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 2 

Abstract 25 

 26 

Neocortical spiking dynamics control aspects of behavior, yet how these dynamics emerge during motor 27 

learning remains elusive. Activity-dependent synaptic plasticity is likely a key mechanism, as it 28 

reconfigures network architectures that govern neural dynamics. Here, we examined how the mouse 29 

premotor cortex acquires its well-characterized neural dynamics that control movement timing, specifically 30 

lick timing. To probe the role of synaptic plasticity, we have genetically manipulated proteins essential for 31 

major forms of synaptic plasticity, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Cofilin, in 32 

a region and cell-type-specific manner. Transient inactivation of CaMKII in the premotor cortex blocked 33 

learning of new lick timing without affecting the execution of learned action or ongoing spiking activity. 34 

Furthermore, among the major glutamatergic neurons in the premotor cortex, CaMKII and Cofilin activity 35 

in pyramidal tract (PT) neurons, but not intratelencephalic (IT) neurons, is necessary for learning. High-36 

density electrophysiology in the premotor cortex uncovered that neural dynamics anticipating licks are 37 

progressively shaped during learning, which explains the change in lick timing. Such reconfiguration in 38 

behaviorally relevant dynamics is impeded by CaMKII manipulation in PT neurons. Altogether, the activity 39 

of plasticity-related proteins in PT neurons plays a central role in sculpting neocortical dynamics to learn 40 

new behavior.   41 
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 3 

Introduction 42 

 43 

Neural computations are mediated by time-varying and coordinated spiking activity across a population of 44 

neurons, referred to as neural dynamics. For example, during the planning of volitional movement, the 45 

premotor cortex exhibits slowly varying neural activity that determines the type and timing of upcoming 46 

movement, referred to as preparatory activity1,2. Previous research has shown flexible reconfiguration of 47 

dynamics, including preparatory activity, during motor learning3–16. But the neural mechanisms that reshape 48 

the neocortical dynamics to enable acquisitions of new behavior remain elusive. 49 

 50 

Network architectures, i.e., synaptic connections, constrain neural dynamics17. Therefore, altering specific 51 

connections in the network architecture through synaptic plasticity is the primary theory for learning12,14,18. 52 

First, experience- and learning-dependent synaptic plasticity has been observed across many brain areas7,19–53 

27. Second, essentially all neurons are equipped with molecular pathways that mediate plasticity28–32. Third, 54 

manipulations of synaptic plasticity influence learning, although this has primarily been investigated in the 55 

hippocampus, amygdala, and cerebellum33–38 and far less in the neocortex11,39–41.  56 

 57 

The neocortex contains diverse neuronal cell types across layers, characterized by unique gene expression 58 

profiles and anatomical features42–44. These cell types often carry distinct information and contribute to 59 

different aspects of neural dynamics and behavior in expert animals performing tasks45–48. The function of 60 

synaptic plasticity during learning may also vary across neocortical cell types to shape these cell-type-61 

dependent dynamics and behavior.  62 

 63 

To probe the role of synaptic plasticity across cell types during motor learning, we performed a series of 64 

acute genetic manipulations of proteins required for synaptic plasticity. We studied learning of motor timing 65 

in mice, focusing on the premotor cortex, as it provides several advantages. First, neocortical dynamics in 66 

the premotor cortex and their causal roles on behaviors, including timing behavior, have been well-67 
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established in expert animals1,2,49–53. In addition, the premotor cortex has been implicated in learning across 68 

tasks and species10,54–56, making it an ideal site to examine the function of plasticity in reconfiguring 69 

dynamics during learning. Finally, animals are adept at learning motor timing, making it a quick and robust 70 

system to study learning. Leveraging this model system with molecular manipulations and high-density 71 

electrophysiology, we identified the key cell type required to shape behaviorally relevant neocortical 72 

dynamics and timing of action.  73 

 74 

Results 75 

 76 

CaMKII activity in ALM is necessary to learn new lick timing 77 

 78 

We developed an operant motor timing task, in which water-restricted mice learn to delay their lick time in 79 

order to acquire water rewards (Fig.1a and Methods). Trial onset was signaled by an auditory cue (3 kHz 80 

tone, 0.6 s), and a lick after a following unsignaled delay epoch was rewarded (rewarded trials). An early 81 

lick during the delay epoch aborted the trial without a reward. Training proceeded in two stages. First, mice 82 

were trained to lick after the cue onset with a minimal delay (0.1 s, ‘cue association’). Second, the delay 83 

duration was gradually increased (‘delay training’; reaching criterion performance, 30% rewarded trials in 84 

the last 100 trials with a given delay duration, resulted in a delay increase of 0.1 s; Methods). Following 85 

this protocol, mice learned to delay lick timing within and across sessions (Fig. 1b; lick time reached 1.20 86 

± 0.31 s, mean ± SEM, in 6 days of delay training, n = 6 mice). High-speed videography (300 Hz) revealed 87 

that animals moved their jaw and tongue before the full tongue protrusion (Extended Data Fig. 1a-f). Yet, 88 

the delayed lick time after training was primarily due to the withholding of orofacial movement (Extended 89 

Data Fig. 1a-f).  90 

 91 

Next, we examined whether synaptic plasticity in the anterior-lateral motor cortex (ALM; AP 2.5mm ML 92 

1.5 mm from Bregma), a premotor cortical area responsible for orofacial movement5,57, is required for this 93 
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Figure 1.  CaMKII activity in ALM is required for delay learning. 
 
a. Task design. 
b. Example learning curve. Distributions of lick time per trial bin are shown (50 trials; Methods). Vertical dotted lines separate 

sessions. 
c. paAIP2 manipulation during learning. The blue light was on during the delay training but not cue association. Day 0, the last 

day of cue association. The median lick times of the last 100 trials are shown. Thick lines, mean ± SEM. Thin lines, individual 
mice (n > 5 for ‘ALM’ and ‘No’ per condition, and n = 4 for ‘M1’).  *: p < 0.05 (bootstrap followed by Bonferroni correction).  
See Extended Data Table 3 for the exact n and p-values. Right, example learning curves of mice with paAIP2 expression in 
ALM (top, light off; bottom, light on). The format is the same as in b. 

d. Distribution of first lick time on the second day of cue association. ‘Cue’ and ‘No cue’, trials with and without a cue, respectively 
(Methods; cue starts at the trial onset in cue trials).  Different distributions between cue and no cue trials indicate successful cue 
association. Shade, SEM. pcue with vs. w/o light = 0.571 (ranksum test, n = 3 and 5 mice, light on and off respectively). 

e. ALM paAIP2 manipulation in expert animals. Comparing the first lick time within a session (100 trials before and after the 
onset of blue light). Thick lines, mean ± SEM. Thin lines, individual sessions (n = 4 mice, 20 sessions). p = 0.117 (bootstrap). 
See Methods for the shuffle procedure. 

f. Knocking out CaMKII⍺ expression in ALM. Thick lines, mean ± SEM. Thin lines, individual mice (n = 6 mice per condition). 
*: p < 0.05 (bootstrap followed by Bonferroni correction).  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.09.552699doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.09.552699
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 5 

learning. To this end, we blocked the activity of CaMKII,  a Ca2+-dependent kinase required to induce major 94 

types of synaptic plasticity and learning27,29,30,32,33. A transient manipulation of CaMKII activity using a 95 

genetically-encoded photoactivatable competitive inhibitor of CaMKII, paAIP2, blocks the induction of 96 

synaptic plasticity37 in the presence of blue light without influencing the excitability of neurons (Extended 97 

Data Fig. 2a-f).  98 

 99 

Control mice without paAIP2 expression learned new lick timing regardless of blue light illumination of 100 

ALM (470nm, 0.5mW, 0.2 Hz; Fig. 1c, first column; Methods). In contrast, AAV-mediated bilateral 101 

paAIP2 expression in ALM blocked learning when blue light was illuminated during the delay training, but 102 

not in the absence of blue light (Fig. 1c, second column; Extended Data Table 3; Extended Data Table 1 103 

and 2).  Notably, during light illumination, mice continued licking after the cue without a change in the 104 

variability of lick time (Fig.1c and Extended Data Fig 1g-j). This implies that paAIP2 manipulation does 105 

not block animals’ ability to explore different lick times across trials (which is a prerequisite for 106 

reinforcement learning58). Instead, the manipulation interferes with the ability to directionally shift the 107 

distribution of lick times, presumably guided by rewards. Similar manipulation in M1 (AP 0.0mm ML 1.5 108 

mm from Bregma) did not block learning (Fig. 1c, third column), implying that CaMKII activity in ALM 109 

is required for delay learning. 110 

 111 

The ALM paAIP2 manipulation did not interfere with the cue association (Fig. 1d). In expert mice trained 112 

for two weeks with a fixed delay at 1.5 s (Methods), paAIP2 manipulation did not alter the distribution of 113 

lick timing, implying that CaMKII activity in ALM is not required for mice to execute learned delayed licks 114 

(Fig. 1e). Electrophysiological recording of ALM in expert mice confirmed that paAIP2 manipulation does 115 

not directly perturb ongoing spiking dynamics during behavior (Extended Data Fig. 2g-o). Altogether, 116 

CaMKII activity in ALM is specifically required for learning new lick timing but not for the initial cue 117 

association, the execution of learned action, or ongoing spiking activity. 118 

 119 
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CaMKII⍺ isoform is required for synaptic plasticity and learning, while other CaMKII isoforms are 120 

implicated in different cellular functions30,59. Since paAIP2 binds to the kinase domain homologous across 121 

the CaMKII family37, paAIP2 likely blocks all of them. To test whether CaMKII⍺ in ALM is required for 122 

learning, we acutely knocked it out in adult ALM by injecting AAV-hsyn-cre in CaMKII⍺ conditional 123 

knockout mice60 (Fig. 1f and Extended Data Fig. 3c). These mice learned cue association, yet could not 124 

learn to delay lick timing (Fig. 1f), consistent with the paAIP2 manipulation. Altogether, learning new lick 125 

timing requires CaMKII⍺ activity in ALM. 126 

 127 

Synaptic plasticity proteins in PT but not IT cells are required for motor learning 128 

 129 

The major excitatory cell types in the premotor cortex include IT and PT neurons, projecting within and 130 

outside the telencephalon, respectively (Fig. 2a). Both of these cell types highly express CaMKII⍺ in ALM43 131 

(Extended Data Fig. 3). The key question is whether synaptic plasticity in these diverse populations has 132 

redundant or specialized roles in learning. We generated an AAV expressing paAIP2 in a cre-dependent 133 

manner to manipulate CaMKII activity in distinct neocortical cell types (Fig. 2b). Strikingly, paAIP2 134 

manipulation of PT neurons in ALM completely blocked delay learning without affecting the distribution 135 

of cue-triggered lick, similar to the bulk manipulation across cell types (Fig. 2b and c; Extended Data Fig.1). 136 

