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Abstract
To bring biomarkers closer to clinical application, they should be generalizable, reliable, and maintain
performance within the constraints of routine clinical conditions. The functional striatal abnormalities
(FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, trained to discriminate
diagnosis, with post-hoc analyses indicating prognostic properties. Here, we attempt to replicate its
diagnostic capabilities measured by the area under the curve (AUC) in receiver operator characteristic
curves discriminating individuals with psychosis (n=101) from healthy controls (n=51) in the Human
Connectome Project for Early Psychosis. We also measured the test-retest (run 1 vs 2) and phase
encoding direction (i.e., AP vs PA) reliability with intraclass correlation coe�cients (ICC). Additionally, we
measured effects of scan length on classi�cation accuracy (i.e., AUCs) and reliability (i.e., ICCs). Finally,
we tested the prognostic capability of the FSA by the correlation between baseline scores and symptom
improvement over 12 weeks of antipsychotic treatment in a separate cohort (n=97). Similar analyses
were conducted for the Yeo networks intrinsic connectivity as a reference. The FSA had good/excellent
diagnostic discrimination (AUC=75.4%, 95%CI=67.0%-83.3%; in non-affective psychosis AUC=80.5%,
95%CI=72.1-88.0%, and in affective psychosis AUC=58.7%, 95%CI=44.2-72.0%). Test-retest reliability
ranged between ICC=0.48 (95%CI=0.35-0.59) and ICC=0.22 (95%CI=0.06-0.36), which was comparable to
that of networks intrinsic connectivity. Phase encoding direction reliability for the FSA was ICC=0.51
(95%CI=0.42-0.59), generally lower than for networks intrinsic connectivity. By increasing scan length
from 2 to 10 minutes, diagnostic classi�cation of the FSA increased from AUC=71.7%
(95%CI=63.1%-80.3%) to 75.4% (95%CI=67.0%-83.3%) and phase encoding direction reliability from
ICC=0.29 (95%CI=0.14-0.43) to ICC=0.51 (95%CI=0.42-0.59). FSA scores did not correlate with symptom
improvement. These results reassure that the FSA is a generalizable diagnostic – but not prognostic –
biomarker. Given the replicable results of the FSA as a diagnostic biomarker trained on case-control
datasets, next the development of prognostic biomarkers should be on treatment-response data.

Introduction
Personalized medicine aims to use biomarkers to match individuals with their most appropriate
interventions1. This is particularly relevant in psychiatry, since most often treatment choice is determined
by trial and error, which is associated with treatment disengagement and greater chance of suboptimal
outcomes2. For personalized medicine to deliver on its promise of improving clinical outcomes, biomarker
development should ful�ll several criteria. Akin to the phases of drug discovery, these consecutive steps
are: identifying a biological measure �t for the clinical paradigm of interest; demonstrating that it scales
with the clinical measure of interest independent of potential confounding (internal validity); showing out
of sample performance (external validity); and �nally proving clinical utility3.

In a recent review covering the state of the �eld in biomarker development4, we identi�ed the Functional
Striatal Abnormalities (FSA)5 index among the most developed in schizophrenia. FSA is a data-driven
measure informed by previous evidence on the role of striatal function in schizophrenia. For its
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development, investigators used functional magnetic resonance images (fMRI) acquired from seven
independent scanners (n = 1,100), which were used to derive intra- and extra-striatal functional
connectivity and striatal fractional amplitude of low-frequency �uctuations (fALFF) images. Features
from these three sources were selected using a support vector machine (SVM) classi�er trained to
discriminate between patients with non-affective psychosis (n=560) and controls (n=540), and the FSA
score value was de�ned as the distance in the SVM feature space to the separating hyperplane. Polarity
was de�ned so that positive values were predictive for healthy controls. The authors found accuracy of
80.4%, sensitivity of 79.3%, and speci�city of 81.5% based on leave-one-site-out cross validation. Despite
not having been developed as a predictive biomarker, post-hoc analyses showed that in two separate
cohorts for which there were data on treatment response, baseline FSA score was signi�cantly correlated
with symptom reduction (r=0.62, 0.42; p<0.01 and p<0.01 respectively), showing also promise as a
biomarker of treatment response. 

