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ABSTRACT
Background. Adverse left ventricular remodeling after myocardial infarction (MI)
compromises cardiac function and increases heart failure risk. Until now, comprehen-
sion of the role transcription factor EB (TFEB) plays after MI is limited.
Objectives. The purpose of this study was to describe the effects of TFEB on fibroblasts
differentiation and extracellular matrix expression after MI.
Methods. AAV9 (adeno-associated virus) mediated up- and down-regulated TFEB
expressions were generated in C57BL/6 mice two weeks before the MI modeling.
Echocardiography, Masson, Sirius red staining immunofluorescence, and wheat germ
agglutinin staining were performed at 3 days, and 1, 2, and 4 weeks after MI modeling.
Fibroblasts collected from SD neonatal rats were transfected by adenovirus and siRNA,
and cell counting kit-8 (CCK8), immunofluorescence, wound healing and Transwell
assay were conducted. Myocardial fibrosis-related proteins were identified by Western
blot. PNU-74654 (100 ng/mL) was used for 12 hours to inhibit β-catenin-TCF/LEF1
complex.
Results. The up-regulation of TFEB resulted in reduced fibroblasts proliferation and
its differentiation into myofibroblasts in vitro studies. A significant up-regulation of EF
and down-regulation ofmyocyte areawas shown in theAAV9-TFEB group.Meanwhile,
decreased protein level of α-SMA and collagen I were observed in vitro study. TFEB
didn’t affect the concentration of β-catenin. Inhibition of TFEB, which promoted cell
migration, proliferation and collagen I expression, was counteracted by PNU-74654.
Conclusions. TFEBdemonstrated potential in restraining fibrosis afterMI by inhibiting
the Wnt/β-catenin signaling pathway.
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INTRODUCTION
Acute myocardial infarction (AMI) is caused by hypoxia and ischemia, with highmorbidity
and mortality (Bai et al., 2021). AMI often leads to heart failure (HF), which is the
major risk patients have to face (Bahit, Kochar & Granger, 2018; Velagaleti et al., 2008).
Therefore, effective treatment is needed to reduce the size of myocardial infarction (MI),
preserve left ventricular (LV) function, and prevent HF in patients with AMI. After AMI,
extensive myocardial injury, impaired myocardial contractility, continuous activation
of the neuroendocrine system, and remodeling of extracellular matrix (ECM) occur in
the heart, which results in left ventricular remodeling (LVR). Adverse left ventricular
remodeling affects cardiac function and increases the risk of HF (Azevedo et al., 2016).
Nowadays, myocardial remodeling is recognized as a complex process in response to
cardiac overload and loss of functional myocardium, resulting in structural and functional
disorders of the myocardium (Van der Bijl et al., 2020).

The post-AMI cardiac response can be divided into three phases: (1) a proinflammatory
phase (days 1–3 after MI) aimed at removing cellular debris from the ischemic infarct
zone. In the ischemic environment, myocardial cells undergo anaerobic metabolism, cell
membrane is unstable, and cells undergo apoptosis, autophagy and necrosis (Fu et al.,
2020; Heusch & Gersh, 2017). Neutrophils and macrophages lead to destruction of the
extracellular collagen matrix (ECM) and enlargement of the infarct area, thereby changing
the shape of the ventricle, and the infarct myocardium becomes thinner and dilated. (2)
During the repair period (4–7 days after MI), acute inflammatory mechanisms are down-
regulated and myocardial injury is alleviated, while wound healing and scar formation
are performed to prevent cardiac rupture. After the inflammatory response, fibroblasts
are directed to the infarct area, where they produce new collagen matrix and form scar
tissue (Bhatt, Ambrosy & Velazquez, 2017; Gabriel-Costa, 2018; Sutton & Sharpe, 2000; Xie,
Burchfield & Hill, 2013). (3) At the mature stage (7 days after MI), the non-infarcted
cardiomyocytes became hypertrophic and the ECM changed. The cardiac ECM is a highly
organized structural and functional protein network that surrounds cardiomyocytes and
generates a cellular scaffold that maintains LV shape (Iyer et al., 2014). If inflammation and
fibrosis-related signals are continuously activated, it may lead to adverse left ventricular
remodeling (Ong et al., 2018; Ruparelia et al., 2017;Westman et al., 2016).