We observed consistent behavioral effects whether we labeled PT neurons using Sim1-cre KJ18 transgenic 137 

line61 or manipulated individual PT subtypes using retrograde AAV (PTupper and PTlower neurons with 138 

distinct subcortical projection47; 2700 ± 208 manipulated cells/animal, mean ± SEM; Fig.2c and Extended 139 

Data Fig. 4). In contrast, paAIP2 manipulations in IT neurons (layer 2/3 and 5 IT neurons) did not block 140 

learning (Fig. 2c).  141 

 142 

To test the necessity of the CaMKII⍺	isoform across cell types, we acutely knocked out CaMKII⍺ using 143 

CRISPR/Cas9. We injected AAV expressing guide RNA against CaMKII⍺30 in ALM of adult mice 144 
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Figure 2.  CaMKII activity in PT neurons is required for delay learning. 
 
a. Network architecture and cell types in ALM. 
b. Expression of paAIP2 in ALM PTupper neurons. 
c. The effect of paAIP2 manipulation in distinct cell types in ALM. ‘No’ and ‘ALM’ are duplicated from Figure 1c for comparison 

purposes. Thick lines, mean ± SEM. Thin lines, individual mice (n > 3 mice per condition). *: p < 0.05 (bootstrap followed by 
Bonferroni correction; Extended Data Table 3). 

d. Top, cell-type-specific KO of CaMKII⍺ using CRISPR/Cas9. Bottom, immunohistochemical validation of loss of CaMKII⍺ 
protein expression in PTupper neurons. 

e. The effect of CaMKII⍺ KO in PTupper and IT neurons. Thick lines, mean ± SEM. Thin lines, individual mice (n > 4 mice per 
condition). *: p < 0.05 (bootstrap followed by Bonferroni correction; Extended Data Table 3) 

f. The effect of inactivating Cofilin in PTupper and IT neurons. Thick lines, mean ± SEM. Thin lines, individual mice (n > 4 per 
condition). *: p < 0.05 for both Cofilin-SN light on vs. off comparison and Cofilin-SN light on vs. unconjugated light on 
conditions (bootstrap followed by Bonferroni correction; Extended Data Table 3). 
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expressing Cas962 in PTupper or IT neurons (Methods). After a month of AAV injection, a significant 145 

proportion of cells that co-express Cas9 and guide RNA lost CaMKII⍺ protein expression (Fig. 2d and 146 

Extended Data Fig. 3). PTupper-specific knockout of CaMKII⍺	blocked delay learning without any effect on 147 

cue association, whereas IT-specific knockout did not affect learning, consistent with the paAIP2 148 

manipulations (Fig. 2e).  149 

 150 

As an independent approach to manipulate synaptic plasticity, we inactivated Cofilin, a protein required for 151 

actin remodeling during major forms of synaptic plasticity38. To this end, we leveraged Cofilin conjugated 152 

with SuperNova (Cofilin-SuperNova), a monomer photosensitizing fluorescent protein for Chromophore 153 

Assisted Light Inactivation (CALI)38. PTupper-specific expression of Cofilin-SuperNova and orange light 154 

illumination (595 nm, 0.75 mW, 1 min every 10 min) during the delay training blocked learning without 155 

affecting cue-triggered licks (Fig. 2f). In contrast, no illumination or unconjugated SuperNova with 156 

illumination did not affect learning, implying that CALI-mediated inactivation of Cofilin blocked the 157 

learning. Consistent with the CaMKII manipulation, manipulating Cofilin in IT neurons did not affect 158 

learning. Altogether, three cell-type specific acute genetic manipulations imply that synaptic plasticity in 159 

PT but not IT neurons is necessary to learn new lick timing. 160 

 161 

Evolution of ALM preparatory dynamics during delay learning 162 

 163 

Since preparatory activity determines the upcoming actions2, ALM preparatory dynamics are likely tailored 164 

during learning new lick timing. To characterize preparatory activity in our behavioral task, we performed 165 

acute high-density extracellular electrophysiological recordings in ALM during learning and in expert mice 166 

(Fig. 3 and Extended Data Fig. 5; with rigorous quality control in spike sorting, Extended Data Fig. 6). 167 

Among the 3203 putative pyramidal neurons we recorded from 30 mice, we focused on 1613 neurons with 168 

preparatory activity (defined as neurons with significant activity between cue and lick, signed-rank test, p 169 

< 0.05; Methods; Extended Data Fig. 7 and Table. 3).  170 
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Figure 3.  Evolution of ALM dynamics during delay learning. 
 
a. Spiking activity of example neurons in expert mice. Lines with different colors indicate the mean spike rate of trials with 

different first lick times (vertical dotted lines in the same color indicate the corresponding lick time). Top, activity in absolute 
time. Bottom, activity in relative time, following temporal warping (all trials were warped to have identical lick time; Methods). 

b. Grand average peri-stimulus time histogram (PSTH) of positively-modulated ALM preparatory neurons (cells with the mean 
spike rate between cue and lick significantly higher than the baseline). The same format as in a. Shade, SEM. Trial types with 
more than 50 neurons are shown. See Extended Data Table 3 for the number of neurons analyzed. 

c. Z-scored spiking activity of preparatory ALM neurons in trials with first lick time within 0.95-1.1 s (first column) and 1.25-1.4 
s (second column). All preparatory neurons with these two trial types are shown (n = 344 cells). The difference between the first 
and second columns after temporal warping (third column).  

d. Pearson’s correlation of population activity between two trial types shown in c. 
e-h. Same as in a-d for during learning. g-h: N = 269 cells. Note that many cells show a decrease in spiking activity as mice lick 

later (third column), unlike in the expert mice (c), consistent with the population average (f). 
i. Comparison of cue response between trials with different lick times (calculated based on the grand average PSTH shown in b 

and f). P-value; hierarchical bootstrap testing the significance of correlation coefficient between lick time vs. cue-response (with 
a null hypothesis that there is no correlation). Error bar, SEM (hierarchical bootstrap). Left, schema showing time windows used 
to calculate cue response and pre-lick activity. SR, spike rate. Tcue, time from the cue. Tlick, time from lick. 

j. Same as in i for pre-lick activity. 
k. The time between 10% to 90% activity is calculated for the grand average PSTH shown in b and f (Methods). P-value; 

hierarchical bootstrap testing the significance of correlation coefficient between lick time vs. the time between 10-90% activity. 
Error bar, SEM (hierarchical bootstrap). 
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 171 

First, we leveraged trial-to-trial variability of lick time (CV = 0.41 ± 0.04; mean ± SEM; Extended Data 172 

Fig. 1k) to characterize how ALM preparatory dynamics change as a function of lick time in expert mice. 173 

Many ALM neurons showed ramping spiking dynamics starting at the cue onset and reaching a peak around 174 

the lick onset2,52 (Fig. 3a, cell 175, and Fig. 3b). When expert mice licked at different timing, the slope of 175 

ramping activity was altered without a change in the peak activity level (Fig 3a and b; trials with different 176 

lick times are shown in different colors). Consistently, temporal warping of spiking dynamics to normalize 177 

the lick time resulted in near-identical activity patterns across trials at both single-cell and population levels 178 

(even for non-ramping up cells, e.g., cell 232 in Fig. 3a; Fig 3b and c and Extended Data Fig. 5; Methods). 179 

Thus, the ALM preparatory dynamics are temporally stretched or compressed to trigger licking at different 180 

times in expert animals, consistent with previous observations in other tasks51–53,63,64.  181 

 182 

Next, we examined whether similar reconfiguration in ALM dynamics underlies learning. At the beginning 183 

of delay training, mice licked early, and ALM neurons showed a transient response to the cue (Fig. 3e and  184 

f and Extended Data Fig.5; blue traces). Since strong ALM activity drives a lick5,45, this high amplitude 185 

cue response may explain immediate licks following the cue.  186 

 187 

As mice licked later during learning, ALM dynamics progressively changed (Fig. 3e-f; from blue to red 188 

traces). First, the spiking activity following the cue decreased (‘cue response’; Fig. 3i), which may explain 189 

the loss of immediate licks. In contrast, the activity around the lick onset (‘pre-lick activity’) stayed high 190 

across trials (Fig. 3j), which may function as a ‘threshold’ activity level to trigger lick51. Second, slow 191 

dynamics (persistent or ramping activity) emerged, and filled the extended temporal gap between the cue 192 

and the delayed lick (Fig. 3k and Extended Data Fig. 7; the time between 10% to 90% activity level 193 

increased). These two modes of reconfigurations continued throughout delay training, converting the 194 

transient cue response into a ramping activity observed in the expert mice (Fig. 3f). Unlike in experts, ALM 195 

dynamics during learning were distinct across lick timings after the temporal warping (Fig. 3e-g). 196 
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 197 

During learning, Pearson’s correlation of ALM population activity between trials with different lick times 198 

is high across time points after the cue (Fig. 3h). This implies similar population activity patterns constitute 199 

preparatory activity across lick times (while the amplitude of activity changes). Consistently, a large 200 

proportion of the ALM preparatory activity is explained along a single dimension (65-80%; Extended Data 201 

Fig. 8), implying that learning reconfigures dynamics in a low-dimensional space65. In contrast, in the expert 202 

mice, population activity patterns changed between cue to lick, and thus the dimensionality is higher (Fig. 203 

3d and Extended Data Fig. 8). Altogether, the reconfiguration of ALM preparatory dynamics during 204 

learning is qualitatively different from that in expert animals. 205 

 206 

Blocking CaMKII activity in ALM PT neurons impedes the evolution of dynamics 207 

 208 

We next asked how the CaMKII manipulation in PT neurons influences the reconfigurations of ALM 209 

preparatory dynamics. To this end, we performed extracellular electrophysiological recordings in ALM in 210 

conjunction with PT neuron-specific paAIP2 manipulation during delay training (Fig. 4a).  211 

  212 

To quantify how ALM dynamics change over training, we analyzed activity chronologically (Extended 213 

Data Fig. 9a). In control mice, the dynamics slowed down over three days of delay training, consistent with 214 

the delayed lick time (Fig.4b and c, black). In addition, the cue response significantly decreased within a 215 

session on days 2 and 3 of delay training (Fig. 4d; note that the cue response reaches the ‘floor’ as mice 216 

lick later, Fig. 3i, which may explain a stronger reduction on day 2). These reconfigurations of preparatory 217 

dynamics were significantly attenuated in the animals with PT neuron-specific paAIP2 manipulations (Fig. 218 

4c and d and Extended Data Fig. 9a). Since preparatory activity precedes movement, the impedance in its 219 

reconfiguration likely explains the lack of learning during the paAIP2 manipulation. 220 

 221 
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Figure 4.  CaMKII manipulation in ALM PT neurons impedes the evolution of preparatory activity. 
 
a. Schema. Recording of extracellular activity in ALM during paAIP2 manipulation of PTupper (or PTlower) neurons.  
b. Time to first lick during delay training with recording (different cohorts of mice from those tested without recording in Fig.2c). 