While these data are encouraging, the ability to move biomarkers towards clinical practice is contingent
on independent con�rmations of external validity3. The FSA’s performance was tested by leave-one-site-
out cross-validation5, but validation of these results by independent groups under generalizable
conditions (i.e., different scanners, imaging protocols, or participant characteristics) is still necessary6.
Furthermore, in addition to testing the accuracy of predictions, several additional requirements for an
effective biomarker include characterization of reliability; examination of potential confounding effects
by clinical and demographic variables; testing sensitivity to effects of imaging acquisition and analysis
parameters. Biomarker stability in the face of these potential confounds is critical to plan subsequent
experiments geared towards demonstrating clinical utility.

Here, we aim to advance this line of research on biomarker development in schizophrenia by testing
whether the classi�cation performance of the FSA replicates in the Human Connectome Project for Early
Psychosis7, a new publicly available dataset with different demographic characteristics, acquisition
parameters and scanner type to the one in which the FSA was developed. Furthermore, we aim to study
parameters that affect the validity and reliability of this biomarker. Speci�cally, we measured the effects
of relevant confounding on FSA values, calculated its test-retest (i.e., run 1 vs run 2) and phase encoding
direction reliability (i.e., FSA generated from PA scan vs from AP scan). In addition, we repeated these
analyses for intrinsic connectivity for the Yeo networks, which have been well characterized 8. Also, we
concatenated scan runs and resliced them to obtain scans of increasing lengths from which we obtained
FSA and network intrinsic connectivity to study the effects of increasing scan duration on accuracy of
classi�cation and reliability. Finally, since the Human Connectome Project for Early Psychosis7 does not
have data on treatment response, to replicate the post-hoc �nding of the correlation between treatment
response and baseline FSA scores, we tested this on a separate cohort of individuals with �rst episode
psychosis who were treated with 12 weeks of antipsychotics (Figure 1). 

Methods
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Participant characteristics:

            We included data from the Human Connectome Project for Early Psychosis as in its 1.1 public
release of August 20219. Participants were patients within 5 years of having been diagnosed with either
non-affective (schizophrenia, schizoaffective, schizophreniform, psychosis not otherwise speci�ed) or
affective psychosis (major depressive disorder with psychotic features and bipolar disorder with
psychotic features) (total n=101, n=78 non-affective and n=23 affective psychosis), and healthy controls
(n=51). All participants were administered the SCID-510 diagnostic interview, which generated rule in and
rule out diagnoses. Main entry criteria included age 16-35 and con�rmation of primary psychosis for
patients and ruling out history of primary psychosis or active affective, substance use, or anxiety disorder
for controls. Patients were engaged in treatment with antipsychotics (mean dose in chlorpromazine
equivalents = 104.3 mg) and overall, were mildly symptomatic (mean total PANSS = 46.29, SD=16.58).
Data were acquired at four sites: Indiana University, Brigham and Women’s Hospital, McLean Hospital,
and Massachusetts General Hospital. All procedures were approved by the Partners Healthcare Human
Research Committee/IRB and comply with the regulations set forth by the Declaration of Helsinki.

In addition, for the prediction of treatment response we used data from the Zucker Hillside Hospital
cohort (ZHH cohort) 97 patients at the time of their �rst treatment for psychosis (non-affective n=69,
affective psychosis n=28) with minimal exposure to antipsychotics (43% treatment naïve, median
exposure = 5 days). All participants were between 18 and 35 at the time of enrollment. Diagnostic
eligibility was con�rmed by the Structured Clinical Interview for DSM-5 (SCID-5)10. Patients underwent a
standardized treatment protocol with risperidone or aripiprazole for 12 weeks, and regular clinical ratings.
Patients underwent assessment by the Brief Psychopathology Rating Scale (BPRS-A)11 at baseline and
weeks 2,4,6,8 and 12, and change in symptom severity between last assessment and baseline was
calculated. In addition, we calculated treatment response, de�ned as two consecutive ratings of much or
very much improved on the CGI, as well as a rating of ≤3 on four psychosis-related items of the BPRS-
A11, resulting in n=52 (53.61%) responders (being the rest either non-responders or early exits). All
participants were scanned at treatment onset at the North Shore University Hospital in Manhasset, NY,
after providing written, informed consent under a protocol approved by the Institutional Review Board
(IRB) of the Feinstein Institutes for Medical Research at Northwell Health. Participant characteristics are
described in Table S1.  