AfterMI, fibroblasts will proliferate and differentiate intomyofibroblasts.Myofibroblasts
express the contractile proteins α-smooth muscle actin (α-SMA) and embryonic smooth
muscle myosin, exhibit an extended endoplasmic reticulum, and secrete abundant matrix
proteins to generate collagen scars (Frangogiannis, Michael & Entman, 2000). Fibroblasts
early activation and late remodeling is important for cardiac function (Van Nieuwenhoven
& Turner, 2013). Adverse fibrosis will lead to myocardial stiffness, diastolic and systolic
dysfunction, and eventually the development of HF (Prabhu & Frangogiannis, 2016).

TFEB is onemember of the microphthalmia-associated transcription factor E family and
is actively involved inmany cellular biological andpathological processes (Rehli et al., 1999).
TFEB studies showed that under starvation or stress conditions, TFEB dephosphorylated
and accumulated in the nucleus, recognized and bound to genes sequence, upregulated
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genes expression at the transcriptional level involved in lysosome and autophagosome
biogenesis, as well as phagocytosis and various immune responses (Godar et al., 2015;
Ma et al., 2015; Medina et al., 2011; Palmieri et al., 2011; Settembre et al., 2011). Until now,
whether TFEB was involved in the fibrosis process after MI remains unclear. Thus, we
designed this study to systematically evaluate the impacts of TFEB on the pathology
processes of autophagy, ventricular remodeling, and fibrosis after MI.

The Wnt signaling is involved in cell proliferation and differentiation progress, and is
necessary for cardiacmyocyte formation (Chen et al., 2001;Moon et al., 2002). Extracellular
Wnts bind to transmembrane receptor complexes. The destruction complex consisting
of β-catenin, Axin, APC (adenomatous polyposis coil), CK1 (casein kinase1) and GSK3
(glucogen synthase kinase 3 beta), has been relocated to the plasma membrane. The
β-catenin is free from the destruction complex and accumulates within the cytosol. And
this leads to stabilisation and translocation of β-catenin into the nucleus, where it binds to
T-cell factor (TCF) and the lymphoid enhancer factor (LEF), and activates various target
genes (Clevers, 2006; Moon et al., 2004). Studies show that the Wnt signaling pathway is
involved in the fibroblast activation and proliferation during cardiac fibrosis (Duan et al.,
2012; Honda et al., 2013; Sullivan & Black, 2013).

Here, we showed that TFEB, a transcription factor related to autophagy and lysosomal
biogenesis, is involved in the progression of fibrosis. We also found that the inhibition
effect of TFEB in fibrosis was mediated by the formation TFEB- β-catenin-TCF/LEF1
complex, which changed the gene expression profile of β-catenin.

MATERIALS AND METHODS
Reagents
Portions of this text were previously published as part of a preprint (Liu et al., 2022).
TGF-ß1 was purchased from Sino Biological (Beijing, China). The adeno-associated virus
9 (AAV9) was purchased from Weizhen Technology Co., LTD. (Shandong, China). In
the TFEB-overexpression mice built by adeno-associated virus, gene ID: NM_011549,
vector: PAV-CMV-P2A-GFP (CMV promoter), virus titer: 3.84 × 1013 µg/ml; AAV9-
NC was GFP (CMV promoter) control adeno-associated virus with a titer of 8.02 ×
1013 µg/mL. In the AAV9-shTFEB mice with TFEB expression down-regulated by AAV9
4in1shRNA, gene ID: NM_011549, vector: PAV-4IN1shrNA-GFP; primer design: positive
CGGCAGTACTATGACTATGA, reverse: GCCGTCATGATACTGATACTA; Virus titer:
2.22 × 1013 µg/mL; AAV9-sh-TFEB virus was AAV9-U6-GFP control adeno-associated
virus inserted with nonsense sequence, and the virus titer was 4.74 × 1013 µg/mL. All
the dilution virus titer was 1 × 1013 ug/ml, and the dose was 10 µl for each mouse. The
adenovirus used in the in vitro study was purchased from Hanheng Biology (Shanghai,
China). Ad-TFEB was HBAD-TFEB-EGFP overexpressed virus, gene sequence number:
M_001025707. Ad-GFP was used as a control virus with HBAD-EGFP overexpression.
The multiplicity of cellular infection (MOI) of the virus infection complex in the 6-well
plate was 30, with an adenovirus volume of 10 µL. The MOI of the virus infection complex
in the 24-well plate was 30, with an adenovirus volume of 3 µL. The siRNAs were used
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to reduce TFEB expression, with siNC serving as control. The target sequence of siRNAs:
GCAGTCTCAGCATCAGAAA.

