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Abstract 35 
The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, 36 
from other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. 37 
While traditional clinical prediction models focus on individual patient-level parameters, we hypothesize that 38 
for infectious diseases, population-level data sources may improve predictive ability. To create a clinical 39 
prediction model that integrates patient-extrinsic data for identifying DENV among febrile patients presenting 40 
to a hospital in Thailand, we fit random forest classifiers combining clinical data with climate and population-41 
level epidemiologic data. In cross validation, compared to a parsimonious model with the top clinical 42 
predictors, a model with the addition of climate data, reconstructed susceptibility estimates, force of infection 43 
estimates, and a recent case clustering metric, significantly improved model performance.  44 
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Introduction 46 
Acute febrile illness (AFI) is a common reason for seeking healthcare in low- and middle-income countries 47 
(LMICs) (1). Determination of AFI etiology is often limited by diagnostic testing capacity, given the wide 48 
spectrum of potential infectious agents. Inappropriate use of testing and treatment resources may result in 49 
poor outcomes, such as the high case fatality rates seen in admitted AFI patients (5-20%) (2-7). Dengue virus 50 
(DENV) is a major cause of AFI in LMICs, accounting for an estimated 390 million infections, 96 million 51 
illnesses, 2 million severe cases, and 21,000 deaths per year (8). The differentiation between dengue and 52 
other common causes of febrile illness is important to avoid misdiagnosis, which can lead to delays in initiation 53 
of effective treatment, and inappropriate use of antibiotics (9). Due to the lack of pathognomonic clinical 54 
features that reliably distinguish dengue from other febrile illnesses, virological or serological laboratory 55 
confirmation is required for definitive diagnosis.  While multiplexed tests that can quickly identify the 56 
causative pathogen are ideal, they are often unavailable in LMICs due to cost and insufficient laboratory 57 
infrastructure. Even rapid, point-of-care tests may be cost-prohibitive in LMICs (10).  Accurate and cost-58 
effective tools to better determine etiology of fever at the point-of-care are greatly needed to guide the use of 59 
diagnostics and therapeutics, conserving scarce healthcare resources.  60 

 61 
Clinical Decision-Support Systems (CDSS) incorporating prediction models may offer a solution to better 62 
management of infectious diseases in low resource settings. CDSSs, such as applications on smartphone 63 
devices, can gather data from a range of online sources and implement sophisticated clinical prediction 64 
models that would be impractical for clinicians to calculate manually. CDSS have proven effective at improving 65 
therapeutic management and reducing unnecessary diagnostic tests in both high-income countries (HICs) (11) 66 
and LMICs (12-14). In Bangladesh, an electronic CDSS was shown to improve clinical dehydration assessment 67 
and WHO diarrhea guideline adherence, as well as reduce non-indicated antibiotic use in children under five 68 
by 29% (12).  Traditional predictive models generally incorporate clinical information that is obtained solely 69 
from the presenting patient.  Predictive models that incorporate additional information – such as seasonal or 70 
climate predictors, location-specific historical prevalence, characteristics of prior patients – have been shown 71 
to increase diagnostic accuracy and limit inappropriate antibiotic use  (14-16).   72 
 73 
The underlying probability of being infected by DENV varies by both space and time. The risk of DENV 74 
transmission depends on conditions that promote mosquito breeding, including when temperatures are 75 
warmer (17-19), and the risk of infection is influenced by local population immunity, as large outbreak years 76 
are typically followed by periods of low transmission (20-22). As most DENV transmission is highly focal, it 77 
means that population susceptibility profiles can be spatially heterogeneous at any time (21, 23-25). Thus, our 78 
objective is to develop an improved clinical prediction model for dengue by integrating temporal and spatial 79 
(location-specific) parameters including climate data, clustering of recent cases, and population susceptibility 80 
estimates derived from seroprevalence or hospital data in the surrounding community. We demonstrate the 81 
potential for integrating location- and population-specific data sources into clinical prediction models, with the 82 
potential to inform the development of improved tools to aid clinicians in diagnostic and therapeutic decision 83 
making for patients presenting with suspected dengue. 84 

