maintained the defaults for all other 
 settings. 

 Selection of Naturally Occurring Cell-Specific Sequences by DNase and Malinois Driven 
 GenomeScan 
 DHS-natural  . To identify CREs broadly replicating  across experimental approaches, we first 
 took DNAse peaks from each of the three cell lines (K562, HepG2, and SK-N-SH), and 
 subsetted peaks that intersected with H3K27ac peaks from the same cell type. For the 
 DHS-H3K27ac peaks, in each cell type, we scored the average K562, HepG2, and SK-N-SH 
 DHS signal in the peak. We then calculated the MinGap score for each target cell type using the 
 DHS signal, and selected the 4000 peaks with the largest MinGap score in each cell type. 

 Malinois-natural  . To nominate cell-specific natural  sequences with Malinois, we tiled the whole 
 human genome into 200-bp windows using a 50-bp stride and generated predictions for each 
 window sequence. The cell specificity fitness of each sequence was obtained by evaluating the 
 fitness function mentioned above (bent-MinGap), and the top 4000 best performing sequences 
 were selected for each cell type. 

 Genome Annotation of Natural Sequences 
 Malinois-natural sequences capture a unique component of the genome compared to 
 DHS-natural, with 2.7% of Malinois-natural sequences overlapping sequences in our 
 DHS-natural set, and 65.8% residing outside any previously annotated CREs. cCRE BED files 
 for promoter-like sequences, proximal enhancer-like sequences, distal enhancer-like 
 sequences, and CTCF-only were downloaded from the ENCODE SCREEN Portal  5  and 
 concatenated into a single BED file for intersection with DHS-natural and Malinois-natural BED 
 files using a custom script. Intersections were done with bedtools 2.30.0  87  and pybedtools 
 0.9.0  88  with the following command 
 ‘Malinois/DHS-natural_BED.intersect(ENCODE_cCRE_BED, wa=True, u=True) and the number 
 of intersections were reported. To determine the genomic features overlapping DHS-natural and 
 Malinois-natural sequences, the same BED files were used as input for ‘annotatePeaks.pl from 
 the homer suite v4.11  89  with the following command  ‘annotatePeaks.pl inputBED hg38 -annStats 
 annStats.txt > annotatePeaksOut.txt’. Annotations for the whole genome (hg38) were generated 
 by dividing the genome into 200-bp intervals using the bedtools makewindows command 
 ‘bedtools makewindows -g hg38.txt -w 200 > hg38_200bp.bed’. Annotations were generated for 
 each cell type (K562, HepG2, SK-N-SH) and sequence selection method (DHS-natural, 
 Malinois-natural.) 

 Sampled Integrated Gradients to compute contribution scores of Malinois predictions 
 We calculated nucleotide contribution scores for each sequence in the proposed library using an 
 adaptation of the input attribution method Integrated Gradients  68  . Sampled Integrated Gradients 
 considers the expected gradients along the linear path in log-probability space from the 
 background distribution to the distribution that samples the input sequence almost surely. In 
 each point of the linear path, a sequence probability distribution (a.k.a. Position Probability 
 Matrix) is obtained from the log-probability space parameters by applying the Softmax function 
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 along the nucleotide axis, and a batch of sequences is sampled from such a distribution to be 
 fed into the model. We then calculate the gradients of the batch model predictions with respect 
 to the parameters in the log-probability space, using the straight-through estimator to 
 backpropagate through the sampling operation. The batch gradients are averaged for each 
 point in the path and approximate the gradient integral as in the original formulation of the 
 method. In our case, the subtraction of the baseline input from the input of interest involves the 
 parameters in log-probability space. 

