
Faster Exact Exchange for Solids via occ-RI-K: Application to 
Combinatorially Optimized Range-Separated Hybrid Functionals 
for Simple Solids With Pseudopotentials Near the Basis Set 
Limit

Joonho Lee1,∗, Adam Rettig2, Xintian Feng3, Evgeny Epifanovsky3, Martin Head-Gordon2

1Department of Chemistry, Columbia University, New York, NY, USA

2Department of Chemistry, University of California, Berkeley, CA, USA

3Q-Chem Inc., Pleasanton, CA, USA

Abstract

In this work, we developed and showcased the occ-RI-K algorithm to compute the exact 

exchange contribution in density functional calculations of solids near the basis set limit. 

Within the gaussian planewave (GPW) density fitting, our algorithm achieves a 1–2 orders 

of magnitude speedup compared to conventional GPW algorithms. Since our algorithm is well-

suited for simulations with large basis sets, we applied it to 12 hybrid density functionals with 

pseudopotentials and a large uncontracted basis set to assess their performance on band gaps of 

25 simple solids near the basis set limit. The largest calculation performed in this work involves 

16 electrons and 350 basis functions in the unit cell utilizing a 6 × 6 × 6 k-mesh. With 20–27% 

exact exchange, global hybrid functionals (B3LYP, PBE0, revPBE0, B97–3, SCAN0) perform 

similarly with a root-mean-square-deviation (RMSD) of 0.61–0.77 eV while other global hybrid 

functionals such as M06–2X (2.02 eV) and MN15 (1.05 eV) show higher RMSD due to their 

increased fraction of exact exchange. A short-range hybrid functional, HSE achieves a similar 

RMSD (0.76 eV) but shows a noticeable underestimation of band gaps due to the complete 

lack of long-range exchange. We found that two combinatorially optimized range-separated 

hybrid functionals, ωB97X-rV (3.94 eV) and ωB97M-rV (3.40 eV), and the two other range 

separated hybrid functionals, CAM-B3LYP (2.41 eV) and CAM-QTP01 (4.16 eV), significantly 

overestimate the band gap because of their high fraction of long-range exact exchange. Given 

the failure of ωB97X-rV and ωB97M-rV, we have yet to find a density functional that offers 

consistent performance for both molecules and solids. Our algorithm development and density 

functional assessment will serve as a stepping stone towards developing more accurate hybrid 

functionals and applying them to practical applications.
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I. INTRODUCTION

Accurate predictions of band gaps (Eg) of semiconductors are often at the center of 

computational design of new functional materials with applications to transistors and 

photovoltaics.1 Due to its computational efficiency, Kohn-Sham density functional theory 

(DFT) has been the workhorse for this task in modern electronic structure theory.2 However, 

the accuracy of DFT can be quite poor for band gap problems.3 Local functionals (i.e., 

those functionals without exact exchange) severely underestimate band gaps3–5 whereas 

hybrid functionals (i.e., those with exact exchange) often overestimate band gaps.5–9 

Beyond DFT, GW methods have been extremely successful10,11 but their computational 

cost ultimately limits their applicability to relatively small solids. Furthermore, it may suffer 

from ambiguity due to multiple solutions when attempting self-consistency.12

For main group molecular applications, there has been great progress towards finding 

statistically better density functionals. A high-quality database with nearly 5000 reference 

relative energies was used to assess 200 density functionals.2 Based on that, for each 

rung of density functional, we have identified statistically best functionals. Combinatorially 

optimized density functionals (B97M-rV,13,14 ωB97X-rV,14,15 ωB97M-rV14,16) developed 

by the Head-Gordon group clearly stood out in this benchmark study. Each of these 

functionals is the best-performing density functional among local density functionals, hybrid 

generalized gradient approximation (GGA) functionals, and hybrid meta-GGA (mGGA) 

functionals, respectively. Other benchmark studies have reached similar conclusions,17,18 

including for transitionmetal containing systems.19,20

In our recent paper, we assessed the performance of B97M-rV and 9 other local density 

functionals for computing the band gaps of 37 simple semiconductors, using a large 

Gaussian basis set to reach the basis set limit.21 In that benchmark study, B97M-rV13,14 was 

found to have a root-mean-square-deviation (RMSD) of 1.18 eV and a mean-signed-error 

(MSD) of −0.85 eV, significantly underestimating band gaps. Nonetheless, B97M-rV and 

other modern mGGA functionals (SCAN,22 M06-L,23 MN15-L24) were found to be more 

accurate than local density approximation (LDA)25,26 and PBE27 functionals. Motivated by 

this, in this work, we aim to assess the performance of modern hybrid density functionals 

over the same benchmark set.

Assessments of density functionals should be performed at the basis set limit as most of 

them were trained at this limit. The uncontracted basis set used in our previous study21 is 

fairly large and this poses computational challenges to the assessment of hybrid functionals 

near the basis set limit. The computational bottleneck of hybrid functionals is the evaluation 

of exact exchange which scales (assuming spatial locality of Gaussian basis functions) as 

O Nk
2N3  where Nk is the number of k-points sampled (i.e. dependent on symmetry, but 

not on system size) and N denotes the size of the computational cell. In other words N
represents quantities such as the number of AOs in the computational cell, nAO, or the number 

of real-space grid points, Ng, in the cell. The cubic-scaling evaluation of exact exchange is 

far more expensive than the linear-scaling evaluation of the Coulomb matrix, which scales as 

O NkN .21
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To cope with the steep scaling of exact exchange, we extend the occ-RI-K algorithm28 

developed for molecules to solids, which achieves a significant speedup compared to other 

algorithms when a large basis set is used. We implement this new algorithm in Q-Chem.29 

A similar technique known as the adaptively compressed exchange (ACE) algorithm has 

already been widely used in planewaves codes.30 While it does not offer any scaling 

reduction, the occ-RI-K algorithm significantly reduces the prefactor of the exact exchange 

evaluation and thereby may enable extensive benchmark studies in the basis set limit such 

as those presented in this work. While we focus on a particular density fitting scheme, the 

gaussian planewave (GPW) density fitting,31,32 our occ-RI-K algorithm should be applicable 

to other periodic density fitting methods.33,34

We note that efficient evaluation of exact exchange for periodic systems has seen 

great progress in many other available electronic structure packages. Packages such as 

CRYSTAL,35 CP2K,36 TURBOMOLE,37 FHI-AIMS,38 and PySCF39 use Gaussian orbitals 

like Q-Chem. These packages often support all-electron calculations that we do not 

consider in this work. Nonetheless, all-electron calculations can also greatly benefit from 

occ-RI-K for large basis set calculations as seen in the molecular case.28 Other codes 

based on planewaves include QuantumESPRESSO,40 VASP,41 FLEUR,42 and Wien2k.43 

In particular, the first two employ the ACE algorithm to speed up the exact exchange 

calculations greatly, similar in spirit to our attempt in this work.

This paper is organized as follows: (1) we review the GPW density fitting scheme and 

available exact exchange algorithms, (2) we then present the occ-RI-K algorithm for solids 

within the GPW scheme, (3) we move to the timing benchmark of our occ-RI-K algorithm 

compared to other algorithms, (4) we discuss the performance of hybrid functionals on the 

band gap benchmark set, and (5) we then conclude.