 85 
Methods 86 
Location 87 
Kamphaeng Phet is a province in north-central Thailand that is located 350 km north of Bangkok and has a 88 
population of 725,000 people in a mostly rural and semirural setting (26, 27). We used data collected from 89 
patients presenting to Kamphaeng Phet Provincial Hospital (KPPH), a large, tertiary care hospital in the 90 
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province to identify clinical predictors that could discriminate between DENV-infected and uninfected patients 91 
(26, 27).  92 
 93 
Hospital-based suspected dengue patient data  94 
We used data on over 12,000 patients presenting to KPPH with suspected dengue between August 2007- 95 
December 2021. The data was collected by the United States Army Medical Directorate-Armed Forces 96 
Research Institute of Medical Sciences (USAMD-AFRIMS). As DENV testing in this hospital is provided free of 97 
charge and this is a highly DENV-endemic region, individuals will be tested for DENV infection if there is any 98 
suspicion of dengue, however minor. This provides an excellent test case to understand whether individual or 99 
location-specific risk factors are associated with testing positive for DENV.   100 
 101 
For all suspected dengue cases, we used demographic and clinical information including patient age, sex, 102 
home village, admission diagnosis, date of admission, presenting symptoms, and DENV PCR status. The 103 
following signs and symptom were recorded as binary variables: fever, chills, malaise, rhinitis, rash, sore 104 
throat, seizure, cough, nuchal rigidity, eye pain, nausea, headaches, vomiting, joint pain, abnormal 105 
movements, anorexia, myalgias, diarrhea, dark urine, abdominal pain, and bleeding. DENV infection was 106 
evaluated using RT-PCR. We recorded the residence of each patient to the district (Amphoe) level using 107 
detailed base maps of the region.  108 
 109 
Climate variables using National Oceanic and Atmospheric Administration (NOAA) data 110 
Climate and seasonal factors such as temperature, precipitation, and humidity influence vector populations 111 
and DENV transmission (17-19, 28). We employed the R package GSODR to gather climate data from the 112 
central most NOAA weather station in the province of Kamphaeng Phet, Thailand, which included mean daily 113 
temperature, precipitation, dewpoint, relative humidity, sea level pressure, visibility, and windspeed. To 114 
better reflect seasonal trends, we aggregated data in 14-day increments prior to the day of the DENV infection 115 
prediction. As climate can alter vector feeding behavior (19, 29), we used aggregated climate predictors in the 116 
two weeks prior to case presentation. Additionally, climate in the months prior to outbreaks can influence 117 
both vector population dynamics as well as viral replication (19, 28). To determine the appropriate lag time for 118 
each climate variable, we constructed a random forest classifier with climate variables lagged at one, two, and 119 
three months.  Using the R package, “vip”, we calculated each Variable of Importance by AUC and used the 120 
best performing lag time for each climate variable.  121 
  122 
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Estimates of temporal changes in population susceptibility using national surveillance system data 123 
We estimate population susceptibility data using age-specific case data from the national surveillance system 124 
using data from Kamphaeng Phet province only. We note that most of the cases in this dataset are suspected 125 
DENV cases (i.e., without confirmatory testing). We have previously developed models to explicitly link 126 
underlying infection risks to the observed age distribution of cases by age and year to estimate annual age-127 
specific force of infection in provinces of Thailand up until 2017 (30). The estimates can be used to reconstruct 128 
the buildup of immunity in populations by age. Here, we reconstruct population susceptibilities in Kamphaeng 129 
Phet going into each year, using only data prior to the year, to mimic the real-world use, where only prior 130 
years’ data is available. As dengue disease severity is greatest for secondary infections, we consider two 131 
alternative formulations to define susceptibility to disease. Firstly, we consider complete susceptibility, where 132 
we use the estimates of the proportion of individuals of an age group and year that are completely seronaive. 133 
Second, we consider the proportion of individuals of an age group and year that have experience one prior 134 
infection, and are therefore at risk of increased risk of severe disease. 135 
 136 
Estimates of spatial differences in the underlying force of infection using seroprevalence data from a cohort 137 
study 138 
To estimate underlying spatial differences in the force of infection in the province, we make use of a DENV 139 
cohort study in the region, where healthy individuals of all ages from throughout Kamphaeng Phet province 140 
have provided blood (31). The cohort is ongoing. We use data from samples collected during baseline blood 141 
draws, that occurred between 2015 and 2021. Hemagglutination inhibition assays were used to characterize 142 
immunity to the four DENV serotypes; individuals were considered seropositive if they had a titer of 10 or 143 
greater to any serotype. We have previously used this seroprevalence data to estimate the underlying mean 144 
force of infection, and the proportion of the population that are susceptible to DENV infection in different 145 
subdistricts in the province (32). Here, we use this subdistrict specific estimates to characterize underlying 146 
heterogeneity in the force of infection in the province. As the cohort data comes from 2015-2021, however, 147 
much of the hospital case data we are working with comes from prior to the cohort, we are assuming that the 148 
force of infection is stable in time within any location.   149 
 150 
Spatial clustering of positive cases based on prior patients presenting to the hospital 151 
The local clustering of positive cases from a single area, may signal local ongoing transmission. To assess for a 152 
temporal and spatial relationship between cases, we stratified cases that presented to KPP hospital by both 153 
district and province and then summed the number of positive cases in the 30 days prior to presentation 154 
divided by the total cases over the study period from that area. 155 
 156 
Statistical Analysis and Modeling 157 
We fit random forest classifiers to predict DENV infection. Random forests are a machine learning method 158 
which constructs a multitude of decision trees and averages over them to obtain a prediction robust to 159 
nonlinearities and interactions between covariates, and has been widely applied to biomedical sciences for 160 
both classification and regression (33, 34).  161 
 162 
We initially identified the subset of clinical symptoms that were most informative of true infection status. To 163 
do this we fit random forest models using only clinical predictors and then used the R package “vip” to 164 
calculate the Variable of Importance by AUC for each clinical variable. We determined a variable’s importance 165 
by calculating the change in AUC after permuting, or randomly shuffling each predictor. To attempt to achieve 166 
the most parsimonious prediction rule (i.e., the best predictive model requiring the fewest variables to be 167 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.08.23293840doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.08.23293840
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