fMRI acquisition:

Resting state fMRI (rs-fMRI) scans were collected on 3T Siemens Prisma scanners using a multi-band
accelerated echo-planar imaging (EPI) sequence described in detail in the Human Connectome Project12.
For each study participant, a T1-weighted scan (TR = 2400 msec, TE = 2.22 msec, voxel size = 0.8 mm3,
scan length = 6 min, 38 s) and two rs-fMRI sessions (TR=800ms, TE=37ms) were acquired at each
timepoint. During each fMRI session, two runs of 5-min 47-s scans (i.e. 420 volumes) were collected in
opposite phase encoding directions (one with PA and the other with AP) Rs-fMRI scans were collected
with eyes open. To ensure signal stability, the �rst 13 volumes were discarded in data analysis. Each rs-
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fMRI scan consisted of 72 contiguous axial/oblique slices in the AC-PC orientation (TR = 720 ms, TE =
33.1 ms, matrix = 104 × 90, FOV = 208 mm, voxel = 2x2x2mm, multi-band acceleration factor = 8). The
only major differences in acquisition for the scans from the ZHH cohort were that the rsMRI runs were of
7-min 17-s rsMRI runs, one each with AP and PA phase encoding directions (total 2 runs at each
timepoint, 594 volumes each), and that images were acquired with eyes closed, with veri�cation of
wakefulness.

Calculation of FSA scores and intrinsic connectivity of canonical networks:

Image preprocessing:

Scans from both datasets were preprocessed using HCP based pipelines13. Brie�y, structural
preprocessing included gradient distortion correction, brain extraction, cross-modal registration of T2
weighted (T2w) images to T1w, bias �eld correction based on square root (T1w*T2w) and non-linear
registration to MNI space. The functional preprocessing methods used were gradient distortion correction,
motion correction, and EPI image distortion correction based on spin-echo EPI �eld maps (FSL toolbox
“topup”), and spatial registration to T1w image and MNI space13. An initial high pass �lter of 2000 Hz
was applied to remove slow drift trends before nuisance regression was performed using FMRIB's ICA-
based X-noisei�er (FIX)14–16. Functional images then underwent 5-mm full-width-at-half-maximum
spatial smoothing. Finally, we ran global signal regression (GSR), since this step was taken in the original
FSA publication5, and also additional literature has suggested that GSR may facilitate behavioral
predictions from rs-fMRI17. However, both GSR and no-GSR results are presented. To control for head
motion, frame-wise displacement (FD) was calculated for each scan time point18. We applied a stringent
motion threshold so that individuals for whom >30% of volumes had FD>0.3 were excluded from the
analyses. This led to the exclusion of 13 and 8 individuals in the HCP for Early Psychosis dataset and
ZHH cohort respectively.

Calculation of FSA and intrinsic connectivity of canonical networks:

            For the FSA calculation, we followed the procedures described in the original study5, using publicly
available scripts for the calculation of the FSA19. The input to calculate the FSA were the preprocessed
resting state fMRI images as described above, resliced to 3mm isotropic voxels, and fALFF images20 that
we calculated separately using the RestPlus toolbox in Matlab21. For this step, we used preprocessed
images as described above. Fourier transformation was used at every voxel to calculate the power of
BOLD signal in the low frequency range of 0.01-0.08 Hz, and then divided by the entire frequency range.
Both resting state and fALFF images were �nally used to calculate the FSA scores, which re�ect the
distance to the separating hyperplane between cases and controls based on the model developed in the
original publication5. For each scan, we generated FSA values for each run (i.e., 1 and 2), phase encoding
direction (PA and AP) and GSR (with and without). 
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            In addition to the FSA, we measured the intrinsic connectivity of canonical networks for each
subject using custom python scripts based on nilearn22. Metrics from these networks served as a control
for our analyses and also to put the FSA in perspective from well validated connectivity measures8. For
this step, we generated voxel-wise connectivity matrices for each scan and fetched the ‘Dictionaries of
Functional Modes’ (DiFuMo) atlas23 subsequently deriving functional connectivity for the Yeo networks8:
cognitive control, default mode, dorsal attention, salience, somatosensory and visual. We extracted and
averaged the correlations between nodes within each network as the intrinsic connectivity value for each
subject. 