II. THEORY

A. Review of the GPW implementation

We focus on an implementation of exact exchange within the atomic Bloch orbital 

framework using

ψμk(r) = 1
Nk

∑
R

eik · Rϕμ(r − R) . (1)

where ϕµ is the µ-th atomic orbital, R is the direct lattice vector, k is the crystalline 

momentum, and ψμk is the µ-th Bloch orbital at k.

The exact exchange energy contribution to the total energy per unit cell in the atomic Bloch 

orbital basis is given by

Ek

Nk
= − 1

2Nk
∑
k1, k2

∑
μνλσ

Pμν
k2(νk2λk1 σk1μk2)Pλσ

k1
(2)

where Nk is the number of k-points, Pk is the density matrix at k,

Lee et al. Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2023 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pμν
k = ∑

i ∈ occ
Cμi

k (Cνi
k ) * (3)

and (νk2λk1 | σk1 µk2) is defined as

νk2λk1 σk1 µk2 =

∫
Ωl

dr1∫
Ωl

dr2(ψνk2(r1)) * ψλk1(r1)

V coul( r1 − r2 ) (ψσk1(r2)) * ψμk2(r2)

(4)

where V coul is the Coulomb operator kernel whose form depends on exchange-correlation 

functionals, Ωl denotes the volume of the entire simulation cell (i.e., supercell), defined as 

Ωl = NkΩ with Ω being the volume of a unit cell. The Fock matrix contribution from the 

exchange energy is

Kνμ
k2 = ∂EK

∂Pμν
k2 = − ∑

k1

∑
σλ

(νk2λk1 σk1μk2)Pλσ
k1

(5)

The algorithms developed and studied in this work are based on the GPW density fitting 

scheme popularized by Hutter and co-workers.31,32 In essence, the GPW scheme expands 

the pair density of Bloch orbitals in terms of planewaves:

(ψσk1(r)) * ψμk2(r) = ∑
G

Zσk1μk2
G ei(G − k1 + k2) · r

(6)

where we evaluate the density fitting coefficients via a Fourier transform,

Zσk1μk2
G = 1

Ω ∫
Ω

dr(ψσk1(r)) * ψμk2(r)e−i(G − k1 + k2) · r
(7)

The density fitted result is then used to evaluate the Coulomb potential via an inverse Fourier 

transform

V σk1μk2(r) = ∑
G

V σk1μk2
G ei(G − k1 + k2) · r

(8)

where

V σk1μk2
G =

f( G−k1 + k2 )Zσk1μk2
G if G−k1 + k2 > 0

χ if G−k1 + k2 = 0
(9)

and the form of f(x) and χ depend on the underlying Coulomb operator (V coul).
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We consider three forms of the Coulomb operator as necessary for global hybrid, short-range 

hybrid, and range separated hybrid functionals, respectively:

f(x) =

4π
x2 if V coul = 1

r
4π
x2 (1 − e−x2/(4ω2)) if V coul = erfc(ω r )

r
4π
x2 e−x2/(4ω2) if V coul = erf(ω r )

r

(10)

χ is to correct the finite size effect and we use a simple Madelung constant correction44 in 

the case of the unscreened and long-range Coulomb operators. The short-range Coulomb 

operator does not diverge at x = 0, so we use f(x 0):

χ = π
ω2 (11)

We also tested the truncated Coulomb operator employed by Spencer and Alavi which 

achieves this by combining the Coulomb and the long-range Coulomb operators: :45

V coul(r) =

1
r Θ(Rc − r )

erf(ω r )
r Θ(Rc − r )

(12)

where Θ is the Heaviside step function and the spherical cutoff Rc is determined from 

4π/3 Rc
3 = Ωl. For range separated hybrids, we applied the truncated Coulomb operator 

strategy just to the long-range contribution while treating the short-range contribution 

exactly.46 In reciprocal space, these transform into the following form (analogously to Eq. 

(10)):

f(x) = 4π
x2 (1 − cos(xRc)), (13)

for the truncated Coulomb operator and

f(x) = 4π
x2 erf(ωRc)cos(xRc) + 2π

x2 e− x2
4ω2

× erf(ω(Rc + ix
2ω2 )) + erf(ω(Rc) − ix

2ω2 ))   ,          
(14)

for the truncated long-range Coulomb operator.46 Both cases have well-defined x 0 limits 

and therefore one can use χ = f(x 0). The erf terms in Eq. (14) diverge as x ∞ and 

the multiplicative exponential function decays to zero as x ∞. These two terms cancel 

each other and produce a finite, well-behaved quantity in the end but some care is needed for 

a numerically stable evaluation as described in Appendix A1.
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In GPW, the Fourier transforms are handled by the discrete Fourier transform as 

implemented in fast Fourier transform libraries. The computational complexity of each 

Fourier transform call is O(Ng log Ng) where Ng is the number of grid points used in the 

unit cell. Using the GPW density fitting, we consider a total of three algorithms in this 

work where all three yield exactly the same ground state energy and valence band (occupied 

orbital) energies. While some of our algorithms are capable of avoiding the storage of ψμk(r)
on the real-space grid, for the descriptions below we assume that this tensor can be stored 

in memory. We describe a strategy to avoid storing ψμk(r) within the occ-RI-K algorithm in 

Section II E.

B. Atomic Orbital (AO)-RI-K algorithm

In the AO-RI-K algorithm, our goal is to compute Eq. (5) as written and a pair of Bloch 

atomic orbitals as shown in Eq. (6) is density fitted. A nice feature of this algorithm is that 

one can benefit from exploiting the sparse structure of Bloch atomic orbitals ψμk  where 

we can assume that only a small number of grid points carry non-zero values for each Bloch 

atomic orbital. Our scaling analysis will assume this as our implementation exploits this.

The AO-RI-K algorithm (shown in Algorithm 1) starts by forming the following 

intermediate:

ψσk1(r) = ∑
λ

Pλσ
k1ψλk1(r) (15)

which costs O(NkNg) memory and O(NkNgnAO) compute where sparsity was used to remove 

the scaling with nAO. Looping over pairs of k-points (k1 and k2) and pairs of atomic orbital 

indices (µk2, σk1), we evaluate Eq. (8) with O(Nk
2nAO

2 Ng log Ng) (i.e. cubic) effort, where nAO is 

the number of atomic Bloch orbitals in the unit cell. Within the inner loops over k1 and σk1, 

we accumulate the following intermediate (starting from zero),

V μk2(r) = ∑
k1

∑
σk1

ψσk1(r)V σk1μk2(r)
(16)

which scales as O(Nk
2nAO

2 Ng) and we accumulate the final exchange matrix contribution,

Kνμ

k2 = − ∑
r

V μk2(r) (ψνk2 (r)) * (17)

which scales as O(NkNg) after sparsity was used to remove the dependence of the scaling on 

nAO. The bottleneck of this algorithm is executing the FFT, which scales as O(Nk
2nAO

2 Ng log Ng).
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Algorithm 1: AO‐RI‐K algorithm.                                             
Perform Eq . (15) . / /O(NkNg)
for k2 =  1 to Nkdo // Parallel loop .
for µk2 = 1 to nAO do // Parallel loop .
for k1 = 1 to Nk do
for σk1 = 1 to nAO do
Form Eq .(8) . //O(Nk

2nA0
2 Ng log Ng)

Execute Eq . (16) to obtain V . / / O(Nk
2nA0

2 Ng)
end
end
Execute Eq . (17) . / / O(NkNg)

end
end

C. Molecular Orbital (MO)-RI algorithm

In the MO-RI algorithm, we compute the exchange matrix via

Kνμ
k2 = − ∑

k1

∑
i ∈ occ

(νk2ik1 ik1μk2) (18)

where an occupied orbital is defined as

ψik(r) = ∑
μ

Cμi
k ψμk(r) (19)

We form this intermediate at the cost of O(NkNgnocc) (with sparsity) operations, where 

nocc is the number of occupied orbitals and store this in memory. This NkNgnocc memory 

requirement scales quadratically with cell size.