input by clinicians), we fit random forest and logistic regression models using training data with consecutively 168 
increasing clinical predictor set sizes based on the order of importance and applied this to the test set to 169 
determine the smallest model with the best performance. Next, we incorporated the patient extrinsic factors. 170 
We fit each random forest classifier using 1000 decision trees and used the default number of variables to be 171 
randomly considered at each node split (mtry = square root of number of candidate variables). In the 172 
construction of our predictive models, we input climate predictors, age, susceptibility estimates, and the case 173 
clustering metric as continuous variables and we input the optimized clinical predictors as binary presence or 174 
absence categorical variables.  Missing predictor data was imputed using the R package ‘RandomForest’.   175 
 176 
We used logistic regression for each predictor to create a univariate comparison between DENV-positive and 177 
DENV-negative cases. We fit multiple logistic regression models to compare the performance of parsimonious 178 
models with a random forest classifier using the same number of predictors.  179 
 180 
To assess predictive performance for both random forest and logistic regression models, we used repeated 181 
cross-validation using 80% training/20% testing splits with 100 iterations. No testing data was used when 182 
training the model. In each iteration, predictions on the test set were produced and corresponding measures 183 
of performance obtained.  To determine overall model performance, we averaged the area under the receiver 184 
operator characteristic curve (AUC) and confidence intervals for the 100 iterations. To determine statistical 185 
significance between models we used a bootstrap method over 100 iterations, which involves resampling the 186 
data with replacement multiple times, creating bootstrap samples. For each bootstrap sample, receiver 187 
operating characteristic (ROC) curves were generated and the differences between the curves were 188 
computed. All analyses were completed using R version 4.2.0, and model development/validation was 189 
completed in accordance with the TRIPOD checklist (Supplement Table S1).   190 
 191 
Ethical considerations 192 
This study was approved by the institutional review boards of the Thai Ministry of Public Health and Walter 193 
Reed Army Institute of Research (WRAIR #2119), and the University of Utah (IRB_00150106)  194 
 195 
Results 196 
Of the 12,833 participants in the clinical data set, 5731 (45%) were confirmed to have DENV infection by PCR. 197 
DENV-positive patients were significantly younger (18 vs 22 years, p<0.001, Table 1). Nearly all cases (97.8%) 198 
came from the 11 districts within Kamphaeng Phet province (Table 1).  There was no significant difference 199 
between the probability of testing positive for males and females (p=0.07); no other genders were reported. 200 
The probability of testing positive differed substantially by age, ranging from 26% for those < 4 years to 58% 201 
for those 15-19 years of age (Table 2). Patients between the ages of 10-14 years, 15-19 years, and 5-9 years 202 
comprised the largest proportion of cases (23%, 18%, 16% respectively) while older patients comprised a 203 
much smaller proportion of cases (30-34 years 5%, 35-39 years 4%).  204 
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 206 
 Overall, N = 

12,8331 
DENV Negative, 

N = 7,1021 
DENV 

Positive, N 
= 5,7311 

p-value2 

Age (mean, sd)  21 (15) 22 (18) 18 (11) <0.001 
  Female 6,401 (50) 3,491 (49) 2,910 

(51) 
0.068 

Symptoms     
Cough 4,741 (37) 3,057 (43) 1,684 

(29) 
<0.001 

  Nausea 6,227 (49) 3,051 (43) 3,176 
(55) 

<0.001 

  Fever 11,467 (89) 6,129 (86) 5,338 
(93) 

<0.001 

  Headache 9,146 (71) 4,797 (68) 4,349 
(76) 

<0.001 

  Rhinitis 2,165 (17) 1,455 (20) 710 (12) <0.001 
  Pharyngitis 3,534 (28) 2,113 (30) 1,421 

(25) 
<0.001 

Location     
District    <0.001 

    Bueng Samakkhi 226 (1.8) 166 (2.3) 60 (1.0)   
Khanu Woralaksaburi 910 (7.1) 522 (7.4) 388 (6.8)   
Khlong Khlung 733 (5.7) 397 (5.6) 336 (5.9)   
Khlong Lan 945 (7.4) 645 (9.1) 300 (5.2)   
Kosamphi Nakhon 750 (5.8) 407 (5.7) 343 (6.0)   
Lan Krabue 556 (4.3) 333 (4.7) 223 (3.9)   
Mueang Kamphaeng 
Phet 

5,780 (45) 2,910 (41) 2,870 
(50)   

Pang Sila Thong 571 (4.4) 324 (4.6) 247 (4.3)   
Phran Kratai 1,186 (9.2) 684 (9.6) 502 (8.8)   
Sai Ngam 609 (4.7) 363 (5.1) 246 (4.3)   
Sai Thong Watthana 288 (2.2) 178 (2.5) 110 (1.9)   

Province      
Kamphaeng Phet 12,554 (97.8) 6,929 (97.5) 5,625 

(98.2) 
  