 Propeller plots 
 A propeller dot plot (top row of  Figure 2e  ) is a 2-dimensional  plot scheme of our own device 
 which seeks to elucidate the cross-dimensional non-uniformity of 3-dimensional points. In this 
 coordinate system, a point’s radial distance from the origin corresponds to the difference 
 between the maximum and minimum values. Its deviant angle from the axis corresponding to 
 the maximum value quantifies the position of the median value within the range of the minimum 
 and maximum values. Namely, the angle is proportional to the ratio between two differences: (i) 
 the difference of the median and minimum values, and (ii) the difference of the maximum and 
 minimum values. This ratio represents the 60-degree-angle fraction deviating from the axis 
 corresponding to the maximum value towards the axis corresponding to the median value. A 
 higher angle of deviation (maximum of 60 degrees) indicates that the median value is closer to 
 the maximum value, while a lower angle (minimum of 0 degrees) of deviation indicates that the 
 median value is closer to the minimum value. 

 This can also be formulated in terms of the MinGap (maximum - median) and MaxGap 
 (maximum - minimum). In our coordinate system, the MaxGap corresponds to the radial 
 distance. The difference (1 - MinGap/MaxGap) corresponds to the 60-degree-angle fraction 
 deviating from the axis corresponding to the maximum value towards the axis corresponding to 
 the median value. The MinGap:MaxGap ratio controls how much a point gravitates toward a 
 main axis and away from the in-between-axis areas. A ratio of 0 means that the MinGap is zero 
 and therefore the median value is equal to the maximum, so the point will be exactly between 
 two axes. If the ratio is 1, it means that the median and the minimum values are equal, therefore 
 the point will fall exactly in the axis corresponding to the maximum value. Note that, in order for 
 this point of view to work with target and off-target cell type activities, we assume that the 
 maximum cell type activity is the intended target cell type. This implies that, when counting 
 sequences that pass specificity thresholds in Figure 2e, some sequences get their target cell 
 type reassigned to the cell type with the maximum activity, with DHS-natural sequences being 
 the group that most benefits from the reassignment. A total of 652 sequences pass the lenient 
 specificity threshold of MaxGap > 1 and MinGap/MaxGap > 0.5 by getting their target cell type 
 reassigned (DHS-natural: 565, Malinois-natural: 39, AdaLead: 12, Simulated Annealing: 5, Fast 
 SeqProp: 0, Fast SeqProp penalized: 4). However, only 16 sequences pass the stringent 
 specificity threshold of MaxGap > 4 and MinGap/MaxGap > 0.5 by getting their target cell type 
 reassigned (DHS-natural: 15, Malinois-natural: 0, AdaLead: 1, Simulated Annealing: 0, Fast 
 SeqProp: 0, Fast SeqProp penalized: 0). 
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 As an example of coordinate calculation, take the point (5, 3, 1). This point would have a radial 
 distance of 5-1=4 and an angle of deviation from the axis of the first dimension of (3-1)/(5-1)*(60 
 deg) = 30 deg (in the direction of the axis of the second dimension). In terms of the 
 MinGap:MaxGap ratio, the angle of deviation from the axis of the first dimension (the dimension 
 of the maximum value) towards the axis of the second dimension would be (1 - (5-3)/(5-1))(60 
 deg) = 30 deg. Observe that all the points of the form (x+4, x+2, x), for any real value of x, will 
 have the same coordinates as the point (5, 3, 1). 

 A propeller count plot (bottom row of  Figure 2e  ) shows  the percentage of points that fall in each 
 given area of a propeller dot plot. The teal, yellow, and red regions capture sequences in which 
 the median value is closer to the minimum value than to the maximum value. 

 The two synthetic groups in  Figure 2e  were randomly  subsampled to have exactly 12,000 
 sequences each and avoid over-plotting compared to the plots of the two natural groups. 
 Supplementary Figure 13  shows the complete propeller  plots broken down by design method. 

 Oligos with a replicate log  2  FC standard error greater  than 1 in any cell type were omitted from 
 the plots. 