In the MO-RI algorithm, we density fit the (ψik1(r))∗ψμk2(r) products. Looping over pairs 

of k-points, occupied orbital indices, and atomic orbital indices, the overall cubic cost of 

density fitting will scale as O(Nk
2noccnAONg log Ng). This suggests an immediate cost reduction 

from AO-RI to MO-RI is obtained by a factor of nAO/nocc, which can be a significant speedup 

when one considers a relatively large (such as triple-zeta or larger) basis set. This speedup 

can be roughly a factor of 5 for triple-zeta quality bases and becomes larger as the basis set 

size is increased (keeping the system size fixed).
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Algorithm 2: MO‐RI‐K algorithm.                                                     
Perform Eq . (19) . / /O(NkNgnocc)
for k2 =  1 to Nkdo // Parallel loop .
for µk2 = 1 to nAO do // Parallel loop .
for k1 = 1 to Nk do
for ik1 = 1 to nocc do
Form V ik1μk2(r) . //O(Nk

2nA0noccNg log Ng)

Execute Eq. (20) to obtain W . / / O(Nk
2nA0noccNg)

end
end
Execute Eq. (17) . / / O(NkNg)

end
end

The overall MO-RI algorithm, summarized in Algorithm 2, is similar to the AO-RI 

algorithm. One loops over a pair of k-points (k1, k2), occupied orbital indices ik1, and atomic 

orbital indices µk2 and forms the Coulomb potential V ik1μk2(r) that arises from the density, 

(ψik1(r))∗ψμk2(r). One then accumulates the following intermediate in the inner loop (i.e. the 

loops over k1 and ik1):

W μk2(r) = ∑
k1

∑
ik1

ψik1(r) V ik1μk2(r)
(20)

with compute cost scaling as O(Nk
2nAOnoccNg ). The K-matrix accumulation is done the same 

way as Eq. (17) with the intermediate in Eq. (20) in the outer loop with the same cost of 

O(NknAO
2 ). Similar to the AO-RI algorithm, the FFT calls were found to be the bottleneck, 

with cubic scaling compute cost of O(Nk
2nAOnoccNg log Ng).

D. Occupied orbital (occ)-RI-K algorithm

The occ-RI-K algorithm28 speeds up evaluation of the exact exchange operator by ignoring 
its component in the virtual space. In other words, denoting the occupied orbital space 

projector as P  and the unoccupied orbital space projector as Q, one can approximate

K ≃ PKP + PKQ + QKP (21)

ignoring QKQ. This approximation is exact when considering quantities that depend only on 

occupied orbitals such as the self-consistent field (SCF) energy, the valence band energies 

and orbitals, and of course the density matrix.

Using the same idea, we will compute only part of the exchange matrix,

Kνj
k2 = − ∑

k1

∑
i ∈ occ

(νk2ik1 ik1jk2) (22)
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to obtain the AO-occupied block of K. This amounts to the computation of (P + Q)KP
which can be used to obtain Eq. (21) with simple matrix multiplications for each k-point.28 

Since the computational bottleneck of AO-RI-K and MO-RI-K is the FFT step, our goal is to 

reduce the prefactor for this step using the same intuition as occ‐RI‐K.

In the occ‐RI‐K algorithm, shown in Algorithm 3, one first forms the intermediates in 

Eq. (19) and loops over a pair of k-points (k1, k2) and a pair of occupied orbitals 

(ik1, jk2). The density, (ψik1(r))∗ψjk2(r), will be fitted by planewaves and the corresponding 

Coulomb potential, V ik1jk2(r) is formed at O(Nk
2nocc

2 Ng log Ng) cost. Similarly to the other GPW 

algorithms, in the inner loops (k1, ik1) one accumulates the following intermediate:

W jk2(r) = ∑
k1

∑
ik1

ψik1(r) V ik1jk2(r)
(23)

with O(Nk
2nocc

2 Ng ) compute cost. We assume that we have enough memory to hold W (r), 
imposing an O(NknoccNg ) quadratic-scaling storage requirement (significantly smaller than 

required to hold ψνk2(r)). After obtaining W , we compute

Kνj
k2 = − ∑

r
W jk2(r) (ψνk2(r)) * (24)

at O(NknoccNg ) cost, assuming sparsity of ψνk2(r). Compared to the MO-RI-K algorithm, we 

achieve a clear nAO/nocc speed-up in all steps in the loop. Most importantly, the number of FFT 

calls is reduced from Nk
2nAOnocc to Nk

2nocc
2 .

Algorithm 3: occ‐RI‐K algorithm.                             
Perform Eq. (19) . / /O(NkNgnocc)
for k2 =  1 to Nkdo // Parallel loop .
for jk2 = 1 to nocc do // Parallel loop .
for k1 = 1 to Nk do // Parallel loop .
for ik1 = 1 to nocc do // Parallel loop .
Form V ik1jk2(r) . //O(Nk

2nocc
2 Ng log Ng)

Execute Eq. (23) to obtain W . / / O(Nk
2nocc

2 Ng)
end
end
end
end
Execute Eq. (24) . / / O(NkNgnocc)

In some applications, one may want to compute the first few conduction bands (unoccupied 

orbitals). This is particularly important when one tries to compute the band gap. In that 

case, one can simply extend the occ-RI-K algorithm to compute the first few conduction 

bands exactly. We write Q = R + S where R  is the projector onto the space spanned by 
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conduction bands of our interest and S is the projector onto the rest of the conduction bands. 

Then, we can approximate K by

K ≃ PKP + PKQ + QKP
+ RKR + RKQ + Q KR

(25)

This only needs the evaluation of Kνp
k2 where p includes valence bands (occupied orbitals) and 

desired conduction bands (unoccupied orbitals) at k2. However, when {k1} (i.e., those used 

for the ground state calculations) and {k2} (those used for the band calculations) in Eq. (24) 

are different, the occ-RI-K algorithm described above is no longer applicable because one 

does not have orbitals available for {k2}. As a workaround, one may append {k1} with {k2} 

for the ground state calculations or employ Wannier interpolation47 to obtain orbitals at {k2} 

from orbitals at {k1}.