1Mean (SD); n (%), 2Wilcoxon rank sum test; Pearson's Chi-squared test   
Table 1: Age, gender, and top discriminative symptoms by DENV positivity. Locations listed are the eleven 207 
provinces in Kamphaeng Phet. 208 
 209 
We found that there were significant differences in the clinical symptoms between DENV  210 
positive and negative patients. Table 1 lists the top discriminative symptoms between the groups based on 211 
random forest and logistic regression. The most common symptom reported was fever, followed by headache. 212 
In univariate analysis, we found that individuals with fever, chills, malaise, retro-orbital pain, nausea, 213 
headache, and vomiting were significantly more likely to test positive for DENV, and individuals with cough, 214 
rhinitis, pharyngitis were significantly less likely to test positive for DENV (Supplementary Table S2). 215 
 216 
When we examined the proportion of positive cases to total cases by year and month, we found that both 217 
total and positive cases significantly increased in the months between June and September (p<0.001). The 218 
proportion of positive cases differed substantially by year (p< 0.001), ranging from 19% in 2016 to 90% in 219 
2017. The period of lowest test-positivity in 2016 and 2017, coincided with the Zika virus epidemic in the 220 
country (Figure 1).  221 
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 222 
Figure 1. Dengue virus (DENV) cases at Kamphaeng Phet Provincial Hospital, Thailand, 2007-2021. The number 223 
of DENV cases (green) over total cases (blue) as proportion of AFI cases by year (A) and month (C) and the 224 
percentage of positive cases by year (B) and month (D) over the study period. A map of Kamphaeng Phet 225 
Province and its 11 districts. Colors indicate the number of positive cases (E) and the annual case rate per 226 
100,000 persons (F) within each district between 2007-2021. 227 
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 228 
Derivation of a model using clinical parameters alone resulted in a parsimonious model that achieved 229 
moderate predictive performance. 230 
We first assessed the performance of the model using a traditional clinical prediction model which only 231 
includes the presenting patient’s information. A random forest classifier using all 23 clinical features resulted 232 
in an average AUC of 69.5% (95%CI: 67.5-71.5) from repeated cross-validation. To determine the optimal 233 
number of variables for a parsimonious prediction model, we used a random forest classifier to analyze the 234 
improvement in model performance with each additional clinical variable included. Figure 2 shows the 235 
improvement in AUC with each additional variable using two random forest classifiers – one with all other 236 
predictors and the other using only clinical data – as well as a logistic regression model using only clinical 237 
variables. Performance levelled off with three clinical variables: age, cough, and nausea. Using a model with 238 
only these three predictors, we achieve an average AUC of 67.0% (95%CI: 65.0-69.1). Supplementary Table S3 239 
shows the relative frequency of these variables by age group. We demonstrate the direction and magnitude of 240 
the effect of the top predictors by generating partial dependence plots from random forest and logistic 241 
regression classifiers (Supplementary Figure S1). 242 
 243 
 244 

 245 
Figure 2. Average AUC and 95% CIs from cross-validation (100 iterations) for Random Forest (RF) and Logistic 246 
Regression (LR) models. The red line indicates an RF model with all other predictors (climate, reconstructed 247 
susceptibilities estimates, force of infection estimates, prior patients) included. The green line indicates an RF 248 
model which includes only clinical predictors. The blue line indicates an LR model with only clinical predictors 249 
included. The dotted lines indicate CIs.  250 
 251 
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Addition of climate data to the clinical parameters model resulted in an improved area under the curve 252 
Next, we fit models using climate data. To appropriately adjust lag time for each climate variable, we fit a 253 
random forest classifier using only climate variables and assessed the Variables of Importance by AUC.  A 254 
random forest model with recent and lagged aggregated climate data without clinical predictors resulted in an 255 
AUC of 58.7% (95% CI: 56.5-60.9). We found the best performing climate variables were visibility, relative 256 
humidity, wind speed, and precipitation, all lagged by 3 months. For each climate predictor, Supplementary 257 
Table S4 lists the odds ratio and compares the mean of each predictor by DENV-positive or negative groups. 258 
Figure 3 shows the relationship between visibility, relative humidity, and the proportion of positive cases each 259 
month.  When combined with the top three clinical variables, climate data performed similarly (median p = 260 
0.60, 2% p-values <0.05) as clinical data alone. Table 2 shows the AUCs for the clinical base model, compared 261 
to the base model plus the inclusion of additional data sources. 262 
 263 
 264 

 265 
Figure 3. The monthly relative humidity (orange) and visibility (blue) in Thailand over the study period, 266 
compared with rates of DENV (green). For each case, we gathered the nearest NOAA weather station’s climate 267 
data, lagged by three months, and averaged that data for each month.   268 
  269 
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 270 
Model AUC (%) 95% CI 

