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Abstract

The Janus kinase/signal transducer and activator of transcription (JAK/STAT) axis is implicated 

in cancer, inflammation, and immunity. Numerous cytokines/growth factors affect JAK/STAT 

signaling. JAKs (JAK1, JAK2, JAK3, and TYK2) noncovalently associate with cytokine receptors, 

mediate receptor tyrosine phosphorylation, and recruit ≥1 STAT proteins (STAT1, STAT2, STAT3, 

STAT4, STAT5a, STAT5b, and STAT6). Tyrosine-phosphorylated STATs dimerize and are then 

transported into the nucleus to function as transcription factors. Signaling is attenuated by 

specific suppressor of cytokine signaling (SOCS) proteins, creating a negative feedback loop. Both 

germline mutations and polymorphisms of JAK family members correlate with specific diseases: 

systemic lupus erythematosus (TYK2 polymorphisms); severe combined immunodeficiency 

(JAK3 mutations); pediatric acute lymphoblastic leukemia (TYK2 mutations); and hereditary 

thrombocytosis (JAK2 mutations). Somatic gain-of-function JAK mutations mainly occur in 

hematologic malignancies, with the activating JAK2 V617F being a myeloproliferative disorder 

hallmark; it is also seen in clonal hematopoiesis of indeterminate potential. Several T-cell 

malignancies, as well as B-cell acute lymphoblastic leukemia, and acute megakaryoblastic 

leukemia also harbor JAK family somatic alterations. On the other hand, JAK2 copy number 

loss is associated with immune checkpoint inhibitor resistance. JAK inhibitors (jakinibs) have 

been deployed in many conditions with JAK activation; they are approved in myeloproliferative 

disorders, rheumatoid and psoriatic arthritis, atopic dermatitis, ulcerative colitis, graft-versus-host 

disease, alopecia areata, ankylosing spondylitis, and in patients hospitalized for COVID-19. 

Clinical trials are investigating jakinibs in multiple other autoimmune/inflammatory conditions. 

Furthermore, dermatologic and neurologic improvement has been observed in children with 

Aicardi-Goutieres syndrome (a genetic interferonopathy) treated with JAK inhibitors.
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Introduction

Janus kinase or “just another kinase” (JAK) is a family of intracellular, non-receptor 

tyrosine kinases that transduce cytokine-mediated signals via the JAK-signal transducers 

and activators of transcription (JAK-STAT) pathway (1,2). The name Janus originates 

from the two-faced Roman god of duality, because JAKs possess two similar phosphate-

transferring domains, one of which displays the kinase enzymatic activity, while the other 

motif negatively regulates the kinase activity of the first in a feedback loop (1).

JAK-STAT signaling is composed of three major proteins: cell-surface receptors, JAKs, and 

STATs. JAKs function as tyrosine kinase enzymes that are bound to the cytoplasmic regions 

of type I and II cytokine receptors. Once a ligand binds to the receptor, JAKs add phosphates 

to the receptor. Two STAT proteins then bind to the phosphates and form a dimer. The 

dimer enters the nucleus, binds to DNA, and transcription of target genes ensues. Overall, 

the JAK-STAT pathway is vital for the proliferation and survival of cancer cells and may 

contribute to drug resistance (2).

The JAK-STAT pathway is activated by over 50 different pro-cytokine receptors that 

control hematopoiesis, the immune response, embryogenesis, and inflammation through the 

signaling pathway (3,4,5,6). This pathway has an important role in the pathogenesis of a 

variety of immune-mediated diseases and malignant processes.

JAK inhibitors are a class of medications that function to block signaling through the 

JAK-STAT pathway (3). JAK inhibitors (also called jakinibs) function by preventing the 

JAK protein from phosphorylating, therefore attenuating intracellular signaling. The most 

extensive clinical studies for JAK inhibitors have been in rheumatoid arthritis (RA) and 

myelofibrosis (MF), but JAK inhibitors have also been applied in dermatology for treatment 

of conditions such as psoriasis/psoriatic arthritis, atopic dermatitis, alopecia areata, vitiligo, 

and dermatomyositis (5–22).