Lines, mean ± SEM.  *: p = 0.476, 0.005, <0.001 for day 1, 2, and 3 of delay training, respectively, comparing control vs. PT-
specific paAIP2 manipulation (both PT cell types were pooled for statistics because we did not observe a qualitative difference 
between these two groups; the same in c and d; hierarchical bootstrap with a null hypothesis that the increase in lick time within 
a session is not larger in control). See Extended Data Table 3 for comparisons of each PT cell type and sample size. Early and 
late trials, first 75 and last 75 trials in the session. 

c. The time between 10% to 90% activity of positively-modulated ALM neurons is compared across manipulation types. Lines, 
mean ± SEM.  *: p = 0.400, 0.095, 0.009 for day 1, 2, and 3, respectively, comparing control vs. PT-specific paAIP2 
manipulation (both PT cell types were pooled; hierarchical bootstrap with a null hypothesis that the increase within a session is 
not larger in control). See Extended Data Table 3 for comparisons of each PT cell type and sample size. 

d. The change in cue amplitude of positively-modulated ALM neurons within sessions (late trials – early trials; ∆cue response) of. 
Lines, mean ± SEM. * in red: p = 0.273, 0.006, 0.362 for day 1, 2, and 3, respectively, comparing control vs. PT-specific paAIP2 
manipulation (both PT cell types were pooled; hierarchical bootstrap with a null hypothesis that the decrease within a session is 
not larger in control). * in black: p = 0.039, <0.001, 0.002 on day 1, 2, and 3, respectively, for hierarchical bootstrap with a null 
hypothesis that ∆cue response is non-negative in control mice.  

e. Schema of the model (see Methods for details). All synaptic connections are excitatory, except for the ones from GABAergic 
neurons. “t” in the learning rule, trial. 

f. Top, dynamics of ALM neurons across lick times in the model (the mean of IT and PT neurons activity). Different color indicates 
activity in trials with different lick times. Dotted lines, corresponding lick times. Bottom, schemas of the energy landscape in 
early and late lick trials (along a long-time constant dimension that captures preparatory activity). Note that the full dynamics 
(top) is not monotonic due to activity along other directions. 

g. The amplitude of cue input (g1), synaptic weight of cue to PT synapse (g2), and lick timing (g3) during learning in the model. 
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Lick time and ALM cue response varied across trials, even during paAIP2 manipulations (Extended Data 222 

Fig. 7 and 9). In rare trials in which mice happened to lick late during PT neuron-specific paAIP2 223 

manipulation, ALM dynamics were similar to that in the control (Extended Data Fig. 7- 9). This implies 224 

that paAIP2 manipulation in PT neurons does not perturb spontaneous fluctuations in ALM dynamics. 225 

Instead, it is required to directionally reconfigure dynamics for learning.  226 

 227 

Potential mechanisms for synaptic plasticity to change lick time 228 

 229 

How can synaptic plasticity in PT neurons reconfigure preparatory dynamics and drive learning? We 230 

generated a network model of ALM (Fig. 4e and Extended Data Table 4; Methods) constrained by previous 231 

findings: IT neurons form strong connections within the neocortex66. PT neurons, in contrast, do not project 232 

back to IT neurons but project to the thalamus and brainstem66 (for simplicity, we combined PT subtypes 233 

in the network model).  The thalamic nuclei receiving PT input project back to ALM, and this 234 

thalamocortical loop maintains the preparatory activity67,68.  The projection of PT neurons to the brainstem 235 

drives a lick when activity is high45,47,48.   236 

 237 

This model implemented preparatory dynamics as ALM activity transitioning from the baseline activity to 238 

the threshold activity level that triggers a lick2 (Fig. 4f). At the beginning of a trial, the transient cue input 239 

rapidly pushes the activity (ball) out of the ‘baseline’ stable point, corresponding to the transient cue 240 

response (thick arrows, Fig. 4f bottom). After this transient excursion, the ball slowly rolls down the energy 241 

landscape until it reaches the threshold activity level to trigger a lick, which explains the slow ramping 242 

dynamics (thin arrows, Fig. 4f bottom). Thus, the amplitude of the cue response influences the following 243 

ramping dynamics (the energy landscape illustrates activity along a single dimension and does not explain 244 

the full dynamics, e.g., non-monotonic transient changes are affected by other dimensions). We varied the 245 

amplitude of the cue input across trials (Fig. 4e and g1), which changed the preparatory activity, and thus, 246 
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induced across-trial variability in lick times as in the data. This allowed exploration of lick times required 247 

for learning58.  248 

 249 

By imposing 1) a simple reward-dependent plasticity rule69 in the excitatory synapse between cue input and 250 

PT neurons and 2) the delay training protocol we applied to mice, the model reproduced the neural dynamics 251 

and learning observed in mice (Fig. 4e-g). A reward was provided when the network happened to ‘lick’ 252 

later than the delay. The reward-dependent plasticity potentiated the synapse, which paradoxically reduced 253 

the cue response due to strong excitatory inputs from thalamus/ALM neurons to the GABAergic neuron70 254 

(alternatively, a model with synaptic depression without paradoxical effect reproduced similar dynamics 255 

and learning; Extended Data Fig. 10c-e). Consequently, in the following trials, the cue response was 256 

reduced, and the lick time was delayed. Thus, the plasticity allowed the network to exploit lick time guided 257 

by reward, and iterations of this cycle resulted in a gradual and directional change in preparatory dynamics 258 

and lick time (Fig. 4f and g). Without the synaptic plasticity in PT neurons, the model displayed no learning 259 

without a change in the variability of lick time, reproducing experimental observations (Fig. 4g, blue). The 260 

same network could reproduce expert dynamics by varying tonic input71 (Extended Data Fig. 10). 261 

Altogether, the model replicates the key experimental observations in this paper and proposes a potential 262 

mechanistic link among them: how synaptic plasticity in PT neurons shapes neocortical dynamics and 263 

behavior, i.e., decreased ALM cue response (Fig. 4d), generated slow dynamics (Fig. 4c), and delayed lick 264 

time (Fig. 4b). 265 

 266 

Discussion 267 

 268 

We provided lines of evidence supporting synaptic plasticity in PT neurons as a learning mechanism in the 269 

motor timing task. First, we performed three types of acute cell-type-specific genetic manipulations 270 

targeting proteins required for synaptic plasticity, all of which blocked delay learning when PT but not IT 271 

neurons were manipulated. Acute manipulations are unlikely to recruit developmental effects or 272 
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compensatory mechanisms72. Importantly, these manipulations did not affect the execution of learned 273 

behavior, implying that the effect is specific to learning39,73. Second, we performed a series of 274 

electrophysiological recordings in and ex vivo (Extended Data Fig. 2), confirming that transient paAIP2 275 

manipulation does not affect the excitability of neurons or ongoing spiking activity. Instead, the paAIP2 276 

manipulation impedes the directional reconfiguration of ALM dynamics, leading to rewarded lick, without 277 

perturbing trial-to-trial fluctuations in dynamics and behavior (Fig. 4 and Extended Data Fig.7-9). This is 278 

consistent with a view that CaMKII activity in PT neurons consolidates dynamics followed by a reward, 279 

presumably via synaptic plasticity of inputs that led to successful actions (Fig 4, model). 280 

 281 

Synaptic plasticity has been observed across nearly all brain areas and cell types, including putative IT 282 

neurons12,19,21, seemingly suggesting global and redundant learning mechanisms. Thus, it was unexpected 283 

for a subset of cell types in one cortical area to be necessary for learning.  284 

 285 

PT neurons occupy a unique position in the neocortex: they integrate the cortical input and control the 286 

information going through the thalamocortical loop that mediates preparatory activity47,67. Plasticity in PT 287 

neurons is, thus, well suited to reconfigure preparatory activity. Interestingly, putative PT neurons 288 

(complex-tuft cells) show active structural synaptic plasticity across areas and conditions19,20,74. In addition, 289 

localized synaptic plasticity, especially at the output nodes of a network like PT neurons, is theoretically 290 

beneficial75,76. Thus, PT neurons could be a universal learning site across neocortical areas and behavioral 291 

tasks. PT neurons encode behavior more reliably than other cortical cell types46, which could result from 292 

behaviorally relevant synaptic plasticity in these neurons. 293 

 294 

Nonetheless, the necessity of one cell type does not exclude the necessity of other cell types and brain areas. 295 

Indeed, we discovered that at least two PT subtypes are required for learning. Neural dynamics are 296 

orchestrated across brain areas, including the striatum and cerebellum. Diverse cell types across these areas 297 

may implement different aspects of motor learning23,73,77–79. Molecular pathways underlying synaptic 298 
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plasticity could also be diverse, and we do not rule out plasticity without CaMKII and Cofilin. Leveraging 299 

genetic manipulations targeting various molecules underlying synaptic plasticity, it is tempting to test how 300 

multiregional cell types coordinate diverse types of learning.  301 

 302 

A common approach in neuroscience is to manipulate spiking activity and test its effect on behavior. Yet, 303 

spiking activity inevitably propagates to connected brain areas and often interferes with movement. For 304 

instance, silencing spikes in ALM alters spiking activity across motor-related brain areas and blocks 305 

licks48,80, which complicates the interpretation of behavioral effects even if it blocks learning81. The paAIP2 306 

manipulations, instead, do not directly affect the ongoing spiking activity or execution of learned behavior. 307 

Molecularly-based plasticity manipulations have been used to test the causality of brain areas for 308 

learning11,37,40,41,78,82. We further advanced such methods with cell-type-specific manipulation combined 309 

with in vivo high-density electrophysiology during learning. This approach could effectively map learning 310 

mechanisms across behavioral tasks and brain areas. 311 

 312 

Animals learn appropriate types and timing of movement. CaMKII manipulations in ALM blocked learning 313 

of lick timing, without affecting the acquisition of tongue movement to the lick port or cue association 314 

(Fig.1). Thus, different mechanisms may underlie learning movement types. Interestingly, learning 315 

movement types, such as sensory-motor association and learning new kinematics, generates new M1 316 

activity patterns during movement across days3–8,13. Although we observed low-dimensional 317 

reconfiguration of ALM preparatory dynamics within sessions (Fig. 3), longitudinal recordings are required 318 

to test the emergence of activity patterns over days. In addition, our manipulations do not distinguish the 319 

type of synaptic plasticity responsible for learning. Furthermore, the pathways providing reward 320 

information and learning rule in PT neurons are unknown. The long-term goal is to explore these questions 321 

by directly and longitudinally monitoring synaptic plasticity and spiking activity of PT neurons during 322 

learning.  323 

 324 
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Impairments in learning and memory have devastating consequences in life. PT neurons are the homologous 325 

population of neurons vulnerable to amyotrophic lateral sclerosis and frontotemporal disorder in humans83. 326 