 Motif enrichment analysis 
 We submitted our entire library (including controls) to STREME  90,91  for motif enrichment analysis 
 with the default settings:  minimum width  = 8,  maximum  width  = 15,  p-value threshold  = 0.05, 
 and shuffled input sequences as control sequences. Then, the 82 enriched motifs 
 (  Supplementary Table 8  ) were submitted to TOMTOM  90,92  to find matches to known motifs in 
 JASPAR CORE (2022)  66  and HOCOMOCO Human (v11 FULL)  67  .  The match with lowest 
 E-value was collected as the top match. Matches with an  E-value  ≥ 0.1 were discarded. We 
 used RSAT tools  93  to convert the MEME output file  into JASPAR format for processing and 
 parsing with Biopython  86  . We observed that the enrichment  of these 82 motifs in a given 
 individual design group yielded similar local results to the enrichment of motifs obtained from 
 such a group submitted alone (each group has at least 12,000 sequences), suggesting that 
 there was minimal or no loss of information in the global STREME analysis from the point of 
 view of its algorithm. We submitted the list of enriched motifs and our sequence library to 
 FIMO  94  to find all the significant motif instances. 

 Motif co-occurrence 
 We say a pair of motifs co-occur whenever a sequence has at least one significant instance 
 (obtained through FIMO) of each motif. By co-occurrence percentage of a motif pair we mean 
 the percentage of sequences in a given group in which the motif pair co-occurs. Adjusted 
 co-occurrence percentage is defined as the co-occurrence percentage of a motif pair times a 
 motif-pair divergence coefficient (0 if the motifs are identical, 1 if the motifs are as un-correlated 
 as possible), where the motif-pair divergence coefficient is defined 1 minus the Pearson 
 correlation coefficient between the two motif logos (Information Content Matrices) in their 
 optimal alignment. Selection of top co-occurrences to display in figures was based on capturing 
 the top 25 adjusted co-occurrence percentages for each cell type. When finding motif pairs with 
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 100-fold higher utilization in synthetics compared to either DHS or Malinois-natural, and 23 pairs 
 unique to synthetic sequences entirely, we require that the motif pairs co-occur in a minimum of 
 200 sequences. 

 Non-negative Matrix Factorization 
 We used non-negative matrix factorization (NMF) to model semantic relationships between 
 motifs in our sequence library (scikit-learn version 1.2.2, initialized with NNDSVD, Frobenius 
 loss). First we counted enriched motif matches in each sequence with FIMO  94  to generate X \in 
 N_0^{n x f} where rows represent sequences in the library. The sample matrix X can then be 
 decomposed into the coefficients and features matrices W \in R^{n x k} and H^{k x f), 
 respectively. We tested k \in [8,28] using bi-cross-validation  95  and identified an “elbow” in the 
 reconstruction error at k=14. For comparative analysis, we normalize the coefficient matrix to 
 sum to 1. 

 To improve interpretability of the topic modeling, we generated an additional 4000 sequences for 
 each cell type which prioritized off-target expression. To produce these sequences, we clipped 
 predictions outside the [-2,3] range and applied an alternate fitness function. We optimized 
 sequences to minimize the squared distance from a predicted activity of 3 in the on-target cell 
 and an activity of -2 in each off-target cell. These 12000 additional sequences were included in 
 the final NMF decomposition. 

 CODA MPRA 
 MPRA library construction  :  CODA MPRA library was constructed  following protocols 
 previously described in Tewhey et al. 2016  14  . In brief,  oligos were synthesized (Twist 
 Bioscience) as 230 bp sequences containing 200 bp of genomic sequences and 15 bp of 
 adaptor sequence on either end. The oligo library was PCR amplified with primers MPRA_v3_F 
 and MPRA_v3_20I_R to add unique 20 bp barcodes along with arms for Gibson assembly into 
 a backbone vector. The oligonucleotide library was assembled into pMPRAv3:∆luc:∆xbaI 
 (Addgene plasmid #109035) and expanded by electroporation into  E.coli  . Seven of the ten 
 expanded cultures were purified using  Qiagen Plasmid Plus Midi Kit  to reach 200-300 
 colony-forming units (barcodes) per oligonucleotide.  T  he expanded plasmid library was 
 sequenced on an Illumina NovaSeq using 2x150 bp chemistry to acquire oligo-barcode pairings. 
 The library underwent AsiSI restriction digestion, and GFP with a minimal promoter amplified 
 from pMPRAv3:minP-GFP (Addgene plasmid #109036) using primers 
 MPRA_v3_GFP_Fusion_F and MPRA_v3_GFP_Fusion_R was inserted by Gibson assembly 
 resulting in the 200 bp oligo sequence positioned directly upstream of the promoter and the 20 
 bp barcode falling in the 3’ UTR of GFP. Finally, the library was expanded within  E.coli  and 
 purified using the  Qiagen Plasmid Plus Giga Kit  . 