JAK: Structure and function

Over 50 cytokines signal via the JAK/STAT pathway to orchestrate hematopoiesis, regulate 

immunity, and induce inflammation. The main function of the JAK-STAT pathway is to 

transfer signals from the receptors on the cell membrane, which can be categorized as 

including interleukin (IL) receptors, interferon (IFN) receptors, or colony stimulating factor 

receptors (CSFRs), to the nucleus. The pathway is necessary for cytokines and growth 

factor function, leading to essential cellular processes such as myeloid and lymphoid 

differentiation/proliferation/hematopoiesis, lactation, development of the immune system, 

and proinflammatory response (Figure 1) (23–28).

Cytokines are secreted glycoproteins that operate as intercellular messengers, stimulating 

differentiation, proliferation, and programmed cell death of their target cells. They act by 

Agashe et al. Page 2

Mol Cancer Ther. Author manuscript; available in PMC 2023 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



binding to specific receptors on the target cell surface and switching on a phosphotyrosine-

based intracellular signaling cascade initiated by kinase enzymes and then propagated by 

SH2 domain-containing transcription factors. As cytokine signaling is proliferative and often 

inflammatory, it’s amplitude and duration is tightly controlled.

Most cytokines are small helical-bundle proteins, generally 150–200 amino acids in length 

(4). They are divided into two classes based on elements discerned in their receptors. 

Class I cytokines consist of four α-helices in an up-up-down-down configuration. Some of 

these, such as IL-5, exist as dimers, but the topology is conserved. The up-up-down-down 

conformation requires two long loops to connect the up-up and down-down pairs. In class II 

cytokines, one or both of these loops is replaced by an extra α-helix resulting in five to six 

helices arranged in an anti-parallel manner.

Class I cytokines signaling through JAK-STAT include, but are not limited to IL-2, IL-3 

family, IL-4, IL-6 family, IL-7, IL-9, IL-12, IL-13, IL-15, IL-21, IL-23, G-CSF, GM-CSF, 

EPO, TPO (4). Class II cytokines include, but are not limited to interferon-alpha, -beta, 

-epsilon, -kappa, -omega, -gamma, IL-10, IL-19, IL-20, IL-22, IL-24, IL-26 (4).

The cytokine signaling cascade needs only three elements (receptor, kinase, and 

transcription factor) to elicit a response. Each cytokine binds to a specific receptor on 

its target cell surface. These receptors contain intracellular motifs that are constitutively 

associated with members of the JAK family of tyrosine kinase enzymes. The four JAK 

family members are: JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2). JAKs are inactive 

prior to cytokine exposure. However, once the cytokine binds to its receptor, it induces 

their auto-activation by transphosphorylation. Once activated, JAKs phosphorylate the 

intracellular tails of the receptors on specific tyrosines, which in turn act as docking sites for 

member of the STAT family of transcription factors. The STAT family is composed of seven 

members STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, STAT6, which mainly act, as 

mentioned, as transcription factors. Receptor-localized STATs are then phosphorylated by 

JAK, which leads to their disassociation from the receptor and translocation to the nucleus, 

where they drive the expression of cytokine-responsive genes. To guarantee that signaling is 

properly switched off, a number of proteins act to dampen cytokine signaling at numerous 

levels of the pathway. Importantly, the suppressors of cytokine signaling (SOCS) family are 

negative feedback inhibitors of the signaling cascade. A general rule of cytokine signaling is 

that each cytokine binds to a specific receptor, which promotes activation of specific JAK(s) 

and STAT(s), and signaling is switched off by a specific SOCS protein.

Germline JAK family mutations

JAK family members--JAK1, JAK2, JAK3, and TYK2---are implicated in cell growth, 

survival, and development, and are critically important for differentiation of a variety of 

cells including immune cells and hematopoietic elements. Therefore, it is not surprising that 

germline mutations or specific polymorphisms in these genes are associated with disease. 