Identifying neocortical cell types required for learning, our findings and approach could be a foundation 327 

for future translational research of various diseases and injuries that affect learning. 328 
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METHOD DETAILS 349 
 350 
EXPERIMENTAL MODEL AND SUBJECT DETAILS  351 
  352 
Mice  353 
This study is based on both male and female mice (age > P60, except for acute slice recordings that were 354 
P28). We used seven mouse lines: C57BL/6J (JAX# 000664), Tlx-Cre PL56 (RRID: MMRRC_041158-355 
UCD)61, GRP-Cre KH288 (RRID: MMRRC_031183-UCD)61, Sim1-cre KJ18 (MGI: 4367070)61, LSL-356 
Cas9 (B6J.129(B6N)-Gt(ROSA)26Sortm1(CAG-cas9-EGFP)Fezh/J, JAX# 026175)62, CaMKII𝛼-cKO 357 
(JAX# 006575)60 and, Vgat-ChR2-EYFP (JAX# 014548)84. Transgenic mice with non-C57BL/6J 358 
backgrounds were backcrossed to C57BL/6J for at least three generations. See Supplementary Table 1 for 359 
mice used in each experiment.   360 
  361 
All procedures were in accordance with protocols approved by the MPFI IACUC committee. We followed 362 
the published water restriction protocol85 (with a modification of a minimum of 0.6 ml water per day to 363 
compensate for the high humidity in Florida). Mice were housed in a 12:12 reverse light: dark cycle and 364 
behaviorally tested during the dark phase. A typical behavioral session lasted between 1 and 2 hours. Mice 365 
obtained all of their water in the behavior apparatus. Mice were implanted with a titanium headpost for 366 
head fixation and single-housed.  367 
  368 
Virus injection   369 
We followed published protocols (dx.doi.org/10.17504/protocols.io.bctxiwpn) for virus injection. See 370 
Supplementary Table 1 for detailed descriptions of viruses and injection coordinates. See Supplementary 371 
Table 2 for a list of viruses used in this research37,38,86.   372 
  373 
Behavior   374 
A day before the training of the motor-timing task, we habituated mice with the experimental setup. A 375 
water-restricted mouse was head-fixed and placed in a training rig. 100 water drops (approximately 376 
2 µL/drop) were delivered through a lickport at random timing (inter-trial intervals (ITI) sampled from an 377 
exponential distribution with a mean of 7.5s) without any sensory cue.  378 
 379 
Next, we performed two-step training of the motor-timing task: cue association (2-3 days) and delay 380 
training (~6 days). Both training phases shared the following general task structure: At the beginning of 381 
each trial, an auditory cue was presented, which consisted of three repeats of pure tones (3 kHz, 150 ms 382 
duration with 100 ms inter-tone intervals). A delay epoch started from the onset of the cue presentation. 383 
Licking during the delay epoch aborted the trial without water reward, followed by a 1.5 s timeout epoch. 384 
Licking during the 3 s answer epoch following the delay was considered a ‘correct lick’, and a water reward 385 
(approximately 2 µL/drop) was delivered, followed by a 1.5s consumption epoch. Trials without lick during 386 
the delay and answer epochs were considered ‘no response’ trials. Trials were separated by ITI randomly 387 
sampled from an exponential distribution with a mean of 2.2 s with 0.3 s offset (with a maximum ITI of 5 388 
s). This prevented mice from predicting the trial onset without cue. Animals had to withhold licks during 389 
the full ITI epoch for the next trial to begin (if they licked, ITI was repeated). In a fraction of randomly 390 
interleaved trials, the auditory cue and water reward were omitted to assess spontaneous lick rate (‘no cue’ 391 
trials). 392 
 393 
The cue association phase lasted for 2 or 3 sessions with 250-300 trials each. 15% of trials were no cue 394 
trials. The delay epoch duration was set to a minimum (0.1 s). After the second session, an animal was 395 
considered to have learned the cue association if the median lick time (the first lick time from the cue onset) 396 
in the last 100 trials was lower than 0.5 s. The few mice that failed to learn cue association within 3 sessions 397 
were excluded from the subsequent experiments (6/198 mice). 398 
 399 
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The cue association was followed by delay training which lasted for at least 6 days or until the animal 400 
reached a 1.8 s delay duration (beyond this delay, lick timing became too variable and unstable with our 401 
training condition). Sessions were terminated if animals stopped licking for 50 consecutive cue trials or 402 
reached 1000 trials. 5% of trials were no cue trials. The delay duration started at 0.1 s and automatically 403 
increased based on the performance: if the probability of correct trials in the last 100 cued trials with the 404 
same delay duration exceeded 30%, the delay duration was increased by 0.1s. The delay duration at the 405 
beginning of each session was set to 0.1s less than the final delay duration in the previous session (with a 406 
minimum delay duration of 0.1 s), as animals did not reach the criteria performance for the final delay 407 
duration on the last day.  408 
 409 
For the electrophysiological recording of expert mice (Fig. 3 and Extended Data Fig.2g-o), animals were 410 
first trained up to 1.8 s delay following the protocol above. Then, the animals were trained with a 1.5 s 411 
delay duration for at least two weeks until their performance was stable with a masking flash (see 412 
Optogenetics). The delay duration was fixed at 1.5 s during the recording. 413 
  414 
To avoid bias, 1) behavior was automatically controlled by Bpod (Sanworks) and custom MATLAB codes, 415 
2) experimenters were blinded to the genotype of mice, and 3) control and experimental animals were run 416 
in parallel.   417 
 418 
Optogenetics  419 
For paAIP2 experiments (Fig. 1 and 2c), animals were implanted with a clear skull cap85. Stainless steel 420 
tubes (0.062” OD, 0.052” ID, 8988K36, McMaster CARR) were cut into 3mm long pieces and glued 421 
directly on top of the clear skull cap above the target region (ALM or M1) to serve as sleeves for optic 422 
fibers. 470 nm LED light (M470F3, Thorlabs) at 0.5 mW power (power measured at the fiber tip) was 423 
delivered bilaterally through fiber optics (NA 0.39, 400 μm core diameter, M98L01, Thorlabs). The light 424 
was on for 1 second every 5 seconds (0.2 Hz) throughout the training session (LED illumination timing was 425 
independent of behavior). For control light-off sessions, the LED light was directed away from the skull 426 
with the same illumination protocol (i.e., mice could see flickering light as in the light-on condition). 427 
 428 
For SN-CALI experiments (Fig. 2f), the same clear skull protocol was used. 595 nm LED light (M595F2, 429 
Thorlabs) at 0.75 mW power was delivered bilaterally for 1 minute every 10 minutes through optic fibers. 430 
 431 
For paAIP2 manipulation during electrophysiological recordings (Fig. 4), 470nm LED light was delivered 432 
through an optic probe holder (OFPH_100_500-0.63_FC, Doric lenses) and probe tip (0.63NA, 500 μm 433 
core diameter, OPT_500-0.63_FLT, Doric lenses). The location of the optic probe tips was adjusted to 434 
cover the whole craniotomy (~ 1.5 mm). 470 nm light at 3 mW power (at the probe tip) was delivered 435 
bilaterally for 1 second every 5 seconds (0.2 Hz).  436 
 437 
For paAIP2 manipulation in expert mice (Fig.1e and Extended Data Fig. 2g-o), the light was turned on at 438 
least 30 minutes after the session onset. To prevent mice from distinguishing photostimulation and control 439 
trials, a ‘masking flash’ (1 ms pulses at 10 Hz) was delivered near the eyes using 470 nm LEDs (Luxeon 440 
Star) throughout the session.  441 
  442 
Extracellular electrophysiology  443 
A small craniotomy (diameter, 1-1.5 mm) was made over the recording sites a day before the first recording 444 
session.  Extracellular spikes were recorded using 64 ch two-shank silicon probes (H-2, Cambridge 445 
Neurotech). Voltage signals were multiplexed, recorded on a PCI6133 board (National instrument), and 446 
digitized at 400 kHz (14-bit).  The signals were demultiplexed into 64 voltage traces sampled at 25 kHz 447 
and stored for offline analysis.  All recordings were made with the open-source software SpikeGLX 448 
(http://billkarsh.github.io/SpikeGLX/). During recordings, the craniotomy was immersed in a cortex buffer 449 
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(125 mM NaCl, 5 mM KCl, 10 mM glucose, 10 mM HEPES, 2 mM MgSO4, 2 mM CaCl2; adjust pH to 450 
7.4). Brain tissue was allowed to settle for at least five minutes before recordings.  451 
  452 
Histology  453 
Mice were perfused transcardially with PBS, followed by 4% PFA / 0.1 M PBS.  Brains were post-fixed 454 
overnight and transferred to 20 or 30 % sucrose PB before sectioning on a freezing microtome.  Coronal 50 455 
µm free-floating sections were processed using standard fluorescent immunohistochemical techniques.  456 
 457 
For images in Extended Data Fig. 4, all sections were stained with NeuroTrace® 435/455 Blue Fluorescent 458 
Nissl Stain (Thermo Fisher Scientific, N21479). The fluorescent label was amplified with chicken anti-GFP 459 
(Thermo Fisher Scientific, A10262) and goat anti-chicken 488 (Thermo Fisher Scientific, A11039). Slide-460 
mounted sections were imaged on a Zeiss microscope with a Ludl motorized stage controlled with 461 
Neurolucida software (MBF Bioscience, Williston VT). Imaging was done with a 10× objective and a 462 
Hamamatsu Orca Flash 4 camera. Every section from the frontal pole through the brainstem were imaged.   463 
 464 
For the CaMKII⍺ staining (Extended Data Fig. 3), GFP signal was amplified with rabbit anti-GFP (Thermo 465 
Fisher Scientific, A11122, RRID: AB_221569, 1:500) and goat anti-rabbit 488 secondary antibodies 466 
(Thermo Fisher Scientific, A11008, RRID: AB_143165, 1:500). The CaMKII⍺ was labeled with anti-467 
CaMKII-α (6G9) (Cell Signaling Technology, #50049, RRID: AB_2721906, 1:250) and goat anti-rabbit 468 
647 secondary antibodies (Thermo Fisher Scientific, A21236, RRID: AB_2535805, 1:500). Sections were 469 
imaged with a confocal laser scanning microscope (ZEISS, LSM 980) using a 20× objective.  470 
  471 
Acute slice recording  472 
AAV was injected into P28 mice to label PTupper neurons in ALM bilaterally (n = 5; see Extended Data 473 
Table 1 for injection coordinate). Two to three weeks later, blue light (0.5mW 0.2Hz for one hour) 474 
illumination was given to one hemisphere under isoflurane sedation. Immediately after this, a slice was 475 
prepared and recorded (we also performed ex vivo illumination of brain slices, which yielded similar 476 
results; data not shown). Mice were perfused intracardially with a chilled choline chloride solution (124 477 
mM Choline Chloride, 2.5 mM KCl, 26 mM NaHCO3, 3.3 mM MgCl2, 1.2 mM NaH2PO4, 10 mM Glucose, 478 
and 0.5 mM CaCl2, pH 7.4 equilibrated with 95 % O2 / 5 % CO2). The brain was removed and placed in the 479 
choline chloride solution. Transverse slices (300 μm) from both hemispheres containing the ALM were cut 480 
using a vibratome (Leica) and maintained in a submerged chamber at 32 °C for 1 h and then at room 481 
temperature in oxygenated artificial cerebrospinal fluid (ACSF: 127 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 482 
1mM MgCl2, 25 mM NaHCO3, 1.25 mM NaH2PO4 and 25 mM glucose). 483 
 484 
paAIP2-GFP labeled ALM PTupper neurons were visualized using epifluorescent illumination. Whole-cell 485 
current-clamp recordings were obtained in labeled neurons using a Multiclamp 700B amplifier. Patch 486 
pipettes (3-6 ΩM) were filled with a potassium gluconate solution (130 mM K gluconate, 10 mM Na 487 
phosphocreatine, 4 mM MgCl2, 4 mM NaATP, 0.3 mM MgGTP, 3 mM L- Ascorbic acid, 10 mM HEPES. 488 
pH 7.2, 320 mOsm). These experiments were performed at room temperature (~25o C) in oxygenated ACSF.  489 
Recordings were digitized at 10 kHz and filtered at 2 kHz. Current injections were given in 100 pA 490 
increments from -100 to 400 pA. Threshold, AP half-width, and time of AP half-width were analyzed in 491 
the current step where the first AP was observed. Recordings were performed in both hemispheres (one 492 
with illumination before recording and the other without), and the experimenter was blinded to the identity 493 
of the illuminated hemisphere during recording. All data were acquired and analyzed with custom-written 494 
C# and MATLAB codes.  495 
 496 
Molecular Biology 497 
For the cell-type-specific paAIP2 manipulation, we generated AAV-CaMKII -DIO-mEGFP-P2A-paAIP2. 498 
We used the same promoter (CaMKII promoter), 3’ sequence (bGH without WPRE sequence), and serotype 499 