Clinical*Climate*RS*FoI*Cluster 70.0 67.9-71.9 

Clinical*Climate*RS*Cluster 69.5 67.5-71.5 

Clinical*Climate*FoI*Cluster 69.2 67.2-71.2 

Clinical*Climate*Cluster 68.8 66.8-70.8 

Clinical*Climate*RS*FoI 68.7 66.7-70.7 

Clinical*Cluster 68.7 66.7-70.7 

Clinical*FoI*Cluster 68.5 66.5-70.6 

Clinical*Climate*RS 68.4 66.4-70.5 

Clinical*RS*FoI*Cluster 68.4 66.4-70.4 

Clinical*RS*Cluster 68.2 66.1-70.2 

Clinical*Climate*FoI 68.1 66.1-70.1 

Clinical*FoI 67.7 65.7-69.8 

Clinical*RS*FoI 67.6 65.5-69.6 

Climate*RS*FoI*Cluster 67.5 65.5-69.6 

Clinical*RS 67.5 65.4-69.5 

Clinical*Climate 67.2 65.2-69.3 

Clinical 67.0 65-69.1 

Climate*RS*Cluster 66.8 64.8-68.9 

Climate*RS 65.7 63.6-67.8 

RS*Cluster 65.7 63.6-67.7 

RS 65.6 63.5-67.7 

Climate*FoI*Cluster 64.7 62.6-66.8 

Climate*Cluster 60.5 58.3-62.7 

Climate 58.7 56.5-60.9 

Cluster 56.4 54.2-58.6 

FoI 57.0 54.8-59.2 

Table 2. The AUCs and confidence intervals by base model, compared to base model plus inclusion of 271 
additional data sources. ‘Clinical’ indicates the inclusion of the top three clinical predictors, ‘Climate’ indicates 272 
the inclusion of climate predictors, ‘RS’ indicates the inclusion of reconstructed susceptibility estimates 273 
derived using national surveillance data, ‘FOI’ indicates the inclusion of force of infection estimates derived 274 
using cohort data,  ‘Cluster’ indicates the recent case cluster metric. 275 
 276 
 277 
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 278 
Figure 4. The AUCs and confidence intervals by base model, compared to base model plus inclusion of 279 
additional data sources. ‘Clinical’ indicates the inclusion of the top three clinical predictors, ‘Climate’ indicates 280 
the inclusion of climate predictors, ‘RS’ indicates the inclusion of reconstructed susceptibility estimates 281 
derived using national surveillance data, ‘FOI’ indicates the inclusion of force of infection estimates derived 282 
using cohort data,  ‘Cluster’ indicates the recent case cluster metric. 283 
 284 
Addition of reconstructed susceptibility (RS) estimates to the clinical parameters model resulted in an 285 
improved area under the curve. 286 
Using historical hospital case data from the province, we obtained estimates of the size of the susceptible 287 
population by age for each year (across all subdistricts in the province). In our predictive model we used the 288 
prior year’s RS estimates. Using logistic regression, we found secondary RS estimates performed better than 289 
primary RS estimates [60.7% (95%CI: 58.6-62.9) vs 52.3% (95%CI:50.1-54.6)]. When added to a random forest 290 
classifier with climate and/or clinical predictors, the inclusion of RS estimates consistently resulted in higher 291 
AUCs (Table 2). When added to the top 3 clinical parameters alone, RS estimates non-significantly improved 292 
model performance from an AUC of 67.0% (95%CI: 65.0-68.8) to an AUC of 67.5% (95%CI: 65.4-69.5), (median 293 
p=0.40, 9% p-values < .05). Finally, a model including all predictors resulted in higher AUCs than a model 294 
without RS (median p=0.09, 32% p-values < 0.05). 295 
 296 
Addition of subdistrict-specific Force of Infection (FoI) estimates to the clinical parameters model resulted in 297 
an improved area under the curve. 298 
We incorporated FoI estimates for each age by subdistrict using data from a local cohort study. This assumes 299 
that the underlying differences in the force of infection are constant in time. Using logistic regression, FoI 300 
estimates had an AUC of 57.0% (95%CI: 54.8-59.2). The inclusion of FoI estimates lead to increases in AUC 301 
when added to the top clinical predictors, when added to clinical predictors and climate data, and when added 302 
to clinical predictors, climate predictors, and RS estimates (Table 2). When included with all other predictors, a 303 
model with FoI estimates non-significantly improved performance compared to a model without FoI estimates 304 
(median p=0.30, 23% p-values < 0.05) 305 
 306 
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Addition of the case clustering metric to the clinical parameters model resulted in an improved area under 307 
the curve 308 
Finally, we fit a model that assessed for clustering of recent cases based on prior patients presenting to the 309 
KPP hospital. Using logistic regression, we found the case clustering metric (the number of positive cases in 310 
the subdistrict over last 30 days divided by the total number of cases from that subdistrict in the study period) 311 
had an AUC of 56.4% (95%CI: 54.2-58.6). We found that the use of the case clustering metric consistently 312 
improved model performance. Stratifying by the finer spatial size of subdistrict consistently outperformed 313 
models with prior patients stratified by province. When added to the top performing clinical variables, model 314 
performance significantly improved (median p= 0.02, 60% of p-values < 0.05). When compared to a model 315 
with all predictors except cluster of recent cases, the inclusion of this predictor significantly improved model 316 
performance (median p= 0.007, 79% p-values <0.05).   317 
 318 
Finally, when comparing a model including all predictors with a model including only the top clinical predictors 319 
model performance improved from an AUC of 67.0% (95%CI: 65.0-69.1) to an AUC of 70.0% [(95%CI: 67.9-320 
71.9) (median p=0.006, 87% p-values < 0.05)].  321 