A striking phenotype associated with inactivating JAK3 germline mutations is severe 

combined immunodeficiency syndrome (Table 1) (29–36). JAK3 missense mutations have 

also been found in patients with clear cell renal cell cancer. Pediatric acute lymphoblastic 

leukemia has been associated anecdotally with germline TYK2 mutations, and hereditary 
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thrombocytosis with JAK2 germline mutations. Finally, the autoimmune disease systemic 

lupus erythematosus has been linked to TYK2 polymorphisms.

Diseases associated with somatic JAK family mutations

Both activating and loss-of-function somatic alterations in JAK genes can occur. Activating 

JAK alterations are associated with development of mostly hematologic malignancies. Loss-

of function JAK2 alterations are associated with immune checkpoint blockade resistance 

(37–57).

JAK activating alterations: Somatic alterations in various JAK genes are predominantly 

associated with a variety of hematologic malignancies (Table 2) (37–57). As an example, 

the acquired somatic mutation JAK2 V617F, which constitutively activates JAK2 kinase, 

is the most frequent molecular event in myeloproliferative disorders. It is observed in 

about 95% of cases of polycythemia vera and in 55–60% cases of essential thrombocytosis 

and primary myelofibrosis. JAK2 V617F is also found in the normal population. Among 

49,488 individuals from the Copenhagen General Population Study, 63 (0.1%) tested 

positive for the JAK2V617F mutation. Of these, 48 were eventually diagnosed with a 

myeloproliferative neoplasm (49). JAK2 V617F mutations in healthy people are referred 

to as clonal hematopoiesis of indeterminate potential (CHIP), which defines the presence 

of a clonally expanded hematopoietic stem cell caused by a leukemogenic mutation in 

individuals without evidence of dysplasia, cytopenia or hematologic malignancy. CHIP 

correlates with a 0.5–1.0% risk per year of leukemia. Importantly, CHIP also confers a 

two-fold increase in cardiovascular risk independent of conventional risk factors and is 

also associated with venous thromboembolism and other inflammatory states. Other CHIP 

mutations (in addition to JAK2 V617F) occur in DNA damage repair genes PPM1D and 
TP53, epigenetic regulators ASXL1, DNMT3A, TET2, and mRNA spliceosome components 

SF3B1, and SRSF2, as well as other genes (50). Interestingly, patients with Erdheim Chester 

Disease, a non-Langerhans histiocytosis, appear to have elevated rates of myeloproliferative 

disorders, sometimes heralded by a JAK2 V617F mutation (51). JAK family mutations 

are also observed in a subset of patients with a variety of T-cell malignancies, including 

T-ALL, T-PLL and Sezary syndrome, as well as childhood B-cell precursory ALL, and 

acute megakaryoblastic leukemia (with and without Down syndrome (37–48). An activating 

JAK1 mutation has been reported in Castleman’s disease as well and may explain an 

exceptional response to the anti-IL6 antibody siltuximab in the reported patient in the 

absence of elevated IL6 levels, since the JAK1 mutation may have sensitized the receptor to 

the IL6 ligand (42). Finally, a TEL-JAK2 fusion protein that includes the catalytic domain 

of JAK2 and the TEL-specific oligomerization domain, resulting in constitutive activation 

of its tyrosine kinase activity, has been seen in ALL and in atypical chronic myelogenous 

leukemia (44).