(AAV9) with AAV-CaMKII-mGFP-P2A-paAIP2 (addgene: 91718), which we used for bulk manipulation 500 
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(Fig. 1c), to match the expression level. The paAIP2 expression with CAG promoter and WPRE sequence 501 
in PT neurons, but not in IT neurons, resulted in light-independent blocking of learning, most likely due to 502 
over-expression (data not shown). We subcloned the mEGFP-P2A-paAIP2 sequence from the pAAV-503 
CaMKII-mGFP-P2A-paAIP2 into the pAAV-CaMKII-FLEX-MCS plasmid (MPFI molecular core) using 504 
AscI and BamHI. For CRISPR/Cas9 KO of CaMKII⍺, we generated pAAV-U6CaMKIIgRNA-hsyn-505 
mScarlet. We synthesized U6-CaMKII⍺ gRNA sequence30 and inserted it into pAAV-hSyn-mScarlet 506 
(addgene: 131001) using XbaI and ApaI. AAV2/9 based on these plasmids were packaged by UNC vector 507 
core.  508 
  509 
For validation of efficacy of gRNA (Extended Data Fig. 3a and b), we transfected Neuro-2A cells in 6 well 510 
plates with pCAG-cre, pLenti-Cas9-GFP (addgene: 86145), and pAAV-U6CaMKIIgRNA-hsyn-mScarlet 511 
using LipofectamineTM 2000 (Invitrogen). Two days after lipofection, GFP+ mScarlet+ cells were sorted 512 
(BD FACSAria™ Fusion), and genome DNA was extracted using DNeasy Blood and Tissue Kit 513 
(QIAGEN). Index was added using PCR with Nextera XT Index Kit (Illumina). We used MiSeq 300 cycle 514 
ver. 2 (Illumina) for the sequencing. 515 
 516 
 517 
 518 
QUANTIFICATION AND STATISTICAL ANALYSIS  519 
  520 
Behavioral analysis 521 
Mice often ignored several cue trials at the beginning of each session. In addition, sated mice stopped 522 
licking at the end of sessions. To analyze behavior while mice are engaged in the task, we analyzed all trials 523 
between the first occurrence of 5 consecutive cue trials with licks and 20 trials before the last occurrence 524 
of 3 consecutive no-response trials. 525 
 526 
We analyzed the time of the first lick after the cue (referred to as ‘lick time’). Electrical lick ports measured 527 
lick time, detecting the tongue’s contact with the lick port. To plot learning curves in Fig.1b and c (inset), 528 
all cue trials within each session were binned every 50 trials. Then, histograms of lick time were computed 529 
for each bin and were normalized to the respective peaks.  530 
 531 
To compare learning across conditions (Figs.1, 2 and Extended Data Fig. 1 and 7), we used the last 100 cue 532 
trials in each session to compute the median first lick time, coefficient of variation (standard deviation 533 
divided by the mean) of the first lick time, and no response rate. To calculate lick time, ‘no-response’ trials 534 
were excluded. If mice reached a 1.8 s delay before 6 days of the delay training, the training was stopped, 535 
and the lick timing on the last behavior session was duplicated for analysis. 536 
 537 
To compare the effect of paAIP2 manipulation in expert mice, we analyzed 3 blocks of trials for within-538 
animal comparisons (Fig.1e, and Extended Data Fig.2k and l). In Fig. 1e, we had two control conditions: 539 
‘Light off’, data of expert mice without paAIP2 manipulation (light onset was artificially and randomly 540 
assigned from those in Light on sessions); ‘Light on, shuffle’, data of light on sessions, but the light onset 541 
was randomly reassigned across sessions. 542 
 543 
Videography analysis   544 
High-speed (300 Hz) videography of orofacial movement (side view) was acquired using a CMOS camera 545 
(Chameleon3 CM3-U3-13Y3M-CS, FLIR) with IR illumination (940nm LED). We used DeepLabCut87 to 546 
track the movement of the tongue and jaw. Movements along the dorsoventral direction were analyzed and 547 
plotted in Extended Data Fig 1. Trajectories were normalized: the mean position before the cue was 548 
subtracted from trajectories and divided by the minimum value (thus, the downward movement of the 549 
tongue and jaw is upward in the plot). The onset of jaw movement in each trial is the first time point after 550 
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the cue when the normalized movement trajectory exceeds 0.15. The onset of tongue movement is when 551 
DeepLabCut first detects the tongue after the cue. 552 
   553 
Extracellular recording analysis  554 
JRClust88 (https://github.com/JaneliaSciComp/JRCLUST) with manual curations was used for spike 555 
sorting. We used a combination of quality metrics to rigorously select single units for analysis (Extended 556 
Data Fig. 6). First, a false positive rate was estimated according to the inter-spike interval violation89, and 557 
units with a false positive rate < 0.15 were selected. Second, we extracted spike features (2 principal 558 
components of spike shape recorded in 3 neighboring recording sites) of all spikes recorded at the same or 559 
adjacent recording sites. Then, we calculated the Mahalanobis distance of spike features of each spike from 560 
the center of the spike cluster (unit) of interest. We performed the receiver operating characteristic (ROC) 561 
analysis of Mahalanobis distance to distinguish spikes within vs. outside the cluster of interest. A recording 562 
session was divided into time bins containing consecutive 1000 spikes of the unit of interest. AUC was 563 
calculated for every time bin. Units with a mean AUC (across time bins) > 0.9 and without any time bin 564 
with AUC<0.75 were selected.  Third, units with low spike rates (less than 0.1 spikes per s) were excluded 565 
from the analysis. Units passing all these criteria were deemed single units.  566 
  567 
We recorded 3689 neurons passing the quality metrics in ALM from 30 mice during learning. Putative 568 
pyramidal neurons (units with spike width > 0.5 ms 90; 3203 among 3689 neurons) were analyzed. To define 569 
preparatory cells, we compared the spike rates in the baseline (0 to 0.2 s before the cue) vs. during the task 570 
(from cue to first lick) in trial 21-95 of the session (‘Early trials’ in Fig. 4a). Cells with a p-value lower than 571 
0.05 (signed-rank test) were considered task-modulated cells and analyzed in Figs. 3 and 4 (See Extended 572 
Data Table 3 for details). Cells with positively and negatively task-modulated cells (cells with significant 573 
increase or decrease in spike rate during the task) were analyzed separately (except for Fig.3 c, d, g, and h) 574 
so that they do not cancel out. Since there were more positively modulated cells (Extended Data Fig. 7e), 575 
the main figures show the analysis of positively modulated cells. 576 
 577 
For the peri-stimulus time histograms (PSTHs) in Fig. 3 and Extended Data Fig. 5, trials were pooled based 578 
on the first lick time. Analyzed time ranges were T = [0.05~0.20, 0.20~0.35, 0.35~0.50, 0.50~0.65, 579 
0.65~0.80, 0.80~0.95, 0.95~1.1] second for recording during learning, and T = [0.95~1.1, 1.1~1.25, 580 
1.25~1.4, 1.4~1.55, 1.55~1.7, 1.7~1.85, 1.85~2.0] second for recording in expert mice. Ten trials with the 581 
first lick within the time range were randomly selected, and the spike rate was averaged. If the number of 582 
trials within the range was less than 10, the range was not included in the analysis. PSTHs were smoothed 583 
with a 50 ms causal boxcar filter. For Extended Data Fig. 2h, PSTHs were smoothed with a 20 ms causal 584 
boxcar filter to detect fast changes in activity. SEM was based on hierarchical bootstrap: first, we randomly 585 
selected animals with replacement; second, we randomly selected sessions of each animal with 586 
replacement; and third, we randomly selected cells within each session with replacement (1000 iterations).   587 
 588 
To temporally warp the PSTH (Fig. 3), we linearly scaled the spike timing in the time range Tcue > 0.1 by 589 
(LTtarget - 0.1)/(LTtrial to be warped - 0.1), where Tcue denotes time after the cue, and LT denotes the first lick time 590 
in each trial type (LTtarget was 1 for Fig.3a,b, and f). After the warping, we calculated PSTH and smoothed 591 
it with a 50 ms causal boxcar filter. We did not warp 0 <Tcue < 0.1 as the onset of cue response showed the 592 
same temporal profile regardless of the lick time (most likely determined by the latency of cue input to 593 
ALM48). Because of this, we did not warp the first trial type with a lick latency between 0.05~0.20 s during 594 
learning. 595 
 596 
Cue response (Fig. 3 and 4, Extended Data Fig.2n) was normalized for the baseline spike rate: 597 
𝑆𝑅!.#	%&	'()%!.#*	&&&&&&&&&&&&&&&&&&&&&  - 𝑆𝑅+!.,	%&	'()%!	&&&&&&&&&&&&&&&&&&& , where SRT denotes mean spike rate in the time range indicated in T. 598 
Similarly, pre-lick activity (𝑆𝑅+!.!*	%&	-.'/%!	&&&&&&&&&&&&&&&&&&&&& ) was normalized by the baseline spike rate. To calculate 599 
‘Time between 10-90% activity’ (Fig. 3 and 4), PSTH was normalized by the minimum and maximum 600 
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spike rate between cue and lick. Then, the time from the first time point crossing 10% to the last time point 601 
crossing 90% was measured (in the case of negative modulated cells, Extended Data Fig. 7, activity was 602 
flipped). Mean speed (Extended Data Fig. 7) is the mean of absolute change in spike rate between cue to 603 
lick (here, spike rate was calculated in 50 ms time bin). We performed hierarchical bootstrap for statistics 604 
and SEM (1000 iterations). 605 
 606 
For the correlation analysis (Fig. 3d and h, and Extended Data Fig. 7g), we looked for an n × 1 unit vector 607 
rT, trial type, representing the spike rate of all n neurons at time point T of a trial type of interest. Then, we 608 
calculated Pearson’s correlation of r between the two trial types indicated in the plot across time points (in 609 
the case of Extended Data Fig. 7g, autocorrelation was calculated). 610 
 611 
For recording in the expert mice (Extended Data Fig. 2), we recorded 716 neurons that passed the quality 612 
metrics in ALM in 20 sessions from 4 expert mice. 647 putative pyramidal neurons were analyzed. 613 
 614 
Ramping direction analysis (Extended Data Fig. 8)  615 
To calculate ramping mode (RM) for a population of n recorded neurons, we looked for an n × 1 unit vector 616 
that maximally distinguished the mean activity before the trial onset (0 - 0.2 s before cue; rbefore cue) and the 617 
mean activity before the first lick (0 – 0.15 s before the first lick; rbefore lick) in the n-dimensional activity 618 
space. We defined a population ramping vector: w = rbefore lick – rbefore cue. RM is w normalized by its norm.  619 
 620 
In each recording session, we randomly selected 24 cue trials with the first lick time above 0.25 s. We 621 
define RM based on the activity of these randomly selected trials, and projected activity in different sets of 622 
trials for the cross-validation. To calculate the “activity explained”, we calculated the squared sum of the 623 
spike rate after subtracting the baseline (mean spike rate 0 – 0.2 s before cue onset) across neurons. We 624 
calculated the squared sum of the activity along RM after subtracting the baseline. 625 
 626 
Histology Analysis  627 
For Extended Data Fig. 3e, cell counting and signal analysis were conducted using MATLAB. Cells were 628 
binary classified into GFP and/or RFP positive/negative based on the fluorescence signal intensity. The 629 
CaMKII⍺	signal	intensity	within	the	cell	was	normalized	by	the	signal	in	the surrounding areas 630 
(median of areas within 12-60 pixels (0.6 µm/pixel) from the cell). 631 
 632 
For Extended Data Fig. 4, imaged sections were processed with NeuroInfo software (MBF Bioscience, 633 
Williston, VT) to align the serial sections into a whole brain volume.  Neurons throughout the ALM cortex 634 
were detected and marked using the automatic cell detection function in NeuroInfo software, which uses a 635 
modified Laplacian of Gaussian (LOG) algorithm that detects labeled neuron perikarya based on size and 636 
fluorescence intensity with a neural network that eliminates signal artifacts. The accuracy of cell counts 637 
compared to visual detection is approximately 95%.    638 
 639 
Network Model  640 
Using a dynamical systems approach91,92, we consider four variables representing the average membrane 641 
currents (ℎ)  and spike rates ( 𝑟 = 𝑓(ℎ) , where 𝑓(ℎ)  is the neural activation function) of neuronal 642 
populations in different regions of the brain. Specifically, we modeled two excitatory populations 643 
(pyramidal tract, ℎ0& , and intratelencephalic, ℎ1& ) and one inhibitory population (ℎ12) in the premotor 644 
cortex, one excitatory population in the thalamic nuclei receiving PT input (ℎ34). The average membrane 645 
current dynamics of population 𝑘 are described by the following nonlinear differential equation: 646 