E. Integral-direct strategies

The memory requirement for storing the basis function on grid points (ψμk(r)) scales 

as O(Ng Nk) assuming the sparsity of the underlying basis functions. In practice, the 

sparsity may not be effective with a relatively tight threshold until we reach a very large 

computational cell. In such cases, the required memory can scale as O(Ng NknAO) which can 

be quite sizable. If this memory consumption is unaffordable, one needs to resort to an 

“integral-direct” strategy where one does not store ψμk(r) in memory, but instead computes 

them on-the-fly.

This leads to a small modification of Algorithm 3 as shown in Algorithm 4. The only 

difference is that one repeatedly computes ψik(r) adding an extra computational cost of 

O(Nk
2Ng nocc

2 ). This step is not more expensive than other parts of the algorithm. In our 

implementation, depending on available memory, the integral-direct algorithm is triggered.

Algorithm 4: Integral‐direct occ‐RI‐K algorithm.     
for k2 =  1 to Nkdo
for jk2 = 1 to nocc do // Parallel loop .
for k1 = 1 to Nk do // Parallel loop .
for ik1 = 1 to nocc do // Parallel loop .

Perform Eq. (19) for ik1jk2 . //O(Nk
2Ngnocc

2 )
Form V ik1jk2(r) . //O(Nk

2nocc
2 Ng log Ng)

Execute Eq. (23) to obtain W . / / O(Nk
2nocc

2 Ng)
end
end
Execute Eq. (24) for jk2 . / / O(NkNgnocc)
end
end
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III. COMPUTATIONAL DETAILS

We consider a total of 12 density functionals in this work. There are seven global hybrid 

(GH) functionals and four range separated hybrid (RSH) functionals, with a range of 

different amount of exact exchange and year of development. For GGA GH functionals, 

B3LYP,48 PBE0,49 revPBE0,50 and B97–351 were considered. For mGGA GH functionals, 

M06–2X,52 MN15,53 and SCAN054 were considered. For RSH functionals, we consider a 

short-range functional (HSE55–58) and four long-range corrected density functionals (CAM-

B3LYP,59 ωB97X − rV,15 ωB97M − rV,16CAM-QTP0160). We do not consider dispersion 

corrections such as D2, D3, and D3(BJ)61–63 in this work because they do not affect the 

band gaps at all. In practical applications besides the band gap, all of the aforementioned 

functionals, except ωB97X − rV and ωB97M − rV, should be supplemented by dispersion 

corrections. All our calculations were performed with a development version of Q-Chem.29 

For relatively well studied functionals, PBE0 and HSE, we compare our band gaps against 

literature values in Refs. 9,64 and found an excellent agreement (see Fig. AI).

We summarize these functionals in Table I along with their fraction of short-range (cx, sr) 

and long-range (cx, lr) exact exchange. One key feature of ωB97X − rV, ωB97M − rV, and 

CAM-QTP01 is that they include the long-range exact exchange contribution up to 100%. 

Intuitively, this can be worrisome for band gap applications because in the long-range 

there is no Coulomb screening present in the method (like in Hartree-Fock theory). 

Another interesting remark about CAM-QTP01 is that this is an RSH functional fitted to 

experimental ionization potentials, which may be a useful property for improving the band 

gaps.60 We will see how these manifest in the band gap benchmark later.

We used a large uncontracted basis set developed in our previous paper (unc-def2-QZVP-

GTH)21 to ensure that we obtain band gaps near the basis set limit. We used the 

GTH-PBE pseudopotential for all functionals considered in this work due to the lack of 

functional-specific GTH pseudopotentials for these functionals.65,66 We took the geometry 

and experimental band gaps of 25 solids from ref. 21 (also see references therein).

As it was tested for local functionals,21 the band gap change due to the pseudopotential is 

expected to be much smaller than the band gap error energy scale that we will discuss here. 

We used 6 × 6 × 6 Monkhorst-Pack k-mesh which is sufficient to reach the thermodynamic 

limit for systems discussed in this work. For our GPW calculations, we followed the 

same Ecut value as our previous study.21 Namely, we used Ecut of 1500 eV for every 

solid considered in this work. To measure the remaining basis set incompleteness error, 

we compared the Γ-point band gap of B3LYP computed by our code against those from 

QuantumESPRESSO.40 We used a kinetic energy cutoff of 400 Ry for every system. The 

error in the band gap is smaller than 10 meV, which is consistent with what we found for 

local density functionals.21 This comparison is available in Table AIV.

We used finite size correction strategies described in Section II A for handling the 

divergence of exact exchange term. For the ground state SCF calculations, we used the 

simple Madelung constant correction.44 While this correction scheme smoothly converged 

the ground state SCF energies to the thermodynamic limit up to the k-mesh of 6 × 6 × 6, the 
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subsequent band structure calculations showed erratic discontinuities in the resulting bands. 

We confirmed that this is due to the residual size effect so we switched to the truncated 

Coulomb operator technique45 when computing bands. Nonetheless, the band gaps using 

two different correction schemes are in a qualitative agreement as can be seen in Table AI 

and Table AII.

The largest calculation that we performed in this work involves up to 350 basis functions and 

16 electrons in the central unit cell (i.e., AlN) with 6 × 6 × 6 k-mesh.

IV. RESULTS AND DISCUSSION

A. Timing benchmark

We benchmarked the compute time of each exact exchange algorithm on a single test case, 

diamond with QZV2P-GTH basis set.67 Diamond is chosen because it is a representative 

semiconductor, and QZV2P-GTH is employed so that the benefit of occ-RI-K can be 

highlighted. We tested the scaling with respect to system size as well as number of k-points. 

All calculations were done on 32 cores using two AMD Opteron 6376 processors.

In Table II and Table III, we present the Hartree-Fock total energies per atom of diamond 

with varying super-cell size (Table II) and k‐mesh (Table III). Comparing the two tables, we 

illustrate the equivalence of the super-cell and k‐point implementations for the same number 

of atoms. Furthermore, we show that our occ-RI-K implementation makes no additional 

approximations beyond AO-K and MO-K as emphasized in Section II D. AO-K, MO-K, and 

occ-RI-K energies agree with each other for the same number of atoms.

We analyzed the scaling with respect to system size via supercell Γ-point calculations. Fig. 

1a shows the wall time of each exchange algorithm as a function of the number of atoms 

included in the supercell. We see that AO-K quickly becomes intractable for large systems; 

a 3 × 3 × 3 supercell, corresponding to 54 atoms per unit cell in the calculation, is about the 

limit of this algorithm for the diamond system. The MO-K algorithm is over five times faster 

for all supercells considered. This allows calculations with two to three times the number 

of electrons as the AO-K algorithm. Finally, the occ-RI-K algorithm provides an additional 

speedup over MO-K of almost 15 for most supercells considered, allowing even larger 

calculations. Overall, occ-RI-K achieves nearly two orders of magnitude speedup compared 

to the AO-K algorithm. Furthermore, the slope of occ-RI-K in the log-log plot in Fig. 1a 

suggests that the algorithm scales as O(N2.9) which confirms the cubic-scaling with respect 

to system size as noted in Section II D.