 MPRA library transfection into cells  : Two hundred  million cells were transfected using the 
 Neon Transfection System 100ul Kit with 5ug or 10ug of the MPRA library per ten million cells. 
 Cells were harvested 24 hours post transfection, rinsed with PBS and collected by 
 centrifugation. After adding RLT buffer (Rneasy Maxi kit),  dithiothreitol  and homogenization, cell 
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 pellets were frozen at -80°C until further processing. For each cell type, 3 biological replicates 
 performed on different days. 

 RNA isolation and MPRA RNA library generation  : RNA  was extracted from frozen cell 
 homogenates using the Qiagen RNeasy Maxi kit. Following DNase treatment, a mixture of 3 
 GFP-specific biotinylated primers were used to capture GFP transcripts using Sera Mag Beads 
 (Fisher Scientific). After a second round of DNase treatment, cDNA was synthesized using 
 SuperScript III (Life Technologies)  and GFP mRNA abundance  was quantified by qPCR to 
 determine the cycle at which linear amplification begins for each replicate  . Replicates were 
 diluted to approximately the same concentration based on the qPCR results, and first round 
 PCR (8 or 9 cycles) with primers MPRA_Illumina_GFP_F_v2 and Ilmn_P5_1stPCR_v2 were 
 used to amplify barcodes associated with GFP mRNA sequences for each replicate. A second 
 round of PCR (6 cycles) was used to add Illumina sequencing adaptors to the replicates. The 
 resulting Illumina indexed MPRA barcode libraries were sequenced on an Illumina NovaSeq 
 using 1x20bp chemistry. 

 CRE prioritization for  In vivo  validation 
 Enformer analysis of epigenetic signatures:  To simulate  epigenetic signatures  in silico  we 
 collected the nucleotide sequence from chr11:3,101,137-3,493,091 of the mouse reference 
 genome (mm10). The expected insertion sequence using an H11 targeting vector with a 
 lacZ:P2A:GFP open reading frame was added. As a control, the expected CRE insertion site 
 was simulated as a 200 nucleotide sequence of N. We simulated all possible CRE insertions 
 corresponding to our cell type-specific MPRA by replacing the oligo-N sequence with 200-mers 
 from our library. We inferred epigenetic signatures for all of these sequences using Enformer by 
 modifying the notebook provided by this link 
 (  https://colab.research.google.com/github/deepmind/deepmind_research/blob/master/enformer/ 
 enformer-usage.ipynb  ). To estimate CRE induced transcriptional  activation in various tissues we 
 collected 128 nucleotide resolution epigenetic signatures overlapping the expected insertion (35 
 bins). To calculate an aggregate effect for each tissue, we calculated the max signal for each 
 feature over the insertion, followed by a feature-specific Yeo-Johnson power transformation. 
 Normalized features were then selected based on tissue correspondence (  Supplementary 
 table 8  ) and averaged to estimate CRE activity in  10 different tissues. 

 Manual sequence prioritization:  Sequences were prioritized  based on review of empirical 
 MPRA measurements, contribution scores, motif matches, sequence content, and predicted 
 epigenetic signatures. We looked for sequences that displayed a high separation between the 
 MPRA measures of the target and the off-target cell types. We also looked to capture variations 
 of combinations of motif matches, and we used the contribution scores to visually examine the 
 motif matches and other potentially important sequence content. Finally, we selected sequences 
 with at least moderate tissue specificity in predicted epigenetic signatures. 