Ethical approval
In this study, all animal experiments were carried out in accordance with the ARRIVE
guidelines and were approved by the Institutional Animal Care and Use Committee of the
Sun Yat-Sen University(SYSU-IACUC-2021-000659).

Animals and MI modeling
We used male mice to establish a stable MI model considering that estrogen has shown a
protective effect against pathological hypertrophic remodeling in pressure-overload (Cao et
al., 2011; Patten et al., 2004). Two-month-old wild-type male C57BL/6 mice (20-30g) were
purchased from the Animal Experimental Centre of Jicui Yaokang Biotechnology Co. LTD.
(Jiangsu, China). All mice were fed in the SPF animal laboratory at the Animal Center
of Sun Yat-Sen University, Guangzhou, China, with free access to standard laboratory
food and water. 142 mice were used to construct MI models and 130 mice were included.
12 mice were excluded because of technical failure. 130 mice were randomized into five
groups: the sham group, AAV9-TFEB group, AAV9-NC group, AAV9-shTFEB group, and
the AAV9-shNC group, with random allocation software by Dr. Cong Liu. One, three, five,
nine and six mice of each group died after MI. The AAV9-NC and AAV9-sh-NC group
served as controls of the AAV9-TFEB and AAV9-sh-TFEB groups, respectively. Every
mouse was pretreated with myocardial multipoint injection of Adeno-associated virus 9
(AAV9) or normal saline for two weeks before the MI modeling. After 14 days of feeding,
the anterior descending branch of the mice’s left coronary artery (LAD) was permanently
ligated to set up the MI model. The surgery was conducted under the anesthetization
of 50 mg/kg intraperitoneally injected pentobarbital sodium (Sigma). For mice in the
sham group, the chest was surgically opened without LAD ligation. Echocardiography
was performed every time point. The mice were anesthetized and sacrificed by cervical
dislocation at different time points after MI or sham operation. Hearts were collected and
stored at −80 ◦C for the next step measurements. The flowchart of this experiment is
illustrated in Fig. 1A. Each test was repeated with at least three mice in each group. Each
test was performed by the same person.

Echocardiography
Echocardiography was performed on the VisualSonics machine Vevo 3100. Mice were
anesthetized by Isoflurane (Rayward Life Technology Co., LTD., Shenzhen, China).
Mouse chests were hair-shaved, and the animals were positioned on a warm cushion. Left
ventricular ejection fraction (LVEF) was measured in M-mode short-axis at the level of
papillary muscles.

Masson staining, Sirius red staining and Wheat germ agglutinin
staining
The infarction regions of left ventricular tissues were fixed in 4% paraformaldehyde
(Servicebio, Wuhan, China) for at least 24 h, then embedded in paraffin. Sections of
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Figure 1 Extent of MI, myocardial hypertrophy and systolic function of heart. (A) Procedure of mice
MI modeling after injecting with AAV9. (B) Echocardiography of the mice and the qualified EF ratios in
each group. (C) MI areas display in the Masson-stained mouse hearts. Scale bars represent one mm. (D)
Ratios of MI areas to the ventricular cavity. (E) Myocyte areas four weeks after MI modeling in different
groups (qualified from the WGAs staining). Scale bars represent 50 µm. (F) Survival curves of mice in
each group (*: p< 0.05, **: p< 0.01).