We additionally analyzed the performance of each algorithm where we fix the size of the 

unit cell (two carbon atoms per cell) and vary the number of k-points. For these we find that 

MO-K offers roughly a factor of 10 speedup over AO-K and occ-RI-K further speeds this 

up by an additional factor of roughly 15. The speedup provided by occ-RI-K is more than 

two orders of magnitude speedup compared to the AO-K algorithm. The slope of occ-RI-K 

algorithm in Fig. 1b confirms O(Nk
2.0) scaling consistent with our scaling analysis presented 

in Section II D. We note that calculations with small k-meshes as well as small supercells 
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can be unphysical in that the finite size error can be substantial. We, nonetheless, performed 

these calculations to analyze computational scaling.

While more practical application of exact exchange will likely be much more difficult than 

our prototypical example, diamond, we see that occ-RI-K offers substantial speedups over 

alternatives, allowing calculations with significantly more electrons and k‐points.

B. Band gap assessment

We first discuss the overall band gap distribution of each functional as shown in Fig. 2. 

Along the dotted line of y = x, we observe that round and triangle data points are relatively 

well aligned. These are GGA GH functionals and HSE, respectively. It is widely accepted 

that HSE performs well for band gap problems, but the good performance of GGA GH 

functionals is not so well-known.9,64 However, some deterioration of the good performance 

of both these classes of functionals is noticable in Fig. 2 for larger band gap materials (above 

6 eV).

Given they are more recently developed functionals, mGGA GH functionals (pentagons) are 

quite disappointing. M06–2X and MN15 have a high fraction of exact exchange ( 50%). 

This higher fraction of exact exchange compared to other GGA GHs (all about 25%) 

seems to be the cause for an overall overestimation of the band gaps. With 25% of exact 

exchange, SCAN0 performs better than M06–2X and MN15, but it still seems slightly worse 

than GGA GHs.

Lastly, the performance of long-range corrected functionals (squares) is catastrophic with the 

tendency of overestimating band gaps for all materials considered here. The short-range 

exact exchange is only 15%–20% in these functionals, which is even less than HSE 

(25%). This gross overestimation of band gaps is likely due to the large fraction of long-

range exact exchange. CAM-B3LYP has 65% of long-range exact exchange while both of 

the combinatorially optimized functionals and CAM-QTP01 have 100% long-range exact 

exchange.

We obtain a more global perspective by inspecting the statistical data presented in Fig. 3. 

In terms of root-mean-square-deviation (RMSD), B3LYP, PBE0, revPBE0, B97–3, SCAN0, 

and HSE are all quite comparable (0.61–0.77 eV). Other functionals including MN15, 

M06–2X, CAM-B3LYP, ωB97X − rV, ωB97M − rV, and CAM-QTP01 are significantly worse 

than these functionals. The worst performing functional is CAM-QTP01 (4.16 eV) and 

the second worst performing functional is ωB97X − rV (3.94 eV). In terms of mean-average-

deviation (MAD), another interesting trend arises. The HSE functional has a noticeable, 

negative MAD, which is likely due to the lack of long-range exact exchange. Other 

functionals with a higher fraction of exact exchange show positive MAD values. Given 

these data, following the combinatorial design strategy, it may be beneficial to develop a 

variant of ωB97X − rV or ωB97M − rV where the long-range exact exchange is limited to less 

than 25%. Examining the difference between maximum deviation and minimum deviation, 

we found more modern functionals such as M06–2X (2.54 eV) may benefit more from error 

cancellation in practice than B3LYP (3.78 eV). The raw data for plots presented here are 

available in Table AII.
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C. Outlook for future functional developments

To gain more insights into functional developments, we examine the effect of the fraction 

of long-range exact exchange (i.e., cx, lr) in ωB97M − rV on five solids (Ge, Si, SiC, C, LiF), 

whose experimental band gaps range from 0.74 eV to 14.2 eV. These results are presented 

in Fig. 4. Despite the fact that we relaxed orbitals for each of cx, lr values, the change in band 

gaps shows a completely linear behavior with respect to cx, lr. This is observed in nearly all 

bands (Fig. 5), not just in the frontier bands. The band structure shows a nearly constant shift 

for different cx, lr values.

The most striking aspect of this plot is that the optimal cx, lr for four solids (Ge, Si, SiC, and 

C) is around 0.25–0.3 whereas the optimal value for LiF is near 0.75. cx, lr of 0.25–0.3 is 

close to the fraction of exact exchange in the GH functionals that perform well as discussed 

in Section IV B. Qualitatively, large gap materials do not benefit as much from screening 

and rather more long-range exact exchange is desirable. This is qualitatively similar to what 

we see from molecular systems that typically exhibit large gaps. This has been previously 

pointed out several others in literature.9,68–70

Given these observations, there are two potential ways for future functional developments 

that can perform well for both solids and molecules. The first is that one may 

combinatorially optimize a density functional with short-range, middle-range, and long-

range exact exchange.71–73 The idea is that one should not have a too high fraction of 

long-range exact exchange for small-to-medium-gap materials, but one would need a large 

fraction of middle-range exact exchange for good performance on large-gap materials and 

molecules. The second idea is to develop a system-specific density functional that would 

vary the fraction of exact exchange depending on the system. This is closely related to 

the dielectric-dependent hybrid functionals developed by Galli and co-workers,70 but its 

performance on molecular systems has not been extensively assessed yet.74 The last is to 

minimize the quasiparticle energy correction from G0W0 by tuning the fraction of exact 

exchange following the work by Atalla et al.75–77 This approach has shown promising 

accuracy for molecules and solids.

V. CONCLUSIONS

In this work, the occ-RI-K algorithm28, which was originally developed for and has 

been successfully applied to molecules, has been extended to evaluate exact exchange 

in solid-state applications. Within the GPW density fitting scheme,31,32 we showed that 

the occ-RI-K algorithm achieves a nearly 1–2 orders of magnitude speedup compared to 

other conventional ways of computing the exact exchange contribution. With the efficient 

occ-RI-K algorithm, we were able to assess the performance of a total of 12 hybrid density 

functionals for computing the band gap of 25 simple solids.

From the benchmark, we found that better performing density functionals were global 

hybrid functionals (B3LYP, PBE0, revPBE0, B97–3, SCAN0) where the fraction of exact 

exchange is between 0.20 and 0.27. A short-range hybrid functional, HSE, was found 

to underestimate the band gaps quite significantly compared to other hybrid functionals, 

consistent with a previous study.9 Minnesota functionals, M06–2X and MN15, are known 
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for their good performance on main group chemistry benchmarks, but their band gaps were 

found to be severely overestimated due to their relatively high fraction of exact exchange. 

Long-range corrected density functionals (CAM-B3LYP, ωB97X − rV, ωB97M − rV, CAM-

QTP01) all grossly overestimate the band gaps due to their high fraction of long-range 

exact exchange. We also found that the optimal fraction of long-range exact exchange in 

ωB97M − rV needs to vary significantly depending on materials.

Our work leaves a lot of room for future algorithmic developments, functional assessments, 

and functional developments. For algorithms, even with the occ-RI-K algorithm, the formal 

scaling of O Nk
2N3  can be too expensive for more realistic solids. By combining with 

tensor hypercontraction,78,79 one can reduce this cost to O NkN3 .80 This algorithm will 

enable routine application of hybrid functionals to materials that require a large k-mesh. 