Generation of values based on scans of increasing length:

            We used concatenation and slicing to generate scans of increasing length from which to calculate
FSA and network intrinsic connectivity values. For this step, we normalized, mean centered, and
concatenated the two consecutive runs in each phase encoding direction for each individual’s rs-fMRI
scan (i.e., run 1 AP with run 2 AP etc…). Subsequently, we sliced each ~10’ concatenated scan in 10
increments (i.e., �rst 82 volumes, �rst 164 volumes etc, up to the entire 820 volumes). Finally, we
preprocessed each increment and analyzed it to obtain FSA and intrinsic network connectivity values as
described above. 

Analyses:

Distribution and potential confounding

We compared the distribution of the FSA and the network intrinsic connectivity by participant type
(patients vs controls) and calculated the corresponding effect sizes of the difference in values between
patients and controls. Then, we ran a linear regression including as dependent variable the FSA and
independent variables age, sex, race, medication dose, and illness severity score to measure whether
these variables may behave as confounding. In addition, we examined whether these variables affected
differently patients or controls by running group interactions. 

Classi�cation performance and correlation with symptom improvement:

            We calculated receiver operating characteristic (ROC) curves to estimate the accuracy of
classi�cation of diagnosis. Analyses were repeated separately for patient sub-groups that only included
affective and non-affective psychoses. Since the FSA was developed on patients with non-affective
psychosis, we hypothesized that it would perform better in this population. We ran separate ROCs models
for FSA derived from PA GSR, PA NoGSR, AP GSR and AP NoGSR scans. Classi�cation accuracy was
measured by the area under the curve (AUC) of the ROC curve, and 95% con�dence intervals (95%CIs)
were generated using 2000 bootstraps. ROCs were also used to identify the score with the best
discriminating ability (i.e., value with greatest true positive and lowest false positive fraction), which was
then used to calculate the sensitivity and speci�city for that discriminating threshold. As a reference, it
has been suggested that AUC >80% is necessary for clinical utility of a biomarker24 although lower
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accuracy may still be useful depending on consequences of wrong classi�cation and alternatives to the
biomarker4. 

            To replicate the post-hoc �nding reported in the original publication, or a correlation between
baseline FSA score and symptom improvement over an antipsychotic trial, we ran a correlation between
FSA scores derived for each phase encoding direction and GSR condition, and symptom improvement
de�ned as difference in total BPRS-A score between the baseline assessment and the last available
measure. 

Test-retest and phase encoding direction reliability:

            We compared the FSA and intrinsic network connectivity from each run (i.e., test-retest reliability)
and PA vs AP scans (i.e., phase encoding direction reliability) by using the intraclass correlation
coe�cient (ICC), an established measure of reliability25 that re�ects the ratio of within-individual variance
over total variance.  Speci�cally, we used a two-way mixed, single score intraclass correlation coe�cient
[ICC(3,1)] generating also 95% CIs, which is recommended to test the reliability of the same measure by
one rater26. We calculated reliabilities for the entire sample, as well as separately for patients and
controls. As a rule of thumb ICC is deemed poor <0.4, fair 0.4–0.59, good 0.6–0.74, and excellent >0.7527.
The reason to focus on phase encoding direction reliability, in addition to test-retest, is based on recent
�ndings from our group about general differences in reliability in the connectome by phase encoding
direction28.

Effects of scan length on classi�cation performance and reliability:

            For this particular part of the analyses, we re-calculated FSA and network intrinsic connectivity
values from the scans of increasing lengths described above. For values generated from scans of each
duration, we calculated AUCs with corresponding 95%CIs, as well ICC with 95%CIs for phase encoding
direction reliability. 

            Analyses were conducted with custom scripts in R and python available
on https://github.com/lorente01 

Results
Distribution and potential confounding:

            FSA values were signi�cantly lower in patients than in controls (p<0.0001) for both phase
encoding directions and GSR analyses, in the same direction as in the original publication5, with effect
sizes that ranged between cohen’s d=0.79 (95%CI=0.44-1.15) for PA No GSR to  d=0.91 (95%CI=0.55-1.26)
(Figure 2; Table S2). Differences between patients and controls were for the most part not signi�cant for
intrinsic network connectivity, and when signi�cant of small effect size. Out of all the networks and scans
(i.e., PA vs AP and GSR vs No GSR, only somatosensory network PA No GSR (d=0.41 (95%CI=0.07-0.75)

https://github.com/lorente01
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and default mode network AP No GSR (d=0.35 (95%CI=0.01-0.68) were different between patients and
controls. As expected, network intrinsic connectivity values were lower in scans that were subject to GSR.
Age, sex, race, medication dose, and illness severity score did not have any signi�cant impact on FSA
values (Table S3). 