Full-size DOI: 10.7717/peerj.15841/fig-1

3–6 µm thickness were stained following the standard protocol of Masson trichrome
(BP028; Biossci, Beijing, China), Picro Sirius Red Stain Kit (Phygene, Fuzhou, China)
and fluorescein isothiocyanate-conjugated wheat germ agglutinin (WGA-FITC, MP6325;
MKbio, Gyeonggi-do, China) respectively. In Masson-stained sections, myocardial cells
appear red, while collagen appears blue. After sirius red staining, collagen I appears
orange, and Collagen III appears green. The results of WGA (Wheat germ agglutinin
(WGA) staining) staining were observed under a confocal microscope (LSM 880; Zeiss,
Oberkochen, Germany).
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Immunofluorescence analysis
In the immunofluorescence staining, the β-catenin was tagged by β-catenin antibody
(1:200; Affinity), and TFEB protein was tagged by TFEB (1:200; Absin) antibody. and the
nuclei were counterstained with 0.5 µg/mL 4′,6-diamidino-2-phenylindole (DAPI; 1:500,
Solarbio). The result of staining was imaged using an immunofluorescence microscope
(BX53; Olympus).

Protein extraction and Western blotting
Proteins in Cells or mice organs were extracted following standard procedures using the
protein extraction reagents of Ripa (Millipore, Burlington, MA, USA), PMSF (CST), a
protease inhibitor (Roche), and phosphatase inhibitor (Roche, Basel, Switzerland). The
protein concentration was tested by the BCA Quantitative Kit (Thermo Fisher Scientific,
Waltham, MA, USA). Equal amounts of total protein (30 µg) were separated by 8%
SDS-PAGE gels and transferred to PVDF membranes. After being blocked in 5% skim
milk for one hour, the membranes were subsequently incubated with primary antibodies at
4 ◦C overnight and then the secondary antibodies at room temperature for one hour. The
membranes were then exposed to chemiluminescence developing agents. The antibodies
used in this process were as followed:mouse anti-Collagen III (NBP1-05119, Novus), rabbit
anti-Collagen I(NB600-408; Novus, Zhejiang, China), rabbit anti- β-catenin (AF6266;
Affinity), rabbit anti-TFEB (abs131998; Absin, Shanghai, China), and rabbit anti-GAPDH
(sc-166545; Santa Cruz Biotechnology, Dallas, TX, USA). GAPDH was used as an internal
control.

Myocardial fibroblasts isolation and culture
Primary neonatal rat myocytes were isolated from the heart of 1- to 3-day-old SD rats,
digested with 0.05% collagenase type II and trypsin, and dispersed via gentle mechanical
attrition. After centrifugation, cells were cultured in DMEM/F-12 (Gibco), supplemented
with 10% fetal bovine serum (Gibco, Billings, MT, USA), 50 U/mL penicillin, 50 µg/mL
streptomycin in a 37 ◦C, 5%CO2 incubator in NHC key Laboratory of Assisted Circulation.
The second generation of the CFs was used for the experiments. Cells were treated with
virus or siRNA and were cultured in a serum-free medium at least 24 h before being treated
with 5 ng/ml TGF-ß1(Sino Biological, Beijing, China) or in combination with 100 µM
PNU-74654 (HY-101130, MCE) for 12 h.

Cell counting kit-8 (CCK-8) assay and EDU assay
CFs were transferred into 24-well plates. Cells were treated with Virus or siRNAs and were
cultured for at least 24 h in a serum-free medium before being treated with 5ng/ml TGF-ß1
for 12 h. The proliferation of cells was determined by a CCK-8 kit (MCE) and an EDU
kit (KTA2030; Abbkine). The optical density (OD) of each well was examined at 450 nm
using a microplate reader (Thermo Fisher Scientific). The proliferation rate was calculated
by the results of OD and fluorescence.

Transwell assay and wound healing
Transwell assay and wound healing was performed on the second generation of the CFs
respectively. Cells were treated with Virus or siRNAs and were cultured for at least 24 h in
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a serum-free medium before being co-incubated with 5ng/ml TGF-ß1and the Transwell
inserts for 12 h. CF cells were plated on the upper side of the chambers in Transwell assay.
After 12 hour’s incubation, the cells that migrated to the lower side of the chambers were
counted through DAPI staining. Draw a straight line with a 200ul tip in wound assay.
Photographs were taken continuously for 24 h by Biotek Lionheart F.