Discussion 322 
The management of AFI in LMICs often requires clinical decision making with limited availability of diagnostic 323 
testing. The differential diagnosis of AFI is broad and clinicians must decide on appropriate use of antibiotics as 324 
well as patient disposition. If diagnostics are available, clinicians must consider if the benefits of the 325 
information obtained outweighs the cost of the test. CDSSs can augment clinical decision making at minimal 326 
cost to the clinician and have proven effective at improving therapeutic management and reducing 327 
unnecessary diagnostic tests in LMIC settings (12-14). Historically, CDSSs use only clinical and demographic 328 
information from the presenting patient. Here, we present a predictive model for DENV infection that 329 
integrates multiple sources of information both intrinsic and extrinsic to the patient, including climate data, 330 
clinical data, seroprevalence-based susceptibility estimates, and historical information from prior patients, 331 
which results in improved predictive performance.  332 
 333 
DENV transmission can exhibit significant temporal and geographical heterogeneity even at fine spatial scales, 334 
with variations observed even among neighboring villages (27, 35, 36). We thus used patient-extrinsic 335 
(location-specific) data sources in our models. Although modest, the improvement in model performance with 336 
finer spatial units suggests that population-level spatial heterogeneity exists at the district level and can be 337 
applied to individual-level clinical prediction. We expect further improvements in predictive performance if 338 
finer-scale location became routinely available for case data, such as to the community level. The 339 
improvement with the use of either the province or district level case clustering metric highlights the utility of 340 
temporal predictors in clinical prediction DENV models. We also show that reconstructed susceptibility 341 
estimates, which reflect the transmission dynamics of disease and the susceptible proportion of a population, 342 
improve individual level clinical prediction on their own. Given that reconstructed susceptibility estimates may 343 
be more difficult to obtain across different settings, we favor use of the other location-specific data sources. 344 
Moreover, reconstructed susceptibility estimates may not serve as a reliable indicator of protection against 345 
DENV, as they represent a mixed concept – immunity may reflect protection due to herd immunity or may 346 
indicate increased risk of dengue infection, as higher levels of immunity may reflect higher viral circulation of 347 
the multiple DENV serotypes with significant immunologic cross-reactivity. 348 
 349 
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Transmission of DENV occurs in a seasonal pattern, and several climate variables have been found to increase 350 
DENV transmission and/or vector populations (17-19, 28, 29). We found visibility and relative humidity 3 351 
months prior to presentation to be the most important predictors of DENV infection in Kamphaeng Phet, 352 
Thailand.  Our findings suggest that site-specific climate variables aid in site-specific models to predict DENV 353 
infection. Appropriate lag times would need to be tuned to different sites. For use in a clinical decision support 354 
tool, the most recent climate variables could be gathered from online weather sources, based on smartphone-355 
based detection of GPS location. An optimal utilization of this model would be through a smartphone 356 
application, as there is a scarcity of electronic medical record availability in LMICs. This would necessitate 357 
access to a smart phone device and internet connection; however, clinicians and frontline healthcare workers 358 
increasingly have access to smartphone devices, even in remote areas of LMICs (37). 359 
 360 
We found the use of clinical data alone provided moderate discrimination between DENV-positive and DENV-361 
negative patients. There were significant differences between DENV-positive and -negative patients in 16 of 362 
the 22 clinical symptoms collected on presentation, consistent with features known to distinguish dengue 363 
from other illnesses (38, 39). To minimize clinician input requirements (40), we used random forest regression 364 
to identify the optimal variables to derive a parsimonious model. We were able to achieve near-optimal 365 
performance with only three clinical variables – age, nausea, and cough. It should be noted that the input of as 366 
little as one clinical variable – age – along with other predictors can provide useful clinical information (AUC 367 
67.9%, 95%CI: 65.6-70.0), especially in cases where other symptoms cannot be easily obtained, such as in 368 
infants, and nonverbal or comatose patients.  369 
 370 
Our study has several limitations. First, our model was constructed using data from a single center and testing 371 
was limited to patients suspected of having dengue infection, potentially hindering the model’s 372 
generalizability to a broader population. Similarly, as there was inherent heuristic bias in the patients selected 373 
for testing, the clinical components of the model reflect this specific population, meaning other important 374 
predictors of dengue infection, such as fever, were already included in the clinician’s decision making. Our 375 
results were limited to internal cross-validation; further studies for external validation are necessary. Finally, 376 
our assessment of the use of spatial dynamics in DENV transmission was limited as cases were only matched 377 
to each district rather than sub-district or village. In the future, models that integrate cases based on a finer 378 
spatial scale may better assess the role of a patient’s residing location in prediction. Despite these limitations, 379 
we demonstrate that predictive models that include patient-extrinsic location-specific elements can improve 380 
prediction and allow for parsimonious models that minimize clinician input and should be considered in future 381 
work on clinical prediction and decision support tools.  382 
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Section/Topic Item Checklist Item Page 
Title and abstract 

Title 1 Identify the study as developing and/or validating a multivariable prediction model, 
the target population, and the outcome to be predicted. 1 

Abstract 2 Provide a summary of objectives, study design, setting, participants, sample size, 
predictors, outcome, statistical analysis, results, and conclusions. 2 

Introduction 

 
Background 
and objectives 

 
3a 

Explain the medical context (including whether diagnostic or prognostic) and 
rationale for developing or validating the multivariable prediction model, including 
references to existing models. 

 
3 

3b Specify the objectives, including whether the study describes the development or 
validation of the model or both. 