𝜏/ℎ/̇(𝑡) = −ℎ/(𝑡) +E𝑊/5 	𝑓Gℎ5(𝑡)H
5

+ 𝐼/ + 𝑏/𝐼'()(𝑡) + 𝑐/𝐼3627' 647 

Where 𝜏/  is the membrane time constant of population 𝑘, 𝑊/5  are elements of the connectivity matrix 648 
between presynaptic population 𝑗 and postsynaptic population 𝑘, 𝐼/89  is the baseline input current. 𝐼'()(𝑡) 649 
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is the external input current provided to ALM neurons elicited by the auditory cue via the synaptic weights 650 
𝑏/, and  𝐼3627' is the non-contextual tonic input provided to the thalamus via the synaptic weights 𝑐/. We 651 
hypothesized the pathway providing cue input is different from thalamic nuclei maintaining preparatory 652 
activity according to previous work48. For all populations, we used a threshold-linear activation function: 653 

𝑓Gℎ5(𝑡)H = [ℎ(𝑡)]: = O0							𝑖𝑓	ℎ
(𝑡) ≤ 0

ℎ(𝑡)	𝑖𝑓	ℎ(𝑡) > 0 654 
 655 
The baseline input currents were chosen to be negative for all four populations so that the network dynamics 656 
displays a baseline stable fixed point (lower attractor) for ℎ5(𝑡) < 0	∀	𝑗 . The connectivity matrix 𝑾 657 
respected the biological constraints found in the literature (see Extended Data Table 4), and was chosen so 658 
that a stable fixed point (higher attractor) existed for ℎ5(𝑡) > 0	∀	𝑗. The transition from the lower to the 659 
higher attractor was triggered by 𝐼'()(𝑡) which took the form of a 100ms long boxcar function. Ramping 660 
activity emerged as the dynamics evolved towards the higher attractor following the cue. The lick onset 661 
was defined upon reaching a spike rate threshold (𝑟0&∗ =	15 spikes per second) motivated by the activity of 662 
ALM (Fig.3).  663 
 664 
We imposed synaptic plasticity between the input relaying the auditory cue and PT neurons (𝑏0&)	to 665 
implement learning. To update 𝑏0&, we used a heavily simplified learning algorithm. We hypothesized that 666 
the external inputs to the network 𝐼'()(𝑡) and 𝐼3627' were subject to fluctuations across trials. In particular, 667 
the peak value of the cue signal 𝐼'()  and 𝐼3627' were each drawn from normal distributions with means 668 
𝜇'() , 𝜇3627' 	 and standard deviations 𝜎'() , 𝜎3627' , respectively(see Extended Data Table 4). Because of 669 
these fluctuations, the spike rate of PT neurons will reach the threshold at a different speed in each trial. 670 
The synaptic weight 𝑏0& was either exclusively potentiated (model shown in Fig.4), or depressed (model 671 
shown in Extended Data Fig. 10c-e), at the end of rewarded trials, i.e., trials in which the PT spike rate 672 
exceeded the hard threshold after the delay duration according to the update rule: 673 

𝑏0&3<:# = 𝑏0&3< +	∆𝑏0& 	(1 − 𝑐) 674 
where ∆𝑏0& = 𝜂	[𝑏0&=>? − 𝑏0&3< ]:	𝐼'()  for potentiation ( ∆𝑏0& = 𝜂	[𝑏0&=72 − 𝑏0&3< ]:	𝐼'()   for depression), 𝜂 675 
being the learning rate. 𝑐 is the recent reward rate (mean of the last five trials; we added this term to prevent 676 
the network from learning when the reward rate was 100%). As in the behavioral experiments with mice, 677 
when the reward rate in the last 100 trials reached 30%, the delay duration was increased by 100 ms.  678 
 679 
To model the behavior and the neural dynamics in expert mice (Extended Data Fig. 10a, b, and e), we used 680 
the same network parameters that were found at the end of the learning process. To vary the lick time, we 681 
changed the non-contextual tonic input 𝐼3627'(𝑡), which is compatible with a previous paper modeling 682 
dynamics in expert animals performing a timing task71. In the synaptic potentiation model (Extended Data 683 
Fig. 10a-b), stronger tonic inputs lead to slower dynamics, allowing the model to capture the behavior of 684 
expert mice with increasing delay durations. In the synaptic depression model (Extended Data Fig. 10e), 685 
weaker tonic inputs lead to slower dynamics.  686 
 687 
Statistics  688 
The sample sizes are similar to the sample sizes previously published in the field. No statistical methods 689 
were used to determine the sample size. During spike sorting, experimenters could not tell the trial type and 690 
therefore were blind to conditions. All signed rank and ranksum tests were two-sided. All bootstrapping 691 
was done at least over 1,000 iterations.  692 
 693 
Reagent and data availability 694 
The new plasmids reported in this paper will be posted to Addgene before publication. The recording data 695 
in NWB format and example codes will be shared on DANDI around the time of publication.  696 
  697 
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Extended Data Figure 1.  Characterization of behavior during delay training 698 
a. Tracking of jaw and tongue, using high-speed videography and DeepLabCut87. Six example 699 

animals (2 per experimental condition) are shown. Left, video clip overlayed with example 700 
trajectories of jaw (green) and tongue (magenta) (15 trials). Middle, trajectories of jaw and tongue 701 
at the beginning of delay training (from trial 50 to 65 on day 1 of delay training). Trajectories are 702 
aligned to lick onset, where lick onset is defined as the moment tongue touches the lick port for the 703 
first time after the cue. Black cross, cue (trial) onset. Green cross, the onset of jaw movement 704 
(Methods; analyzed in panels c and e).  Right, the same as in the middle but for later in delay 705 
training (trial 50 to 65 from the end of day 3 of delay training). 706 