We are currently developing and investigating this algorithm. Furthermore, an all-electron 

implementation of occ-RI-K will eliminate pseudopotential errors. Such an implementation 

will make a relative efficiency comparison possible against other all-electron exchange 

algorithms81–85 as well as all-electron band gap data.69,86,87 For functional assessments, 

we did not cover examples where small molecules are interacting with the surface of 

solids, which is commonly found in heterogeneous catalysis. We expect our combinatorially 

optimized density functionals to perform well for barrier heights and adsorption energies 

at surfaces, but there are only limited benchmark data points available.88 For functional 

developments, we noted that mid-range exact exchange functionals,71–73 functionals 

with system-dependent fraction of exact exchange70 and functionals that minimize the 

quasiparticle correction of G0W075–77 could be worth exploring further in the future. 

Local hybrid functionals89 and optimally tuned range-separated hybrids90 are also good 

alternatives to investigate further. With the combined effort of algorithmic improvements and 

density functional developments and assessments, we hope to increase the predictive power 

and scalability of modern density functionals for simulations of molecules and materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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X.: APPENDIX

A1. Numerically stable evaluation of truncated long-range Coulomb 

operator

In the second term in Eq. (14), we observe

lim
x ∞

e−x2/4ω2 0 (A1)

lim
x ∞

erf(ω(Rc + ix
2ω2 )) ∞ (A2)

These terms cancel out giving a finite result but the individual terms quickly exceed double 

precision even for moderate grid sizes. The error function can be expanded about ∞, giving:

erf(x) = 1 − e−x2

πx ∑
n = 0

∞
( − 1)n (2n − 1)!!

(2x2)n ≈ 1 − e−x2

πx (A3)

Substituting this expression into Eq. (14) cancels out the problematic terms leading to a 

more numerically stable form:

f(x) ≈ 4π
x2

e−ω2Rc
2

π(ω2Rc
2 + G2/4ω2)

ωRccos(xRc) − x
2ωsin(xRc) − cos(xRc

)erf(ωRc)
(A4)
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FIG. AI: 
Comparison among band gaps reported here, those reported in the work of Garza et al. (Ref. 

9), and those reported in the work of Borlido et al. (Ref. 64.)

TABLE AI:

Experimental and theoretical band gaps (eV) from various functionals over 25 solids. The 

singularity treatment for exact exchange was performed via the Madelung correction. N/A 

means “not available”. RMSD, MAD, MAX and MIN denote, respectively, root-mean-

square-deviation, mean-average-deviation, maximum signed deviation, and minimum signed 

deviation in reference to experimental values. All calculations were based on SCF 

calculations with 6 × 6 × 6 k-mesh.

Name B3LYP PBE0 revPBE0 B97-3 M06-2X MN15 SCAN0 HSE CAM-
B3LYP

ωB97X-
rV

ωB97M-
rV

CAM-
QTP01 Exp

C 5.98 6.09 6.13 6.39 7.85 7.29 6.26 5.32 8.22 9.54 9.25 9.86 5.48

Si 1.83 1.75 1.79 2.11 2.97 1.96 1.88 1.15 3.52 4.53 3.97 4.82 1.17

Ge 1.05 1.27 1.27 1.41 1.84 1.11 1.42 0.69 2.78 3.88 3.32 4.12 0.74

SiC 2.91 2.84 2.87 3.02 4.37 3.79 3.03 2.26 4.91 6.08 5.58 6.38 2.42

BN 6.46 6.45 6.51 6.83 8.41 7.46 6.70 5.80 8.71 10.02 9.59 10.40 6.22

BP 2.72 2.68 2.72 2.98 4.07 3.35 2.84 2.00 4.59 5.73 5.34 6.01 2.40

BAs 2.51 2.49 2.53 2.78 3.58 3.00 2.61 1.82 4.28 5.38 4.95 5.63 1.46

AlP 2.92 2.85 2.91 3.20 3.91 3.18 3.03 2.29 4.74 5.78 5.16 6.05 2.51

AlAs 2.69 2.58 2.65 2.94 3.50 2.83 2.73 2.03 4.40 5.37 4.72 5.64 2.23

AlSb 2.31 2.22 2.29 2.56 2.92 2.28 2.29 1.67 3.90 4.83 4.15 5.09 1.68

β‐GaN 2.95 3.19 3.25 3.59 5.83 4.48 3.24 2.72 5.06 6.46 5.98 6.69 3.30

GaP 2.77 2.84 2.92 3.20 3.98 3.03 2.94 2.25 4.54 5.69 5.21 5.90 2.35

GaAs 1.43 1.74 1.80 1.99 3.25 1.88 1.74 1.18 3.22 4.65 4.00 4.69 1.52

GaSb 0.94 1.26 1.31 1.47 2.50 1.27 1.20 0.70 2.63 4.05 3.31 4.05 0.73

InP 1.61 1.89 1.95 2.17 3.49 2.12 1.80 1.33 3.50 4.88 4.38 4.99 1.42

ZnS 3.38 3.66 3.76 4.08 5.59 4.10 3.79 3.08 5.50 6.88 6.39 7.07 3.66

ZnSe 2.40 2.65 2.75 3.04 4.38 2.89 2.77 2.09 4.33 5.65 5.07 5.78 2.70

ZnTe 2.30 2.55 2.64 2.88 4.06 2.64 2.63 1.99 4.15 5.49 4.79 5.58 2.38

CdS 2.27 2.53 2.64 2.89 4.11 2.81 2.53 1.96 4.28 5.61 5.18 5.79 2.55

CdSe 1.60 1.83 1.94 2.18 3.27 1.94 1.82 1.29 3.44 4.70 4.21 4.84 1.90

CdTe 1.66 1.88 1.98 2.19 3.17 1.87 1.85 1.35 3.45 4.71 4.11 4.81 1.92

LiH 4.81 4.72 4.85 5.10 6.50 5.93 5.14 4.01 7.21 8.56 8.01 8.74 4.90

LiF 11.47 11.89 12.09 12.32 14.19 13.25 12.35 11.44 13.98 15.48 14.98 15.88 14.20

LiCl 8.02 8.26 8.42 8.73 9.72 8.66 8.73 7.78 10.25 11.66 11.05 11.91 9.40

AlN 6.09 6.17 6.22 6.55 8.58 7.51 6.49 5.61 8.37 9.70 9.07 10.10 6.13

RMSD 0.73 0.64 0.63 0.75 1.73 0.88 0.62 0.76 2.04 3.24 2.72 3.46 N/A

MAD −0.01 0.12 0.19 0.45 1.63 0.61 0.26 −0.46 1.94 3.20 2.66 3.42 N/A

MAX 1.05 1.03 1.07 1.32 2.53 1.81 1.15 0.36 2.82 4.06 3.77 4.38 N/A

MIN −2.73 −2.31 −2.11 −1.88 −0.01 −0.95 −1.85 −2.76 −0.22 1.28 0.78 1.69 N/A
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TABLE AII:

Same as Table AI except that this is using the truncated Coulomb scheme for the singularity 

correction.