JAK loss-of-function alterations: Somatic genomic copy number alterations, involving 

loss of the key interferon-γ gene function inducer JAK2, are a pivotal driver of immune 

resistance and escape. Acquired resistance to immune checkpoint therapy, including PD-1 
blockade, in patients with advanced melanoma and other cancers has been associated 

with JAK2 deletion and loss-of-function mutations, respectively (52–55). In depth study 
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showed that the deletion of JAK2 and PD-LI, two neighboring genes found on chromosome 

9p24, was associated with primary resistance to anti-PD-1 immunotherapy in recurrent 

human papilloma virus-negative head and neck squamous cancers (54). The latter findings 

regarding resistance to immune checkpoint blockade were confirmed (55), and CAP/CLIA 

validated for use in the clinic to select optimal therapy in this setting. Therefore, lack of 

JAK2-mediated interferon-γ responsiveness allows cancer cells to escape from antitumor 

T cells and, in the context of anti-PD-1/L1 immunotherapy, abrogates the antitumor 

efficacy of this approach. Consistent with these PD-L1-JAK2 co-deletion resistance findings, 

JAK2, PD-L1 (and PDL2) (9p24.1) amplification, or 9p copy number gain, have been 

associated with opposite effects, namely anti–PD-1 immunotherapy benefit. Increased 

PD-L1 expression, which can be directly caused by 9p24.1 amplification (or 9p copy 

number gain) and indirectly caused by increased JAK2 signaling, has been associated with 

immunotherapy response against tumors with 9p amplification (56,57). These results may 

apply to other tumors/sites and therapies, especially given the pivotal, broad role of JAK2 
in cancer cell sensitivity to IFN-γ, impaired antigen presentation, T cell sensitivity, and 

evasion.

JAK inhibitors in the clinic

A wealth of functional data provided strong motivation for the generation of inhibitors 

that block the enzymatic activity of JAK as a new type of immunomodulatory medication. 

Preclinical disease models, including in arthritis, transplantation, graft-versus-host disease 

and other autoimmune conditions led to clinical trials. Moreover, the discovery of gain-

of-function mutations of JAK2 in myeloproliferative neoplasms, including myelofibrosis, 

polycythemia vera and essential thrombocytosis, provided additional impetus for developing 

JAK inhibitors (jakinibs) for the clinic (Table 3) (58–67).

The first JAK inhibitor to receive approval was the JAK1/JAK2 inhibitor ruxolitinib 

(50,61,67). Based on the identification of gain-of-function JAK2 mutations in myelofibrosis, 

ruxolitinib was approved in 2011 for this indication. Subsequently, ruxolitinib has also 

been approved for steroid-refractory acute graft-versus-host disease, and a cream form for 

atopic dermatitis. More recently, fedratinib, a selective JAK2 inhibitor, was also approved 

for myelofibrosis (64).

Tofacitinib, a JAK1/JAK2/JAK3 inhibitor, is approved for rheumatoid arthritis, psoriatic 

arthritis, polyarticular course juvenile idiopathic arthritis, and ulcerative colitis (57,58). 

Baricitinib is a JAK1/JAK2 inhibitor approved for rheumatoid arthritis and more recently for 

alopecia areata. It is also approved for the treatment of atopic dermatitis (AD) in Europe and 

has recently received emergency FDA approval, with and without the antiviral remdesivir, 

for the treatment of COVID-19 in hospitalized patients (62,63). Upadacitinib has a degree 

of selectivity for JAK1 over JAK2 and is approved for the treatment of rheumatoid arthritis, 

psoriatic arthritis and atopic dermatitis (63). Abrocitinb is also a selective JAK1 inhibitor 

approved for atopic dermatitis (64). Several other JAK inhibitors have been authorized for 

similar indications in Europe or Japan: filgotinib, peficitinib, delgocitinib, and oclacitinib 

(66).
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Ongoing clinical trials are investigating the efficacy of jakinibs in a wide variety 

of additional conditions such as alopecia areata, ankylosing spondylitis, inflammatory 

bowel disease, dermatomyositis, interstitial lung disease, lupus, vasculitides, vitiligo 

and myasthenia gravis. Finally, recent results suggest improvement in dermatologic 

abnormalities and in neurologic function in children with Aicardi-Goutieres syndrome (a 

genetic interferonopathy associated with severe disability and death) (68).