Statistical analysis
All data were presented as the means± standard deviation (SD). The results were analyzed
by one-way analysis of variance (ANOVA) or the Student t -test, and a p< 0.05 was
considered to be statistically significant.

RESULTS
Extent of MI, myocardial hypertrophy and systolic function of heart
To evaluate the effect of TFEB on cardiac function after MI, a MI model was made in mice.
Four weeks after MI, left ventricular hypertrophy (Fig. S1). AAV9 was used to up-regulate
or down-regulate the expression of TFEB (Fig. S2). The echocardiography after three and
four weeks of MI modeling confirmed a higher EF value in the AAV9-TFEB group (Fig. 1B
and Fig. S3). In the AAV9-TFEB group, the ratio of infarcted area to left ventricle length was
lower than the AAV9-NC group four weeks after modeling (Figs. 1C–1D). The surviving
cardiomyocytes become hypertrophy as time prolongs (Figs. S4A–S4C). AAV9-shTFEB
group showed a larger myocyte area than the AAV9-shNC group. WGA staining showed
that TFEB down-regulation was associated with more severe cardiac hypertrophy (Fig. 1E).
Survival curves were significantly better among the AAV9-TFEB group than the AAV9-NC
group, and worse among the AAV9-shTFEB group (Fig. 1F) (log-rank P < 0.05).

TFEB affected the differentiation of fibroblasts and extracellular
matrix synthesis and transformation in vivo
Two to four days after modeling, fibroblasts activated by the stimulation of inflammatory
cytokines began to proliferate and produce ECM (Kurose, 2021). As revealed by the Sirius
red staining, AAV9-shTFEB group had a higher concentration of collagen I and III than
the AAV9-shNC group (Fig. 2A).

The effects of TFEB on cardiac fibroblasts during fibrosis model in
vitro
TGF-ß1 was used to simulate fibroblast proliferation and its differentiation into
myofibroblasts. CFs cells were co-incubated with TGF- β1 of different concentrations
including 2 ng/mL, 5 ng/mL, eight ng/mL, 10 ng/mL, and 20 ng/mL for different duration
including 6, 12, 24, 36, and 48 h. CCK-8 results indicated that low concentration TGF-
β1 promoted CFs proliferation, while high concentrations weakened the promotion effect
(Fig. 3A). Western blot showed that α-SMA elevated obviously with 5ng/ml TGF- β1 (Fig.
3B). Ad-TFEB group showed lower proliferation rate than the Ad-Gfp group in the CCK-8
test after 12 h of co-incubation with 5ng/ml TGF- β1 (Fig. 3C). Transwell and Wound
healing results showed the Ad-TFEB group had a lower cell migration than the Ad-Gfp
group (Figs. 3D–3E and Fig. S5). Western blot results indicated that 12-hour TGF- β1

Liu et al. (2023), PeerJ, DOI 10.7717/peerj.15841 7/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.15841#supp-2
http://dx.doi.org/10.7717/peerj.15841#supp-3
http://dx.doi.org/10.7717/peerj.15841#supp-4
http://dx.doi.org/10.7717/peerj.15841#supp-5
http://dx.doi.org/10.7717/peerj.15841#supp-5
http://dx.doi.org/10.7717/peerj.15841#supp-6
http://dx.doi.org/10.7717/peerj.15841


Figure 2 TFEB affected the differentiation of fibroblasts and extracellular matrix synthesis and trans-
formation in vivo.MI areas stained by Sirius red four weeks after MI. Collagen I was stained into orange
and Collagen III was stained into green. Scale bars represent 10 µm. The expression levels of Collagen I
and Collagen III were quantified and presented as mean± standard deviation. (*: p < 0.05, **: p < 0.01,
****: p< 0.0001).

Full-size DOI: 10.7717/peerj.15841/fig-2
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stimulation increased collagen I expression. The Si-TFEB group had a higher collagen I
expression than the Si-NC group (Fig. 3F).