Name B3LYP PBE0 revPBE0 B97-3 M06-2X MN15 SCAN0 HSE CAM-
B3LYP

ωB97X-
rV

ωB97M-
rV

CAM-
QTP01 Exp

C 5.96 6.07 6.11 6.38 8.12 7.48 6.23 5.32 8.63 10.35 10.06 10.66 5.48

Si 1.85 1.79 1.84 2.18 3.24 2.16 1.93 1.15 3.87 5.13 4.57 5.42 1.17

Ge 1.03 1.28 1.27 1.43 2.02 1.24 1.43 0.69 3.05 4.41 3.83 4.65 0.74

SiC 3.00 2.97 3.01 3.17 4.76 4.11 3.16 2.26 5.40 6.93 6.43 7.23 2.42

BN 6.51 6.55 6.61 6.96 8.81 7.78 6.79 5.80 9.25 10.93 10.50 11.31 6.22

BP 2.70 2.69 2.73 3.02 4.33 3.55 2.85 2.00 4.96 6.40 6.01 6.68 2.40

BAs 2.50 2.49 2.53 2.80 3.81 3.18 2.61 1.82 4.62 6.00 5.57 6.25 1.46

AlP 3.00 2.96 3.02 3.33 4.23 3.44 3.14 2.29 5.14 6.49 5.87 6.77 2.51

AlAs 2.75 2.68 2.75 3.06 3.79 3.07 2.82 2.03 4.77 6.03 5.38 6.31 2.23

AlSb 2.36 2.29 2.36 2.65 3.17 2.48 2.37 1.67 4.23 5.40 4.71 5.67 1.68

β‐GaN 3.12 3.42 3.48 3.85 6.40 4.93 3.46 2.72 5.75 7.54 7.06 7.78 3.30

GaP 2.81 2.92 2.99 3.29 4.27 3.24 3.01 2.25 4.91 6.31 5.83 6.52 2.35

GaAs 1.45 1.79 1.85 2.05 3.50 2.05 1.78 1.18 3.53 5.20 4.54 5.24 1.52

GaSb 0.94 1.29 1.34 1.51 2.70 1.41 1.21 0.70 2.90 4.54 3.79 4.54 0.73

InP 1.65 1.96 2.02 2.25 3.76 2.31 1.87 1.33 3.83 5.47 4.96 5.58 1.42

ZnS 3.46 3.77 3.87 4.20 5.92 4.35 3.90 3.08 5.92 7.63 7.13 7.82 3.66

ZnSe 2.46 2.74 2.84 3.15 4.68 3.11 2.86 2.09 4.70 6.33 5.75 6.46 2.70

ZnTe 2.35 2.62 2.71 2.97 4.33 2.84 2.71 1.99 4.48 6.09 5.38 6.17 2.38

CdS 2.34 2.63 2.74 3.01 4.42 3.04 2.63 1.96 4.68 6.32 5.88 6.50 2.55

CdSe 1.66 1.92 2.03 2.29 3.55 2.14 1.91 1.29 3.80 5.36 4.86 5.49 1.90

CdTe 1.71 1.96 2.06 2.28 3.42 2.05 1.92 1.35 3.76 5.29 4.68 5.38 1.92

LiH 4.78 4.69 4.81 5.06 6.44 5.87 5.11 4.01 7.14 8.69 8.10 8.88 4.90

LiF 11.73 12.22 12.42 12.68 14.91 13.83 12.68 11.44 14.85 16.82 16.32 17.23 14.20

LiCl 8.23 8.52 8.68 9.01 10.29 9.12 8.99 7.78 10.93 12.71 12.10 12.96 9.40

AlN 6.20 6.34 6.39 6.74 9.06 7.90 6.66 5.61 8.98 10.69 10.06 11.09 6.13

RMSD 0.68 0.61 0.61 0.77 2.02 1.05 0.61 0.76 2.41 3.94 3.40 4.16 N/A

MAD 0.05 0.21 0.28 0.56 1.94 0.85 0.35 −0.46 2.35 3.91 3.36 4.13 N/A

MAX 1.04 1.03 1.07 1.34 3.10 2.00 1.15 0.36 3.16 4.87 4.58 5.18 N/A

MIN −2.46 −1.98 −1.78 −1.52 0.71 −0.37 −1.52 −2.76 0.65 2.62 2.12 3.03 N/A

TABLE AIII:

B3LYP total energies per cell with varying Nk using QuantumESPRESSO with kinetic 

energy cutoff of 400 Ry and Nk
1/3 = 6 total energies obtained from Q-Chem.

Name Nk
1/3 = 1 Nk

1/3 = 2 Nk
1/3 = 3 Nk

1/3 = 4 Nk
1/3 = 5

Nk
1/3 = 6 Nk

1/3 = 7 Q-Chem, 
Nk

1/3 = 6
C −10.315592 −11.22904 −11.316087 −11.329812 −11.332389 −11.332836 −11.332859 −11.332728
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Name Nk
1/3 = 1 Nk

1/3 = 2 Nk
1/3 = 3 Nk

1/3 = 4 Nk
1/3 = 5

Nk
1/3 = 6 Nk

1/3 = 7 Q-Chem, 
Nk

1/3 = 6
Si −7.263846 −7.7424678 −7.8042559 −7.8168333 −7.8200165 −7.8208858 −7.8211188 −7.820662

Ge −7.1307138 −7.7096594 −7.7819087 −7.7978528 −7.8023892 −7.8038689 −7.8043957 −7.803826

SiC −9.0057586 −9.5266777 −9.5911035 −9.6020953 −9.6043135 −9.6047434 −9.6047916 −9.604381

BN −11.984863 −12.759566 −12.825463 −12.833995 −12.835224 −12.835311 −12.835242 −12.835082

BP −8.6770283 −9.31314 −9.3866072 −9.4002713 −9.4034178 −9.4041736 −9.4043326 −9.403920

BAs −8.3285878 −8.9973475 −9.072129 −9.0863517 −9.0897338 −9.0905892 −9.0907905 −9.090522

AlP −8.2351585 −8.6134039 −8.6587502 −8.6664663 −8.6680014 −8.6682884 −8.6683125 −8.668096

AlAs −7.9029732 −8.3130158 −8.3623186 −8.3712477 −8.373195 −8.3736278 −8.3737044 −8.373506

AlSb −7.0993312 −7.507275 −7.5556889 −7.5650053 −7.5672091 −7.5677636 −7.5678933 −7.567673

β‐GaN −83.619295 −84.116855 −84.160975 −84.16707 −84.167925 −84.167964 −84.167894 −84.168307

GaP −80.225323 −80.728226 −80.784072 −80.794673 −80.797133 −80.797732 −80.797862 −80.798163

GaAs −79.902226 −80.432168 −80.493022 −80.505338 −80.50848 −80.509371 −80.509633 −80.509833

GaSb N/A −79.635938 −79.697619 −79.71142 −79.714836 −79.715891 −79.716242 −79.716115

InP −62.105167 −62.553162 −62.598143 −62.606302 −62.608092 −62.608495 −62.608565 −62.608354

ZnS −70.012286 −70.391394 −70.422686 −70.426918 −70.427461 −70.427451 −70.427381 −70.427359

ZnSe −69.183122 −69.588633 −69.625613 −69.631328 −69.63231 −69.632438 −69.632414 −69.632411

ZnTe −67.877895 −68.289422 −68.330126 −68.337139 −68.338569 −68.338851 −68.33888 −68.338818