Classi�cation performance and correlation with symptom improvement:

            For classi�cation of diagnosis (i.e., psychosis vs healthy control), the classi�cation performance
of the FSA ranged between AUC=75.7%, (95%CI=67.3%-84.1%) for PA scans with GSR with sensitivity of
82% and speci�city of 65%, and AUC=73.6%, (95%CI=65.0%-82.2%) for AP scans without GSR with
sensitivity of 76% and speci�city of 66%. When the discrimination was between non-affective psychosis
and healthy controls, the classi�cation ranged between AUC=80.5% (95%CI=72.1-88.0%) for PA scans
with GSR with speci�city of 82% and sensitivity of 73% and AUC=74.5% (95%CI=65.2-82.1%) for AP scans
without GSR with speci�city of 65% and speci�city of 77%, whereas when the discrimination was
between affective psychosis and healthy controls the classi�cation ranged between AUC=70.2%
(95%CI=57.4-81.9%) for AP scans without GSR with speci�city of 43% and speci�city of 96% and
AUC=58.7% (95%CI=44.2-72.0%) for PA scans with GSR with sensitivity of 82% and speci�city of 39%
(Figure 3, panels A-C; Table S4).

When we tested correlation between baseline FSA scores and % change in total symptom severity in the
ZHH cohort, we found that the regression coe�cients ranged between r=0.038 p=0.75 for AP scans
without GSR and r=0.089 p=0.45 for PA scans with GSR (Figure 3, panel D). When using a dichotomous
de�nition of treatment response, classi�cation performance ranged between AUC=55.7% (95%CI=40.4-
70.8%) for PA scans with GSR with sensitivity of 35% and speci�city of 88%, and AUC=49.3%
(95%CI=34.4-65.9%) for AP scans with GSR with sensitivity of 72% and speci�city of 41%. When the
classi�cation was between non-affective psychosis and healthy controls, the classi�cation performance
ranged between AUC=55.7% (95%CI=39.2-51.5%) for PA scans with GSR with sensitivity of 31% and
speci�city of 93%, and AUC=47.9% (95%CI=33.2-63.7%) for PA scans without GSR with sensitivity of 31%
and speci�city of 93%. There were not enough individuals with affective psychosis with enough data on
treatment response to run separate classi�cation analyses (Table S5; Figure S1).  

Test-retest and phase encoding direction reliability:

Test-retest reliability between two runs within the same scan session for the FSA ranged between
ICC=0.48 (95%CI=0.35-0.6) for AP scans without GSR, and ICC=0.22 (95%CI=0.06-0.37) for PA scans
without GSR. Test-retest reliability for network intrinsic connectivity ranged between ICC=0.5 (95%CI=0.37-
0.61) for cognitive control network in AP scans with GSR and ICC=0.07 (95%CI=-0.09-0.22) in salience
network with PA No GSR scans (Figure 4, panel A; Table S6).

Phase encoding direction reliability for the FSA was ICC=0.51 (95%CI=0.42-0.59), while it ranged
between ICC=0.86 (95%CI=0.82-0.88) for the dorsal attention network and ICC=0.75 (95%CI=0.70-0.80)
for the somatosensory network (Figure 4, panel B; Table S7).
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Effects of scan length on classi�cation performance and reliability:

Using a slice of approximately 2’ (164 volumes) out of the concatenated runs (total 820 volumes) the
diagnostic classi�cation of the FSA ranged between AUC=67.2% (95%CI=57.6-76.7%) for AP scans
without GSR and AUC=71.7% (95%CI=63.1-80.3%) for PA scans with GSR. When the entire concatenated
scan was used, the diagnostic classi�cation ranged between AUC=73.6% (95%CI=65.0-82.2%) for AP
scans without GSR and AUC=75.7% (95%CI=67.3-84.1%) for PA scans with GSR. None of the
classi�cations made by network intrinsic connectivity were signi�cant, regardless of the scan time (Figure
5).