TFEB relocated to nucleus and made connection with Wnt pathway
by β-catenin-TCF/LEF1 complex
Previous studies have provided that the Wnt signaling is involved in cell proliferation
and differentiation progress, and is necessary for cardiac myocyte formation (Chen et al.,
2001; Moon et al., 2002). Immunofluorescent staining suggested that TFEB didn’t affect
the concentration of β-catenin. High resolution confocal microscopy analysis showed that
colocalization between TFEB and β-catenin in the nucleus. By inhibiting the β-catenin-
TCF/LEF1 complex formation, PNU-74654 decreased the concentration of β-catenin in
the nuclear (Fig. S7A and Figs. 4A–4B). Lamin-B1 and GAPDH were used as an internal
control of nucleus and cytoplasm in Western blot. IF and Western blot showed that TFEB
relocated to nuclear in fibrosis model (Figs. S6A–S6B). According to results from CCK8,
Transwell, wound healing and western blot assays, the enhancements of cell migration,
proliferation and collagen I expression by inhibiting TFEB was prevented by PNU-74654
(Figs. 4C–4F and Fig. S7B). TFEB exerts its anti-fibrotic effect probably by inhibiting Wnt
signaling pathway, which has been shown to promote fibrosis (Fig. 5).

DISCUSSION
Cardiac repair after MI consists of three phases: a pro-inflammatory phase, an anti-
inflammatory repair or proliferative phase, and a maturation phase (Ong et al., 2018;
Ruparelia et al., 2017a; Westman et al., 2016). This inflammatory process is usually
destructive and leads to excessive death of surviving cardiomyocytes, affecting the final
infarct size (Zhao et al., 2001). Increased TFEB transcription activated by metformin and
cilostazol could protect against I/R injury by regulating autophagy, lysosome, and apoptosis
(Li, Xiang & Xu, 2019; Wang et al., 2019). Javaheri et al. (2019) noticed that macrophage-
specific over-expression of transcription factor EB (M φ-TFEB) expression could improve
ventricular function after IR injury, and TFEB in macrophages played a role in ventricular
remodeling after MI by mediating the inflammatory response. In this study, we verified
that TFEB affected left remodeling after MI, demonstrating that TFEB alleviated infarction
extension and protected the systolic function of the heart (Figs. 1C–1F). WGA staining
showed that TFEB down-regulation was associated with severe cardiac hypertrophy (Fig.
1G). This implies the possibility of using TFEB to protect cardiac function in human MI
patients.