CdS −55.692652 −56.017378 −56.039946 −56.042664 −56.042894 −56.042816 −56.042732 −56.042425

CdSe N/A −55.22138 −55.249459 −55.253457 −55.254045 −55.254076 −55.254027 −55.253732

CdTe N/A −53.930771 −53.962107 −53.967055 −53.96794 −53.968066 −53.968049 −53.967760

LiH −8.3559441 −8.0875882 −8.1087375 −8.1063673 −8.1064386 −8.1062722 −8.1062233 −8.106026

LiF −31.659096 −31.869633 −31.876959 −31.87666 −31.876383 −31.876244 −31.876171 −31.875991

LiCl −22.358903 −22.570483 −22.584203 −22.584804 −22.584638 −22.584509 −22.584435 −22.584162

AlN −23.819271 −24.174478 −24.206023 −24.209691 −24.209945 −24.209861 −24.209777 −24.209097

TABLE AIV:

B3LYP band gaps at Γ  based on SCF calculations with varying Nk using 

QuantumESPRESSO with kinetic energy cutoff of 400 Ry and Nk
1/3 = 6 band gaps obtained 

from Q-Chem.

Name Nk
1/3 = 1 Nk

1/3 = 2 Nk
1/3 = 3 Nk

1/3 = 4 Nk
1/3 = 5 Nk

1/3 = 6 Nk
1/3 = 7

Q-Chem, 
Nk

1/3 = 6
C 8.84 8.02 7.71 7.58 7.52 7.49 7.47 7.49

Si 4.88 4.28 4.08 4.00 3.96 3.93 3.92 3.93

Ge 2.63 1.74 1.39 1.21 1.11 1.05 1.01 1.05

SiC 8.67 8.43 8.23 8.14 8.11 8.09 8.08 8.09

BN 10.25 11.00 11.03 11.00 10.97 10.96 10.95 10.96

BP 5.96 5.33 5.10 5.00 4.95 4.93 4.92 4.93

BAs 5.65 5.05 4.83 4.73 4.68 4.66 4.65 4.66
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Name Nk
1/3 = 1 Nk

1/3 = 2 Nk
1/3 = 3 Nk

1/3 = 4 Nk
1/3 = 5 Nk

1/3 = 6 Nk
1/3 = 7

Q-Chem, 
Nk

1/3 = 6
AlP 5.55 5.11 4.93 4.85 4.81 4.79 4.78 4.79

AlAs 4.28 3.77 3.56 3.46 3.41 3.38 3.37 3.38

AlSb 3.86 3.25 3.02 2.91 2.85 2.83 2.81 2.82

β‐GaN 3.04 3.35 3.28 3.21 3.17 3.14 3.12 3.14

GaP 3.81 3.36 3.15 3.04 2.98 2.95 2.93 2.95

GaAs 2.45 1.96 1.72 1.59 1.52 1.47 1.44 1.47

GaSb 2.36 0.66 0.21 1.09 1.01 0.96 0.93 0.96

InP 2.25 2.02 1.85 1.76 1.70 1.67 1.65 1.67

ZnS 3.51 3.66 3.58 3.52 3.49 3.47 3.46 3.47

ZnSe 2.65 2.72 2.61 2.54 2.50 2.47 2.46 2.47

ZnTe 2.78 2.65 2.51 2.43 2.39 2.36 2.34 2.36

CdS 2.11 2.50 2.45 2.40 2.37 2.35 2.34 2.35

CdSe N/A 1.88 1.81 1.74 1.70 1.68 1.66 1.68

CdTe N/A 1.97 1.86 1.79 1.75 1.73 1.71 1.73

LiH 23.58 23.54 23.47 23.47 23.47 23.47 23.47 23.47

LiF 10.29 11.74 11.78 11.76 11.75 11.74 11.74 11.74

LiCl 7.92 8.30 8.29 8.26 8.25 8.24 8.24 8.24

AlN 6.01 6.19 6.22 6.21 6.21 6.20 6.20 6.20
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FIG. 1: 
Wall time (seconds) of a single exchange-matrix build for the three exchange algorithms 

presented for diamond (a) Γ − pointcalculations as a function of the number of atoms in the 

super cell and (b) k − point calculations as a function of the number of k-points. Given the 

same total number of C atoms, all methods in (a) and (b) yield the same total energy per C 

atom.
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FIG. 2: 
Scatter plot of computed band gap (eV) versus experimental band gap (eV). Round markers 

are used for GGA global hybrids, pentagons are used for mGGA global hybrids, triangles 

are used for short-range hybrid functional (HSE), and squares are used for long-range 

corrected range separated functionals. The black dotted line is guide for the eye.
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FIG. 3: 
Band gap (eV) comparison over 25 solids between DFT (12 different functionals) and 

experiments: Blue: root-mean-square-deviation (RMSD) of DFT band gaps (eV) with 

respect to those of experiments and Red: mean-average-deviation (MAD) of DFT band 

gaps (eV) with respect to those of experiments.
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FIG. 4: 
Deviation (eV) of the computed band gaps from ωB97M − rV with respect to experimental 

band gaps (given in parentheses) as a function of the fraction of long-range exact exchange 

(cx, lr).
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FIG. 5: 
Bands of Si computed from ωB97M-rV as a function of the fraction of long-range exact 

exchange (cx, lr). The Γ-point valence band maximum is shifted to zero for comparisons.
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TABLE I:

Summary of 12 density functionals investigated in this work. cx, sr is the coefficient for the short-range exact 

exchange and cx, lr is the coefficient for the long-range exact exchange.

Functional Year Hybrid type Ingredients cx, sr cx, lr

B3LYP48 1993 GH GGA 0.20

PBE049 1996 GH GGA 0.25

revPBE050 1998 GH GGA 0.25

B97–351 2005 GH GGA 0.269288

M06–2X52 2008 GH mGGA 0.54

MN1553 2016 GH mGGA 0.44

SCAN054 2016 GH mGGA 0.25

HSE55–58 2008 RSH GGA 0.25 0.00

CAM-B3LYP59 2004 RSH GGA 0.19 0.65

ωB97X − rV 15 2014 RSH GGA 0.167 1.00

ωB97M − rV 16 2016 RSH mGGA 0.15 1.00

CAM-QTP0160 2016 RSH GGA 0.23 1.00
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TABLE II:

Hartree-Fock total energies per atom (Eℎ) using the Γ-point implementation for various supercell sizes. N/A 

means not available.

Supercell

Natoms AO-K MO-K occ-RI-K

2 −5.1913973 −5.1913973 −5.1913973

16 −5.5159556 −5.5159556 −5.5159556

54 N/A −5.5436244 −5.5436244
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TABLE III:

Hartree-Fock total energies per atom (Eℎ) using the k‐point implementation for various k‐mesh sizes (i.e., the 

number of atoms). N/A means not available.

k-point

Natoms AO-K MO-K occ-RI-K

2 −5.1913973 −5.1913973 −5.1913973

16 −5.5159556 −5.5159556 −5.5159556

54 −5.5436244 −5.5436244 −5.5436244

128 N/A −5.5460132 −5.5460132

250 N/A −5.5456075 −5.5456075

432 N/A N/A −5.5450982

686 N/A N/A −5.5447456
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