When the same slice scheme was used to test phase encoding direction reliability, we found signi�cant
increments in reliability for the FSA, starting from ICC=0.29 (95%CI=0.14-0.43) in slices of approximately
2’ duration to ICC=0.56 (95%CI=0.45-0.66) when using the entire concatenated scan. Similar increments
were observed across network intrinsic connectivity values (Figure 6).

Discussion
Using a public independent dataset, we found that the original �ndings on the performance of the FSA as
a diagnostic biomarker for schizophrenia5 are generalizable out of sample. However, the post-hoc �nding
of the association between treatment response and baseline FSA scores in the original report5 did not
replicate in a separate treatment response dataset, suggesting that while as a diagnostic biomarker of
schizophrenia the FSA has demonstrated external validity, it may be limited as a prognostic biomarker in
its current form. Furthermore, this biomarker showed test-retest reliability comparable -and in some cases
superior – to that of the Yeo networks, which have been previously well-validated8. Like recent work by
our group 28, we identi�ed differences in reliability by phase encoding direction, which seemed to be more
pronounced in the FSA than in network intrinsic connectivity, although this did not have any signi�cant
impact in the accuracy of predictions. Similarly, there seemed to be greater gains in reliability than in
accuracy of predictions by increasing the scan length. 

            Despite differences in participant demographic and clinical characteristics, scanner type,
acquisition parameters, and preprocessing approach – all of which may reduce the reliability of fMRI
scans and potentially the reproducibility of �ndings29–31 – the results in the Human Connectome Project
are quite consistent with those of the Chinese datasets in which it was developed and initially tested. In
addition to a classi�cation accuracy of 75.7% (vs 80.1% in the original publication), we did also observe
consistently higher FSA values in controls than in patients, improvement in classi�cation accuracy when
only non-affective psychoses were included, and better results with global signal regression, all of which
were reported in the original publication5. Furthermore, we did not �nd signi�cant effects of demographic,
clinical, or acquisition variables on FSA values, highlighting the internal validity of this biomarker. The
replication of these �ndings attests to the value of the approach used to develop the FSA: advanced
multivariable classi�cation methods on large datasets with leave-one-site-out cross-validation. Similar
methods applying data-hungry models with contingencies to mitigate over�tting have been successfully
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applied to other areas of medicine, such as liquid biopsy for cancer32, radiomics in medical imaging33, or
ophthalmology34. While diagnostic biomarkers have limited applicability in psychiatric conditions – the
psychiatric interview is still necessary to assess the needs of each individual in addition to making a
diagnosis – these results bring closer the application of neuroimaging biomarkers in psychiatric
disorders as a test case.

            An application more likely to be adopted in the clinic is that of prognostic biomarker. Predicting
that an individual will not respond to an antipsychotic could avoid unsatisfactory experiences with
ineffective treatments, a known risk factor of non-adherence35 and ultimately relapse36. Furthermore, it
could reduce the time while someone is acutely psychotic – and potentially a danger to self or others –
by allowing the expedited use of clozapine, the only drug approved for treatment resistant
schizophrenia37. Neuroimaging biomarkers could be very helpful for this purpose since clinical
information alone is rather limited to predict treatment response38. However, it may be necessary to
develop these biomarkers using datasets from treatment response, instead of datasets of cases vs
controls. It is not entirely surprising that despite robust performance for diagnosis classi�cation, the FSA
– for which features were selected using case-control datasets – was limited as a prognostic biomarker.
Although di�cult to compare, meta-analyses on functional connectivity in schizophrenia vs controls39,
and in treatment responders vs non-responders40 do not necessarily overlap in their �ndings, aligning
with the idea that the pathophysiology of the schizophrenia syndrome may go beyond the mechanisms
engaged by antipsychotic drugs. In fact, in about one third of individuals with schizophrenia, positive
symptoms fail to respond to antipsychotic drugs41, and furthermore negative symptoms or cognitive
de�cits, core aspects of the syndrome, are not engaged by antipsychotic medication42. Thus, the
mechanisms involved in treatment response likely account for only a proportion of the connectivity
abnormalities observed in schizophrenia that were used for feature selection of the FSA. A similar
example is the application of polygenic risk scores (PRS) in schizophrenia. PRSs can classify individuals
with schizophrenia with AUCs ranging between 60 and 66%43, but in general the proportion of the
variance on treatment response explained by schizophrenia PRSs is lower44. Overall, this line of research
suggests that applying approaches like the ones used to develop the FSA on large datasets of treatment
response could be helpful to optimize prognostic biomarkers in schizophrenia and bring them closer to
clinical application. 