 3-4 

Methods 

 
Source of data 

4a Describe the study design or source of data (e.g., randomized trial, cohort, or 
registry data), separately for the development and validation data sets, if applicable.       4-5 

4b Specify the key study dates, including start of accrual; end of accrual; and, if 
applicable, end of follow-up. 

4-5 

 
Participants 

5a Specify key elements of the study setting (e.g., primary care, secondary care, 
general population) including number and location of centres. 

4 

5b Describe eligibility criteria for participants. 4 
5c Give details of treatments received, if relevant.      N/A 

 
Outcome 

6a Clearly define the outcome that is predicted by the prediction model, including how 
and when assessed. 4 

6b Report any actions to blind assessment of the outcome to be predicted.        N/A 

 
Predictors 

7a Clearly define all predictors used in developing or validating the multivariable 
prediction model, including how and when they were measured. 4-6 

7b Report any actions to blind assessment of predictors for the outcome and other 
predictors. 

      N/A 

Sample size 8 Explain how the study size was arrived at.      4 

Missing data 9 Describe how missing data were handled (e.g., complete-case analysis, single 
imputation, multiple imputation) with details of any imputation method.       6 

 
Statistical 
analysis 
methods 

10a Describe how predictors were handled in the analyses. 6 

10b Specify type of model, all model-building procedures (including any predictor 
selection), and method for internal validation.       6 

10d Specify all measures used to assess model performance and, if relevant, to 
compare multiple models. 6 

Risk groups 11 Provide details on how risk groups were created, if done. N/A 
Results 

 
 

Participants 

 
13a 

Describe the flow of participants through the study, including the number of 
participants with and without the outcome and, if applicable, a summary of the 
follow-up time. A diagram may be helpful. 

 
7 

 
13b 

Describe the characteristics of the participants (basic demographics, clinical 
features, available predictors), including the number of participants with missing 
data for predictors and outcome. 

 
7 

Model 
development 

14a Specify the number of participants and outcome events in each analysis.    7 

14b If done, report the unadjusted association between each candidate predictor and 
outcome. N/A 

 
Model 
specification 

 
15a 

Present the full prediction model to allow predictions for individuals (i.e., all 
regression coefficients, and model intercept or baseline survival at a given time 
point). 

 
9-13 

15b Explain how to the use the prediction model. 9-13 
Model 
performance 16 Report performance measures (with CIs) for the prediction model. 9-13 

Discussion 

Limitations 18 Discuss any limitations of the study (such as nonrepresentative sample, few events 
per predictor, missing data). 15 

Interpretation 19b Give an overall interpretation of the results, considering objectives, limitations, and 
results from similar studies, and other relevant evidence. 

14-15 

Implications 20 Discuss the potential clinical use of the model and implications for future research. 14-15 
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Other information 
Supplementary 
information 21 Provide information about the availability of supplementary resources, such as study 

protocol, Web calculator, and data sets. 19-22 

Funding 22 Give the source of funding and the role of the funders for the present study. 15 

Supplementary Table S1. TRIPOD checklist. 527 
 528 
 529 

Clinical 
Predictors 

DENV Negative DENV Positive OR 95% CI 

Fever     2.15 1.87-2.47 

No 971 (14%) 391 (6.8%)     

Yes 6,127 (86%) 5,337 (93%)     
Nausea     1.66 1.53-1.79 

No 4,044 (57%) 2,543 (44%)     

Yes 3,054 (43%) 3,185 (56%)     
Headache     1.53 1.4-1.67 

No 2,304 (32%) 1,371 (24%)     

Yes 4,794 (68%) 4,357 (76%)     

Emesis     1.50 1.39-1.62 

No 4,126 (58%) 2,754 (48%)     

Yes 2,972 (42%) 2,974 (52%)     
Malaise     1.33 1.23-1.44 

No 3,687 (52%) 2,569 (45%)     

Yes 3,411 (48%) 3,159 (55%)     
Anorexia     1.33 1.22-1.44 

No 4,611 (65%) 3,340 (58%)     

Yes 2,487 (35%) 2,388 (42%)     
Abdominal 
Pain 

    1.27 1.17-1.38 

No 4,815 (68%) 3,570 (62%)     

Yes 2,283 (32%) 2,158 (38%)     

Myalgias     1.26 1.16-1.36 
No 3,638 (51%) 2,607 (46%)     

Yes 3,460 (49%) 3,121 (54%)     

Chills     1.20 1.11-1.3 
No 4,139 (58%) 3,078 (54%)     

Yes 2,959 (42%) 2,650 (46%)     

Retro-orbital 
Pain 

    1.16 1.06-1.28 

No 5,506 (78%) 4,284 (75%)     

Yes 1,592 (22%) 1,444 (25%)     

Hemorrhage     1.16 1.05-1.29 
No 5,951 (84%) 4,677 (82%)     
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Yes 1,147 (16%) 1,051 (18%)     
Diarrhea     1.06 0.97-1.16 

No 5,401 (76%) 4,297 (75%)     

Yes 1,697 (24%) 1,431 (25%)     
Arthralgias     1.05 0.96-1.15 

No 5,198 (73%) 4,134 (72%)     