b-f. Summary of the first lick time (b), jaw movement onset (c), tongue protrusion onset (d), time from 707 
jaw movement onset to the first lick (e), and time from tongue protrusion onset to the first lick (f) 708 
(Methods). Comparing the first and last 100 trials within a session. Thick lines, mean ± SEM. Thin 709 
lines, individual mice (n = 7, 5, and 7 for control, PTupper paAIP2 manipulation, and PTlower paAIP2 710 
manipulation, respectively). The delayed tongue and jaw movement (i.e., withholding of orofacial 711 
movement after the cue onset) mainly explains the delayed lick time. 712 

g-i. Characterization of behavior during paAIP2 manipulation. The coefficient of variation (C.V.) of 713 
first lick time (g). No-response rate (h). Numbers of trials per session (i). These are based on 714 
animals and sessions analyzed in Fig. 2c. Thick lines, mean ± SEM. Thin lines, individual animals. 715 
No change in C.V.  between control vs. paAIP2 manipulation indicates that the manipulation did 716 
not affect the variability of lick timing. No significant increase in the no-response rate and no 717 
significant decrease in the number of trials in paAIP2 manipulation implies that the manipulation 718 
did not block cue-triggered lick and motivation (note that all significant changes are in the opposite 719 
direction). *: p < 0.05 (bootstrap followed by Bonferroni correction; Extended Data Table 3); n.s.: 720 
p > 0.05 for all comparisons. 721 

j. Relationship between mean vs. standard deviation of first lick time. The standard deviation of lick 722 
time scales with its mean, adheres to Weber’s law50,52. This is why we analyzed CV (standard 723 
deviation divided by mean) to evaluate across-trial variability in lick time (e.g., g). Circle, the first 724 
100 or last 100 trials of each session. Lines, least-square fitted lines. The slope of the fitted line: 725 
0.49 (0.43 – 0.56), 0.53 (0.45-0.64), and 1.00 (0.77-1.35), mean (5 – 95 % confidence interval, 726 
bootstrap) for during learning (control), during learning (paAIP2 in ALM with light on), and expert, 727 
respectively. Thus, ALM paAIP2 manipulation does not affect the variability of lick time.  728 
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Extended Data Figure 2.  The paAIP2 manipulation does not affect excitability or ongoing spiking 729 
activity 730 

a. Retrograde labeling of PTupper neurons in ALM with GFP (co-expressed with paAIP2) in an acute 731 
cortical slice. Right top, example cell. Right bottom, example dendritic shaft.   732 

b.  Representative traces of whole-cell current-clamp recordings from paAIP2 labeled PTupper neurons 733 
at three different current steps (−100, 0, and 300 pA) without (black) and after (blue) 60 minutes 734 
of in vivo blue light stimulation (1 sec on, 4 sec off; Methods).  735 

c. The mean number of action potentials (AP) evoked by depolarizing current steps. n = 13 cells after 736 
stimulation and 12 cells before stimulation. Error bar, SEM.  737 

d. AP threshold showed no difference between control and stimulation (p = 0.1225, ranksum test). 738 
e. AP half-width showed no difference between control and stimulation (p = 0.3981, ranksum test).  739 
f. Time to the first AP half-width from AP threshold. There was no difference between control and 740 

stimulation (p = 0.7795, ranksum test).  741 
g. Schematic for the extracellular electrophysiological recording of ALM with paAIP2 manipulation 742 

in expert mice during behavior (delay duration, 1.5 s). Blue light (470 nm, 1 s on, 4 s off, 3 mW; 743 
Methods) was turned on >30 mins after the session onset.  744 

h. Blue light-triggered average of ALM activity. Thick line, average PSTH of all putative pyramidal 745 
ALM neurons (n = 647 neurons, 4 animals, 20 sessions). Blue bar, blue light pulse (1 s). Shade, 746 
SEM. We observed a non-significant increase in spike rate (~0.2 spikes per s, on average) around 747 
100ms after the light onset. This could be a visual response, as we observed a similar response in 748 
mice without paAIP2 expression (data not shown).  749 

i. Average spike rate of individual neurons before and during blue light pulses, calculated over 1s 750 
time windows before and during the blue light pulse. Circle, neuron. Dashed line, unit line. No 751 
difference in spike rate was observed before and during blue light (p = 0.69, signed rank test), 752 
indicating that paAIP2 manipulation does not directly affect spiking activity. 753 

j. Median lick time (5 trial sliding windows; aligned to the first trial with blue light illumination). 754 
Thick line, average across sessions (20 sessions from 4 animals). Shaded area, SEM. Vertical 755 
dashed lines separate 3 phases in the session: pre-light (0 - 100 trials before blue light onset), post-756 
light phase I (0 - 100 trials after blue light onset), and post-light phase II (100 - 200 trials after blue 757 
light onset). The last trial corresponds to ~40 mins of blue light illumination. 758 

k. Median lick times in the 3 phases in j. Thick line, mean ± SEM. Thin lines, individual sessions. No 759 
significant difference was observed (p-value, signed rank test), indicating that paAIP2 manipulation 760 
did not directly affect lick time in expert mice.  761 

l. Coefficient of variation of the first lick time in the 3 phases in j. The same format as in k. No 762 
significant difference was observed (p-value, signed rank test), indicating that paAIP2 manipulation 763 
does not directly affect the variance of lick time. The no-response rate did not change significantly, 764 
either (data not shown). 765 

m. Grand average PSTH aligned to the cue onset (for trials with lick times between 0.55 - 2.63 s, 766 
corresponding to 10% to 90% quantiles of the lick time distribution in these sessions). n = 357 767 
significantly modulated neurons in ALM.  Lines, mean. Shade, SEM. 768 

n. Comparisons of task-related activity (cue response: mean spike rate over 100-150 ms after cue 769 
onset minus baseline spike rate) before and after blue light illumination. Circle, neuron. Dashed 770 
line, unit line. We found no significant differences (signed rank test), suggesting that paAIP2 771 
manipulation does not affect task-related activity in expert mice. 772 

o. The same as n but for pre-lick activity (mean spike rate over 50 ms preceding the first lick minus 773 
baseline spike rate). We found no significant differences (signed rank test), suggesting that paAIP2 774 
manipulation does not affect task-related activity in expert mice.  775 
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Extended Data Figure 3.  Histological validation of CRISPR/Cas9 KO of CaMKII⍺	776 
a. Sequencing of genomic DNA in Neuro2A cells transfected with guide RNA against CaMKII⍺ and 777 

Cas9 (Methods). 778 
b. The proportion of amplicon with Indel mutation. 779 
c. CaMKII⍺ immunohistochemistry of ALM in CaMKII⍺ conditional knock out (cKO) mouse 780 

injected with AAV-hsyn-cre. Loss of signal was observed around the injection site (ALM; the 781 
center of the image), validating the CaMKII⍺ antibody.   782 

d. CaMKII⍺ immunohistochemistry of ALM with cell-type-specific CRISPR/Cas9 KO of CaMKII⍺. 783 
Loss of CaMKII⍺ was observed only in cells expressing both Cas9 (green) and guide RNA 784 
(magenta, in right panels). Black areas smaller than PT/IT neurons are presumably glia, inhibitory 785 
neurons, or neuropile of manipulated cells.  786 

e. Quantification of CaMKII⍺ immunostaining signal (Methods).   787 
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Extended Data Figure 4.  Histological validation of cell-type-specific manipulation 788 
a. paAIP2-GFP expression in ALM PT neurons and some layer 2/3 neurons in Sim1-cre KJ18 mice. 789 
b. paAIP2-GFP expression in ALM PTupper neurons (due to the tropism of AAVretro

47, layer 6 neurons 790 
are only sparsely labeled). 791 

c. paAIP2-GFP expression in ALM PTlower neurons. 792 
d. paAIP2-GFP expression in ALM layer 5 IT neurons in Tlx-cre PL56 mice.  793 
e. paAIP2-GFP expression in layer 2/3 IT and some layer 5 IT neurons in Grp-cre KH288 mice. 794 

 795 
Top, paAIP2-GFP expression in ALM. Bottom panels, paAIP2-GFP expression in 4 coronal sections 796 
from anterior to posterior showing expression in the frontal cortex, striatum and corpus callosum, 797 
thalamus, and medulla.  See Extended Data Table 1 for injection coordinates.  Signal in the corpus 798 
callosum (white arrows) in d and e confirms the labeling of IT neurons. Whereas the lack of signal in 799 
the corpus callosum in b and c confirms a lack of co-labeling of IT neurons. Signal in the thalamus and 800 
internal capsule (white arrowheads) in a, b, and c confirms the labeling of PT neurons. In contrast, the 801 
lack of signal in the thalamus and internal capsule in d and e confirms a lack of co-labeling of PT 802 
neurons. The labeling of PT neurons in Sim1-cre KJ18 mice (a) was sparser than the labeling of PTupper 803 
or PTlower neurons by AAVretro (i.e., b and c). In addition, we note that Sim1-cre KJ18 labels some layer 804 
2/3 neurons in ALM. Scale bars are identical across panels in each row.   805 
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Extended Data Figure 5. Spiking activity patterns of single cells 806 
Example neurons recorded during learning and in experts. The data format is the same as in Fig. 3a. Note 807 
that cells recorded in different animals often show similar reconfiguration of dynamics (e.g., Cell 43, 859, 808 
and 480 during learning without paAIP2 manipulation), indicating the reconfiguration is general across 809 
animals.  810 
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Extended Data Figure 6. Quality metrics of spike-sorted units 811 
Drifts in the recording affect spike sorting quality. We implemented rigorous quality metrics evaluating 812 
cluster isolation across time points within a recording session to minimize the effect of recording drift in 813 
our analysis.  814 

a. An example unit that passed the quality standard. a1, projection of spike feature along the first PC. 815 
Time, the time within the recording session. Black dots, spikes belonging to the unit. Gray dots, all 816 
the other spikes sharing the peak channel (i.e., recorded at the same or adjacent recording sites). a2, 817 
spike shape of the unit belonging to this unit. Randomly selected 250 spikes are overlaid. a3, the 818 
inter-spike interval of spikes belonging to the unit (see Methods for false positive rate). a4,  819 
Mahalanobis distance (calculated based on spike features) of each spike from the center of the unit 820 
cluster. CDF is shown for spikes belonging to the unit (blue) and all other spikes sharing the peak 821 
channel (black). Blue dotted line, 95% point of spikes belonging to the unit. Black dotted line, the 822 
distance where the false positive rate reaches 5%. a5, ROC analysis of the Mahalanobis distance 823 
(distinguishing spikes belonging or not belonging to the unit; Methods). AUC is calculated for each 824 
time window containing every consecutive 1000 spikes belonging to the cluster. 825 

b. The same as in a for different unit. 826 
c-d. The same as in a for different units not passing the quality standard due to high false alarm rate in 827 

inter-spike interval analysis (c) or mean AUC lower than the threshold (d). 828 
e The histogram of mean AUC (AUC averaged across all time windows) across all manually curated 829 

units. Quality criterion: mean AUC > 0.9 (dashed line). 830 
f The histogram of the false-positive rate calculated according to the inter-spike interval across all 831 

manually curated units. 832 
g No single time window should have AUC < 0.75 to pass the quality criteria. The proportion of 833 