As the final stage of MI repair, the maturation phase is associated with remodeling of the
ECM which commonly lasts for several months. Scar maturation is a process intertwining
the reduction in infarct fibroblast numbers (Frangogiannis, Michael & Entman, 2000), the
differentiation of fibroblast into myofibroblast, the apoptosis of activated fibroblasts, the
and expression of matrix-specific proteins (Fu et al., 2018). The purpose of scarring is to
prevent myocardial rupture and deterioration of partially restricted cardiac function, with
thinning and dilation of the infarcted area and hypertrophy of the other areas (Ong et
al., 2018). Thus, LV remodeling predicts a poor clinical prognosis. The main pathological
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Figure 3 TFEB Affected CFs in Fibrosis model in vitro. (A) Effects of TGF- β1 of different concentra-
tions and incubation time on proliferation of CFs of rats were measured by CCK-8 assay. (B) The expres-
sion of α-SMA was detected using western blotting. (C) Cell viability assessed by CCK-8 assay after rat CFs
were treated with increasing concentration of TGF- β1 for 12 h. (D) Cell migration was evaluated by the
Transwell assay for the unstimulated CFs (control) and the CFs co-incubated with TGF- β1 (5 ng/mL) for
12 h. (E) Cell migration was evaluated by wound healing assay for the unstimulated CFs (control) and the
CFs co-incubated with TGF- β1 (5 ng/mL) for 24 h. Scale bars represent 500 µm. (F) The expression dif-
ference of Collagen I in CFs was detected using western blot (*: p< .05, **: p< 0.01, ***: p< 0.001, ****:
p< 0.0001, ##: p< 0.01).
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Figure 4 TFEB relocated to nuclear andmade connection withWnt pathway by β-catenin-TCF/LEF1
complex. (A) Immunofluorescence staining of TFEB (GFP) and β-catenin (red) of the CFs co-incubated
with TGF- β1 (5 ng/mL) for 12 h. The interaction between TFEB and β-catenin was showed using high
resolution confocal microscopy analysis s. PNU-74654 (100 ng/mL) was used to for 12 h to inhibit β-
catenin-TCF/LEF1 complex (40X). Scale bars represent 100 µm. (B) Immunofluorescence staining of
TFEB (GFP) and β-catenin (red) of the CFs co-incubated with TGF- β1 (5 ng/mL) for 12 h. Si-TFEB was
used to inhibit TFEB (40X). Scale bars represent 100 µm. (C) The expression of α-SMA was detected us-
ing western blotting. PNU-74654 (100 ng/mL) was used to for 12 h to inhibit β-catenin-TCF/LEF1 com-
plex. (D) Cell viability assessed by CCK-8 assay after rat CFs were treated with TGF- β1 (5 ng/mL) for
(continued on next page. . . )
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Figure 4 (. . .continued)
12 h. PNU-74654 (100 ng/mL) was used to for 12 h to inhibit β-catenin-TCF/LEF1 complex. (E) Cell mi-
gration was evaluated by the Transwell assay for the CFs co-incubated with TGF- β1 (5 ng/mL) for 12 h.
PNU-74654 (100 ng/mL) was used to for 12 h to inhibit β-catenin-TCF/LEF1 complex. (F) Cell migration
was evaluated by wound healing assay for the CFs co-incubated with TGF- β1 (5 ng/mL) for 24 h. PNU-
74654 (100 ng/mL) was used to for 12 h to inhibit β-catenin-TCF/LEF1 complex (*: p < .05, **: p ¡ 0.01,
***: p< 0.001, ****: p< 0.0001). Scale bars represent 500 µm.

Figure 5 Inhibition effect of TFEB in fibrosis could be mediated by the formation TFEB- β-catenin-
TCF/LEF1 complex.

Full-size DOI: 10.7717/peerj.15841/fig-5

features of ventricular remodeling include extensive fibrosis, pathological cardiomyocyte
hypertrophy, and cardiomyocyte apoptosis. The balance between excessive synthesis
and degradation of myocardial fibrotic collagen is critical for maintaining myocardial
ECM homeostasis. Two to four days after injury, fibroblasts activated by the stimulation
of inflammatory cytokines began to proliferate and produce ECM (Kurose, 2021). The
transformation from fibroblasts to myofibroblasts mainly occurred four to seven days
after MI (Fu et al., 2018). Myofibroblasts are characterized by the extensive endoplasmic
reticulum, the expression of α-smooth muscle actin (α-SMA), and the synthesis of
matricellular proteins (Hinz, 2010). Thus, we detected the myofibroblasts by α-SMA
staining. In our study, TFEB inhibited fibroblast differentiation into myofibroblasts as
early as three days after MI (Fig. 3A). TFEB inhibited collagen I expression in the fibrosis
model in vivo (Fig. 3F). Four weeks after MI, TFEB over-expression decreased collagen
III synthesis in mice (Fig. 2A). In the context of myocardial fibrosis, TFEB inhibited cell
migration and collagen I concentration at the cellular level (Figs. 3D–3F). Unveiling the
impacting mechanisms of TFEB in the fibrosis process requires further investigations.

Previous studies have provided that the Wnt signaling is involved in cell proliferation
and differentiation progress, and is necesssary for cardiac myocyte formation (Chen et al.,
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2001; Griffin et al., 2022; Moon et al., 2002; Zhang et al., 2022). In MI model, inhibition of
Wnt signaling was shown to reduce collagen concentration and improve cardiac function
(Barandon et al., 2011; Fan et al., 2018; Laeremans et al., 2011). The Wnt proteins have
been mainly implicated in the promotion of cardiac fibroblast proliferation and collagen
expression process (Laeremans et al., 2011).