 Transgenics 
 Transient zebrafish synthetic enhancer assay  . To build  the synthetic enhancer eGFP 
 reporter, double-stranded oligonucleotides corresponding to synthetic enhancers (200 bp) were 
 synthesized by IDT (GeneBlock). Synthetic enhancers were amplified by PCR with primers that 
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 included homology to the plasmid vector E1b-GFP-Tol2 (Addgene plasmid #37845)  81  and were 
 cloned upstream of the minimal promoter (E1b) to generate the synthetic enhancer eGFP 
 plasmid reporter (pTol2-synthetic enhancer-E1b-eGFP-Tol2) using HiFi DNA Assembly following 
 manufacturer’s instructions (New England Biolabs). Reporter plasmid sequences were verified 
 by Sanger sequencing. To transiently express the synthetic enhancer reporter in zebrafish, 
 plasmids were co-injected with tol2 transposase mRNA into 1-cell stage zebrafish embryos 
 following established methods  96  . Injected embryos  were imaged at the indicated days (2 or 4 
 days-post-fertilization) either by dissecting (Olympus) or confocal fluorescence (Leica SP6) 
 microscope. All zebrafish procedures were approved by the Yale University Institutional Animal 
 Care and Use Committee (IACUC) (Protocol Number 2022-20274). 

 Mouse transgenic reporter assay.  An H11 targeting  vector with an lacZ:P2A:GFP open 
 reading frame was linearized using PCR containing 2 ng of template, 1 μl of KOD Xtreme Hot 
 Start DNA Polymerase (Sigma 71975), 25 μl of Xtreme buffer, and 0.5 μM forward and reverse 
 primers (H11_bxb_lacZ:GFP_lin_F, pGL_minP_GFP_R;  Supplementary  Table 9  ) cycled with 
 the following conditions: 94°C for 2 min, 20 cycles of 98°C for 10 s, 56°C for 30 s, and 68°C for 
 13 min, and then 68°C for 5 min. Amplified fragments were treated with 0.5 uL of DpnI (NEB, 
 R0176S) for 30 min at 37°C, purified using 1× volume of AMPure XP (Beckman Coulter, 
 A63881) and eluted with water. Double-stranded oligonucleotides corresponding to synthetic 
 enhancers with gibson arms were synthesized by IDT (GeneBlock) and assembled into 
 targeting vector using 5 μl of NEBuilder HiFi DNA Assembly Master Mix (NEB, E2621S), 36 ng 
 of linearized vector, and 10 ng of the synthesized fragment in 20 μl total volume for 45 min at 
 50°C. Transgenic mice were created following the enSERT protocol  82  . A mixture of 20 ng/μl 
 Cas9 protein (IDT 1074181), 50 ng/μl single guide RNA (sgRNA_H11lacZ;  Supplementary 
 Table 9  ), 25 ng/μl donor plasmid, 10 mM Tris, pH 7.5,  and 0.1 mM EDTA was injected into 
 pronuclear of FBV zygotes. The whole embryo at E14.5 or isolated brain at 5 weeks postnatal 
 were fixed at 4°C for 1 hour in PBS supplemented with 2% paraformaldehyde, 0.2% 
 glutaraldehyde, and 0.2% IGEPAL CA-630. After washing with PBS, the embryos were stained 
 at 37°C overnight in a solution in PBS supplemented with 0.5 mg/ml X-gal (Sigma, B4252), 5 
 mM potassium hexacyanoferrate(II) trihydrate, 5 mM potassium hexacyanoferrate(III), 2 mM 
 MgCl2, and 0.2% IGEPAL CA-630. The images were taken using Leica M165 for embryos or 
 Leica M125 for brains. All mouse procedures were performed in accordance with the National 
 Institutes of Health Guide for the Care and Use of Laboratory Animals, and were approved by 
 the Institutional Animal Care and Use Committees of The Jackson Laboratory (protocol number 
 18038). 

 Data availability 
 Reference data sets used in this study are linked and annotated in  Supplementary Table 1  . 
 Processed MPRA data used to train Malinois is available in  Supplementary Table 2  . Processed 
 MPRA data and Malinois predictions for the cell type-specific CRE library designed for this study 
 are available in  Supplementary Table 10  . 

 Code availability 
 CODA is available at  https://github.com/sjgosai/boda2  . 
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