            We observed effects of the phase encoding direction of the scan on reliability. Compared with
network intrinsic network connectivity, the reliability of FSA values generated from PA vs AP scans was
signi�cantly lower, suggesting that FSA values are more vulnerable to phase encoding direction effects
than other connectivity measures. AP scans showed better test-retest reliability; however, the predictions
of AP and PA scans were not signi�cantly different, suggesting that phase encoding direction may be
more relevant for reliability than for accuracy of predictions. Similarly, we observed signi�cant
improvements in phase encoding direction reliability by increasing the acquisition length, however this
had little effect on predictions, which were already good with scans of about 2 minutes. This apparent
decoupling between accuracy of predictions and reliability has indeed been well documented 45–48, and
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indeed re�ects the fact that accuracy and reliability are related but independent constructs. For instance,
a given measure may get better reliability by capitalizing on reliable but uninformative features in the
connectome (i.e., consistent noise), whereas other measures may capitalize on various states that while
different, are all related to the phenotype of interest. Thus, it has been argued that since these
discrepancies may occur, the focus in biomarker development should be on accuracy of predictions
rather than on reliability48. This being said, to our knowledge in the development of the FSA there was no
explicit management of the potential effects of phase encoding direction. These data indicate that in
future iterations of biomarker development at the very least it should be explicitly managed in the
analyses, and ideally at the stage of image acquisition. 

These data should be interpreted in the light of several limitations. First, the sample size in this replication
was relatively small (n=152) compared to the development sample size in the original study (n=1,100).
However, this sample size is comparable to the sample sizes for the cross-validation sets that were used
in the original analyses. Second, we did not test the speci�city of the replication by attempting to
measure the discrimination of diagnoses other than psychosis, although we observed that predictions
were signi�cantly better for discrimination between non-affective psychosis and healthy controls than
between affective psychosis and healthy controls. Third, treatment response was tested on a cohort
slightly different from the cohorts used to test treatment response in the original FSA study (multiepisode
patients treated with both clozapine and non-clozapine antipsychotics vs �rst episode patients treated
with non-clozapine antipsychotics). Fourth, test-retest reliability could only be tested for the individual
runs, but only reliability between scans of different phase encoding direction (i.e., PA vs AP) could be
tested used in the time analysis since we concatenated both runs to obtain longer scans to test the
effects of acquisition length. Fifth, despite concatenation of both runs, scans were relatively short and did
not reach a plateau in the time analysis, thus not allowing to conclude about the minimal scan duration
for best reliability and accuracy. 

In conclusion, using the framework for biomarker development of consecutive contingent phases – target
identi�cation, internal validity, external validity, and demonstration of clinical utility3 - this work
emphasizes the internal validity of the FSA given the limited effect of common confounding, such as
demographic or clinical characteristics. It also con�rms the external validity as a diagnostic biomarker by
replicating the original �ndings out of sample under rather different conditions. By and large, the test-
retest reliability of the FSA comparable to that of the intrinsic connectivity in the Yeo networks8, which
have been well studied. These �ndings demonstrate the value of multi-site research to develop large
datasets in which data hungry advanced statistical techniques can be applied, yielding robust results. To
move forward biomarker development in schizophrenia – from demonstrating external validity to clinical
utility – it is necessary to apply similar approaches to treatment response data, to generate robust
prognostic biomarkers that can predict treatment response.   
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Figure 1

Overall study in context

Footnote: A: Framework for the development of biomarkers, as in Abi-Dargham and Horga. Nat Med
2016. In a recent review (Abi-Dargham et al. World Psychiatry 2023), the FSA was highlighted as one of
the most advanced biomarkers in schizophrenia, at the stage of external validation. B: Summary of the
development and leave-one-site-out cross-validation of the FSA as a diagnostic biomarker, as in Li et al.
Nat Med 2020. C: The current work consists in calculating FSA scores using the same method as in the
original research to replicate the classi�cation of diagnosis and correlation with treatment response by
the FSA, to corroborate external validation.
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Figure 2