In recent years, many studies have reported the role of Wnt signaling in cardiac
fibrosis in various animal models (Deb, 2014). Classical Wnt/ β-catenin signaling leads
to epicardial fibrosis in allogeneic heart grafts, and increased activation of β-catenin and
TCF/LEF is observed in transplanted human hearts (Ye et al., 2013). Acute ischemic
cardiac injury can up-regulate Wnt1 expression, which is initially expressed in the
epicardium and subsequently expressed by cardiac fibroblasts in the injured area, and
Wnt1 induces proliferation of cardiac fibroblasts and expression of profibrotic genes
(Duan et al., 2012; Von Gise & Pu, 2012). The use of Dishevelled (DVL) to inhibit the
overexpression of GSK-3 β and activate canonical and non-canonical Wnt signaling
pathways can induce spontaneous myocardial fibrosis and cardiac hypertrophy (Malekar et
al., 2010). Meanwhile, Wnt pathway antagonists have also been used to alter the prognosis
of fibrosis. secreted frizzled-related protein (sFRP) is a soluble protein with a structure
highly homologous to the Fz receptor of Wnt signaling and is a commonly used antagonist
of Wnt pathway (Cruciat & Niehrs, 2013; Sklepkiewicz et al., 2015). In myocardial infarct-
related studies, inhibition of the Wnt pathway using sFRP1, sFRP2, or sFRP4 was shown
to reduce fibrosis and improve cardiac function (Barandon et al., 2011; Fan et al., 2018; He
et al., 2010; Laeremans et al., 2011; Matsushima et al., 2010). Mice lacking sFRP1 exhibit
increased expression of Wnt ligands, β-catenin, α-SMA, and collagen (Sklepkiewicz et al.,
2015). Expression of sFRP2 in cardiac fibroblasts activates Wnt/ β-catenin signaling and
promotes proliferation and expression of ECM genes in fibroblasts (Lin et al., 2016). In
contrast, SFRP2-deficient mice produced less collagen and had less fibrosis in cardiac
fibroblasts after MI (Kobayashi et al., 2009). By inhibiting GSK-3 β in cardiac fibroblasts
and activating the classical Wnt pathway, fibrogenesis in the infarcted heart can be
promoted (Lal et al., 2014). In addition, the development of post-inflammatory fibrosis
was successfully prevented by the administration of sFRP2 in amousemodel of autoimmune
myocarditis (Blyszczuk et al., 2017). In a model of myocardial fibrosis induced by aortic
coarctation, inhibition of β-catenin in cardiac fibroblasts reduced interstitial fibrosis
without changing the number of activated cardiac fibroblasts (Xiang, Fang & Yutzey,
2017).

Another significant finding of this study is the identification of TFEB as an important
regulator of the Wnt signaling. TFEB is a well-known master regulator of autophagy and
lysosomal biogenesis processes (Du et al., 2022; Evans et al., 2022; Godar et al., 2015; Ma
et al., 2015). In the process of fibrosis modeling, TFEB and β-catenin were observed to
colocalize within nucleus in fibrosis modeling (Fig. 4A). By inhibiting the β-catenin-
TCF/LEF1 complex formation, PNU-74654 decreased the concentration of β-catenin in
the nuclear (Fig. 4B). Our findings indicated that the concentration of β-catenin was not
influenced by TFEB. Moreover, PNU-74654 was observed to counteract the increase in
cell migration, proliferation, and collagen I expression that resulted from the inhibition
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of TFEB (Figs. 4A–4F). The nuclear localized TFEB forms a TFEB- β-catenin-TCF/LEF1
complex to induce the transcription of genes, that being distinct from previously known
regulated by the β-catenin-TCF/LEF1 complex (Kim et al., 2021).The very first possibility
is that the inhibition effect of TFEB in fibrosis was mediated by the formation TFEB-
β-catenin-TCF/LEF1 complex, which changed the gene expression profile of β-catenin
(Fig. 5). It is possible that the influence of TFEB on fibroblasts is mediated via the Wnt
pathway. Our study provides evidence that TFEB’s anti-fibrotic activity is likely achieved
through the suppression of the Wnt signaling pathway, a mechanism known to foster
fibrosis However, more studies may be needed to clarify other pathways through which
TFEB may influence.
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