AUC below the threshold (across all manually curated units) is shown for all manually curated 834 
units.   835 
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Extended Data Figure 7. ALM dynamics during learning 836 
a-d. Behavioral performance of the animals during ALM recording (different cohorts of mice from those 837 

analyzed in Fig2c; the same cohorts of mice analyzed in Fig.4). Time to first lick (a), no-response 838 
rate (b), coefficient of variation (c), and number of trials per session (d) are shown. Thick lines, 839 
mean ± SEM. Thin lines, animals. N = 10, 5, 7 mice for control, PTupper, and PTlower manipulation, 840 
respectively. *: p< 0.05 control vs. PTupper manipulation or control vs. PTlower manipulation 841 
conditions (indicated by the color of *; bootstrap followed by Bonferroni correction; Extended Data 842 
Table 3), n.s., p >0.05 for all comparisons. The result is consistent with behavior without recording 843 
(Fig. 2 and Extended Data Fig. 1). 844 

e. The proportion of cells with positive or negative-modulated preparatory activity (spike rate 845 
between cue to the first lick significantly higher or lower from that in the baseline, repsectively; 846 
two-sided signed-rank test, p < 0.05). Error bar, SEM (hierarchical bootstrap). p > 0.05 for all 847 
comparisons of proportion (on days 1, 2, and 3) between control vs. manipulations (hierarchical 848 
bootstrap). Thus, the paAIP2 manipulation does not affect the proportion of preparatory neurons. 849 

f. Spike rate significantly decreased during learning. 850 
(𝑆𝑅3<.>-	3@A)	#&&&&&&&&&&&&&&&& −	𝑆𝑅3<.>-	3@A)	,&&&&&&&&&&&&&&&&) 𝑆𝑅B634	3<.>-	3@A)C&&&&&&&&&&&&&&&&&&&&&]  was calculated for each neuron and the 851 
distributions of this value are shown as CDF, where 𝑆𝑅&&&& denotes the mean spike rate between cue 852 
to first lick. During the training, a significant proportion of neurons decreased spiking activity as 853 
mice licked later (blue; p = 1.18 × 10-6, signed-rank test, n = 269 cells; median -0.103; based on 854 
neurons shown in Fig. 3g). In contrast, in the expert, there was no significant change in spike rate 855 
(black; p = 0.27, signed-rank test, n = 344 cells; median: -0.001; based on neurons shown in Fig. 856 
3c) even when the fold-difference in lick time between trial types is roughly matched to that in 857 
Day1&2 (purple; p = 0.69, signed-rank test, n = 39 cells; median: 0.006). Altogether decrease in 858 
spike rate is unique to during learning. 859 

g. Autocorrelation of ALM population activity (top; trials with lick time between 0.50 and 0.65 s) to 860 
estimate time-constant of population activity (bottom; different trials are shown in different colors). 861 
The correlation of population activity between time points: (Tcue + Tlick)/2 vs. following time points, 862 
is shown, where Tcue and Tlick denote the time of cue and lick, respectively. Vertical dotes lines, lick 863 
times. Consistent with Fig. 3, the time constant of population dynamics increased as mice learned 864 
to lick later. 865 

h. Grand average peri-stimulus time histogram (PSTH) of negatively-modulated ALM preparatory 866 
neurons. The same format as in Fig. 3b. Shade, SEM. Trial types with more than 25 neurons are 867 
shown.  868 

i. Characterization of PSTH of positively and negatively modulated ALM preparatory neurons. The 869 
format is the same as in Fig. 3i-k, and the data of paAIP2 manipulation is overlaid. Mean speed, 870 
the average spike rate (SR; spikes per sec) change between cue to lick. Dotted line, expected mean 871 
speed (mean pre-lick activity divided by lick time). The mean speed (first column) decreases, and 872 
time between 10-90% activity (second column) increases as animals lick later, consistent with a 873 
view that dynamics are temporally stretched. The absolute values of the cue response (third column) 874 
decrease during learning, whereas pre-lick activity (fourth column) is stable in both positively and 875 
negatively modulated cells. Trial types with more than 50 trials were analyzed.  876 
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Extended Data Figure 8. Low dimensional population activity during learning 877 
a. Projection of ALM spiking activity to the ramping mode, which maximally distinguishes the 878 

population activity between the baseline and pre-lick (Methods). Top, grand average PSTH aligned 879 
to cue (left) or lick (right). Bottom, projection to the ramping mode. n = 153 preparatory neurons 880 
in ALM (neurons with >= 10 trials for all lick times were analyzed). 881 

b. The square sum of total spiking activity (black) and the square of projection along ramping mode 882 
(blue) at each time point, indicating the large proportion of spiking activity can be explained by 883 
activity along this mode. Shade, SEM (hierarchical bootstrap). Var explained: mean ± SEM.  884 

c. Same as b for Expert. N = 123 preparatory neurons in ALM (neurons with >=10 trials for all lick 885 
times were analyzed). 886 

d. Same as b for PTupper paAIP2 manipulation, indicating the large proportion of spiking activity can 887 
be explained by activity along this mode even during the paAIP2 manipulation. N = 117 preparatory 888 
neurons in ALM (neurons with >=10 trials for all lick times were analyzed). 889 

e. Same as b for PTlower paAIP2 manipulation. N = 140 preparatory neurons in ALM (neurons with 890 
>=10 trials for all lick times were analyzed).  891 
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Extended Data Figure 9. Similar ALM activity across experimental conditions when mice licked 892 
around the same time 893 

a. Comparisons of the grand average PSTHs of positively-modulated ALM preparatory neurons on 894 
day 1 early trials vs. day 3 late trials (regardless of lick time; the same dataset is quantified in Fig. 895 
4c-d). PSTHs are aligned to cue (top) or lick (bottom). Control shows a clear change in cue response 896 
and ramping activity (red arrows). Early and late trials, first 75 and last 75 trials in the session. See 897 
Extended Table 3 for number of neurons analyzed. 898 

b. When mice lick around the same time (regardless of the day of training), the grand average PSTHs 899 
of ALM are similar regardless of paAIP2 manipulation. The grand average PSTHs of positively-900 
modulated ALM preparatory neurons for individual manipulation types are shown. Activity in trial 901 
types with different lick timings is shown in different colors. The paAIP2 manipulation sessions 902 
had fewer trials with later licks. The same format as in Fig.3f. Shade, SEM. The control data is 903 
duplicated from Fig. 3f for comparison purposes.  904 

c. The standard deviation of cue response (related to Fig. 4d; calculated based on early trials; late 905 
trials yield similar results).  The standard deviation and CV (not shown) of cue response are not 906 
significantly different between control and paAIP2 manipulation. p = 0.284, 0.322, 0.274 (day 1, 907 
2, 3 comparing control vs. PTupper paAIP2 manipulation) and 0.830, 0.800, 0.592 (day 1, 2, 3 908 
comparing control vs. PTlower paAIP2 manipulation; hierarchical bootstrap). Although the across-909 
trial fluctuation in cue response is the same, the mean cue response changed between early and lick 910 
trials only in control (Fig. 4d). Thus, the paAIP2 manipulation blocks the directional change in cue 911 
response without affecting the across-trial fluctuation.  912 

d. Clustering analysis to test whether we can distinguish ALM activity patterns between control and 913 
paAIP2 manipulation conditions. Z-scored spiking activity of ALM neurons recorded in control 914 
animals (WT) and animals with PT-specific paAIP2 manipulations is shown. Neurons from each 915 
experimental condition were subsampled and pooled (94 neurons per condition were randomly 916 
sampled without replacement; two different groups of neurons were randomly subsampled in the 917 
WT condition for cross-validation and denoted WT and WT2). Then we performed hierarchical 918 
clustering of the mean activity pattern of these neurons (here, the number of clusters was set to 10). 919 
Mean spiking activity in trials with a first lick time between 0.2 and 0.35 s was analyzed. The 920 
cluster identity of each neuron is shown in different colors in the middle column, and the type of 921 
experimental condition is shown in the right column (see legend in the figure for color scheme). 922 
Each cluster contains neurons recorded in all experimental conditions, implying that ALM neurons 923 
with similar activity patterns were recorded across experimental conditions. 924 

e. Fraction of neurons in each cluster in panel d. The cluster ID is sorted based on the proportion of 925 
neurons in WT data. The correlation coefficients of the proportion of neurons between experimental 926 
conditions, indicating similarity in the composition of activity patterns, are shown at the top. 927 

f. We have repeated this correlation analysis shown in d-e 1000 times (sampling random subsets of 928 
neurons without replacement; we have tested different numbers of clusters: 5, 10, or 20, all of which 929 
yielded similar results) to plot the mean and SEM. C, control: the correlation between WT vs. WT2, 930 
showing the upper bound of the correlation coefficient with this procedure and sample size (as 931 
neurons are sampled from the same dataset). Both PTupper and PTlower paAIP2 manipulation 932 
conditions have similar correlation coefficients to control (p > 0.05), indicating that activity patterns 933 
in ALM are indistinguishable across conditions when mice lick around the same time, i.e., paAIP2 934 
manipulations in PT neurons do not change task-related activity patterns in ALM.  935 
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Extended Data Figure 10. A model of expert dynamics and a model with synaptic depression 936 
a. Schema of the expert model (see Methods for details). The network structure is identical to that for 937 

learning (Fig. 4e). Following literature52, we provided a non-contextual tonic input to vary lick 938 
times across trials (no plasticity is imposed as this is a model of expert). 939 

b. Dynamics of ALM neurons in the model (top) and corresponding energy landscape (bottom). 940 
Different color indicates activity in trials with different lick times. The amplitude of tonic input 941 
changed the slope of the landscape, which changed the speed of dynamics. This reproduced the 942 
‘temporal scaling’ of ramping dynamics consistent with experimental data (Fig.3) and previous 943 
report52. 944 

c. The same format as in Fig.4f, but for a network model with synaptic depression of the synapse 945 
between cue and PT neurons. The network architecture is identical to that in Fig.4e, but with 946 
different synaptic weights (Extended Data Table. 4) and reward-dependent synaptic depression 947 
instead of potentiation (Methods). 948 

d. The same format as in Fig.4g, but for the network model with synaptic depression of the synapse 949 
between cue and PT neurons. 950 

e. The same format as in b, but for the network model with synaptic depression of the synapse between 951 
cue and PT neurons. Altogether, similar to the potentiation model, the depression model can 952 
reproduce the experimental observations.  953 
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