Distribution of FSA and network intrinsic connectivity values between patients and controls

Footnote: Distribution of FSA and intrinsic network connectivity values derived from scans in both phase
encoding directions (posterior to anterior and anterior to posterior) with and without global signal
regression by participant group (patients vs controls). Legend:AP: Anterior to posterior; FSA: Functional
Striatal Abnormality score; GSR: Global signal regression; NoGSR: No global signal regression; ns: non-
signi�cant; PA: Posterior to anterior; ****: p Value <0.0001
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Figure 3

Receiver operating characteristic curves for prediction of diagnosis by FSA score and prediction of
treatment response

Footnote: Classi�cation of diagnosis and treatment response by FSA scores (Panels A to C) and
correlation between baseline FSA scores. Each panel represents FSA scores derived from anterior to
posterior (AP) and posterior to anterior (PA) phase encoding direction scans, with and without global
signal regression. Diagonal line represents chance classi�cation. Panel A represents all the sample, panel
B represents the discrimination in diagnosis between non-affective psychosis and healthy controls, and
panel C represents the discrimination in diagnosis between affective psychosis and healthy controls.
Panel D represents % change in total symptom severity over a course of 12 weeks of antipsychotic
treatment in individuals with acute psychosis, also with FSA scores derived from anterior to posterior (AP)
and posterior to anterior (PA) phase encoding direction scans, with and without global signal regression.
Legend: AP: Anterior to posterior; FSA: Functional Striatal Abnormality score; GSR: Global signal
regression; NoGSR: No global signal regression; PA: Posterior to anterior.
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Figure 4

Test-retest and phase encoding direction reliability of the FSA and network intrinsic connectivity

Footnote: Test-retest (left) and phase encoding direction (right) reliability of FSA and intrinsic network
connectivity. For test-retest reliability (left) each measure is derived respectively from anterior to posterior
(AP) and posterior to anterior (PA) phase encoding direction scans, with and without global signal
regression. In phase encoding direction reliability (right) averaged measures from two consecutive runs in
the same phase encoding direction are being compared in scans with global signal regression. Legend:
AP: Anterior to posterior; ContA: Intrinsic reliability in cognitive control network; DMNB: Intrinsic
connectivity of default mode network; Dors: Intrinsic connectivity of dorsal attention network, FSA:
Functional Striatal Abnormality score; GSR: Global signal regression; NoGSR: No global signal regression;
PA: Posterior to anterior; Sal: Intrinsic connectivity of salience network, Som: intrinsic connectivity of
somatosensory network; Vis: Intrinsic connectivity of visual network.
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Figure 5

Accuracy of discrimination between cases and controls by scan acquisition time by the FSA and by
intrinsic network connectivity

Footnote: Dotted lines represent 95%CI for AUC for increasing scan length. Legend: AP: Anterior to
posterior; ContA: Intrinsic reliability in cognitive control network; DMNB: Intrinsic connectivity of default
mode network; Dors: Intrinsic connectivity of dorsal attention network, FSA: Functional Striatal
Abnormality score; GSR: Global signal regression; NoGSR: No global signal regression; PA: Posterior to
anterior; Sal: Intrinsic connectivity of salience network, Som: intrinsic connectivity of somatosensory
network; Vis: Intrinsic connectivity of visual network.
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Figure 6

Phase encoding direction reliability by scan acquisition time for the FSA and by intrinsic network
connectivity

Footnote: Dotted lines represent 95%CI for ICC of phase encoding direction reliability for increasing scan
length. Legend: AP: Anterior to posterior; ContA: Intrinsic reliability in cognitive control network; DMNB:
Intrinsic connectivity of default mode network; Dors: Intrinsic connectivity of dorsal attention network,
FSA: Functional Striatal Abnormality score; GSR: Global signal regression; NoGSR: No global signal
regression; PA: Posterior to anterior; Sal: Intrinsic connectivity of salience network, Som: intrinsic
connectivity of somatosensory network; Vis: Intrinsic connectivity of visual network.
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