Yes 1,900 (27%) 1,594 (28%)     
Rash     1.02 0.93-1.12 

No 5,507 (78%) 4,426 (77%)     

Yes 1,591 (22%) 1,302 (23%)     
Age     0.98 0.98-0.98 

 23 (18) 18 (11)   

Dark Urine     0.86 0.75-1 
No 6,502 (92%) 5,306 (93%)     

Yes 596 (8.4%) 422 (7.4%)     

Seizure     0.83 0.69-0.99 
No 6,704 (94%) 5,461 (95%)     

Yes 394 (5.6%) 267 (4.7%)     

Abnormal 
Movement 

    0.79 0.67-0.93 

No 6,622 (93%) 5,423 (95%)     

Yes 476 (6.7%) 305 (5.3%)     

Nuchal 
Rigidity 

    0.77 0.63-0.94 

No 6,764 (95%) 5,516 (96%)     
Yes 334 (4.7%) 212 (3.7%)     

Pharyngitis     0.76 0.7-0.83 

No 4,978 (70%) 4,322 (75%)     
Yes 2,120 (30%) 1,406 (25%)     

Jaundice     0.63 0.51-0.78 

No 6,761 (95%) 5,552 (97%)     
Yes 337 (4.7%) 176 (3.1%)     

Cough     0.55 0.51-0.6 

No 4,039 (57%) 4,044 (71%)     
Yes 3,059 (43%) 1,684 (29%)     

Rhinitis     0.55 0.49-0.61 

No 5,641 (79%) 5,017 (88%)     
Yes 1,457 (21%) 711 (12%)    

Supplementary Table S2. The relative frequencies, odds ratios, and confidence intervals for each clinical 530 
variable by DENV positivity.  531 
 532 
 533 
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 534 
Supplementary Figure S1. Partial Dependency Plots for the top performing variables for predicting DENV 535 
infection by AUC. For each predictor, the graph on the left shows the partial dependency for a random forest 536 
model and the partial dependency for a logistic regression model is shown on the right. ‘Y’ indicates presence 537 
of the symptom and ‘N’ indicates absence of a symptom. ‘PRCP’ refers to precipitation, ‘TEMP’ refers to the 538 
environmental temperature, ‘RS’ refers to reconstructed susceptibility estimates. 539 

 540 
 541 

 Overall, N 
= 12,8261 

0-4 years,  
N = 9541 

5-9 years, 
N = 2,0331 

10-14 
years, N 
= 2,9711 

15-19 
years,  

N = 2,2711 

20-24 
years,  

N = 1,1741 

25-29 
years,  

N = 8751 

30-34 
years,  

N = 6241 

35-39 
years,  

N = 4481 
40+ years,  
N = 1,4761 p-value2 

Nausea                     <0.001 

Y 6,239 (49) 341 (36) 952 (47) 1,515 
(51) 

1,239 (55) 646 (55) 447 (51) 320 (51) 208 (46) 571 (39)   
Cough                     <0.001 

Y 4,743 (37) 514 (54) 840 (41) 1,034 
(35) 

790 (35) 413 (35) 282 (32) 212 (34) 146 (33) 512 (35)   
1n (%) 
2Pearson's Chi-squared test 

Supplementary Table S3. The relative frequency of the top performing clinical variables stratified by age 542 
group. ‘Y’ indicates presence of the symptom and ‘N’ indicates absence of a symptom.  543 
 544 
 545 
 546 
 547 
 548 
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Climate Predictors 
(months lagged) 

DENV Negative 
Mean (sd) 

DENV Positive 
Mean (sd) 

OR 95% CI 

DEWPT 23.3°C (2.2) 23.7°C (1.8) 1.10 1.08-1.12 

TEMP (1) 28.4°C (1.7) 28.6°C (1.5) 1.08 1.05-1.11 
DEWPT (1) 23.3°C (2.3) 23.6°C (1.9) 1.08 1.06-1.1 

VISIB 9.3 km (2.4) 9.5 km (2.1) 1.05 1.03-1.06 

TEMP 28.3°C (1.6) 28.4°C (1.4) 1.04 1.01-1.06 
PRCP 4.9 mm (4.5) 5.4 mm (4.6) 1.02 1.02-1.03 

RH 75.3 (9.0) 76.6 (8.1) 1.02 1.01-1.02 

RH (3) 70.7 (9.3) 69.8 (8.8) 0.99 0.98-0.99 
PRCP (3) 3.7 mm (4.1) 3.2 mm (3.9) 0.97 0.96-0.98 

SLP (1) 1008.1 mbar (2.9) 1007.8 mbar 
(2.6) 

0.96 0.94-0.97 

SLP 1008.1 mbar (2.9) 1007.7 mbar 
(2.7) 

0.94 0.93-0.96 

VISIB (3) 8.3 km (2.8)  7.7 km (2.9) 0.93 0.92-0.94 
WDSP 0.6 m/s (0.3) 0.6 m/s (0.3) 0.74 0.65-0.85 

WDSP (3) 0.7 m/s (0.3) 0.7 m/s (0.3) 0.73 0.64-0.83 

Supplementary Table S4. The mean, standard deviation, odds ratio, and 95% CI intervals for each climate 549 
predictor. 550 
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