JAK inhibitors carry an increased risk of infection as a side effect. The incidence of common 

infections such as upper respiratory tract, lower respiratory tract (including tuberculosis), 

and urinary tract infections are higher compared with the general population (69). In 

addition, for those JAK inhibitors used to treat chronic inflammatory conditions, the FDA 

requires warning about increased risk of cardiac events, cancer, and blood clots (70,71).

Interaction of JAK/STAT with cross talking signaling pathways: Implications for future 
therapeutic interventions

Different components of the JAK/STAT pathway, such as receptors, JAK, STAT, and 

gene transcription factors cross talk with other signaling pathways. These signaling cross 

talks play very important roles in pluripotency, differentiation, immune regulation, and 

tumorigenesis, which may be important for future therapeutic developments (72,73). 

Specifically, components of the transforming growth factor-β (TGFβ) signaling pathway, 

which is involved in embryonic development and cell homeostasis, interact with components 

in the JAK/STAT pathway, and can either upregulate or downregulate the pathway (72,73). 

SMAD proteins, the modulators of the TGFβ pathway, and STAT proteins often share the 

same transcription complex. One example is the STAT3 and SMAD1 complex linked by 

p300, which induces astrocyte differentiation.

The TGFβ signaling pathway is modulated by the Notch pathway, which is involved in cell 

proliferation, differentiation, and cell death (72, 73). Components of the Notch pathway 

also cross talk with the JAK/STAT pathway and have been studied in organ development 

in Drosophila. The Notch pathway suppresses JAK/STAT signals through interference of 

STAT translocation to the DNA domain (72). For example, in the development of the 

Drosophila central nervous system, Hes proteins (downstream effectors of Notch) facilitate 

JAK2 phosphorylation of STAT3 (72, 73).

The cross talk between these pathways suggests that TGFβ and Notch pathway modulators 

may deserve consideration in the future when developing JAK pathway inhibitors.

Conclusions

Janus kinase or “just another kinase” (JAK) is a family of intracellular, non-receptor 

tyrosine kinase enzymes that convert cytokine-mediated signals via the JAK- STAT pathway 

into nuclear effects. Over 50 cytokines signal via the JAK/STAT pathway to coordinate 

hematopoiesis, immune function, and inflammation. The four JAK family members are: 

JAK1, JAK2, JAK3 and TYK2. The STAT family, which mainly act as transcription 

factors, is composed of seven members STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, 

STAT6. The cytokine signaling cascade requires only three elements (receptor, kinase, 

and transcription factor) to elicit a biologic impact. Each cytokine binds to a specific 
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receptor, which promotes activation of specific JAK(s) and STAT(s); receptor-localized 

STATs are phosphorylated by JAK, which leads to their disassociation from the receptor and 

translocation to the nucleus, where they induce the expression of cytokine-responsive genes; 

signaling is switched off by a specific SOCS protein via a negative feedback loop.

JAK family members are associated with both germline mutations and polymorphisms that 

correlate with specific disease manifestations (Table 1) (29–36). The autoimmune disease 

systemic lupus erythematosus has been linked to TYK2 polymorphisms. JAK3 germline 

mutations have been seen in severe combined immunodeficiency syndrome and in clear cell 

renal cell cancer. Pediatric acute lymphoblastic leukemia has been associated with germline 

TYK2 mutations, and hereditary thrombocytosis with JAK2 germline mutations.

Somatic gain-of-function mutations in JAK genes are predominantly associated with 

hematologic malignancies (Table 2) (37–48). The somatic mutation JAK2 V617F, which 

constitutively activates JAK2 kinase, is a hallmark of myeloproliferative disorders including 

polycythemia vera, essential thrombocytosis and primary myelofibrosis. JAK2 V617F is also 

found in the normal population and increases with aging as part of a phenomenon known 

as clonal hematopoiesis of indeterminate potential, which enhances risk for development of 

leukemia as well as for cardiac events and thromboembolism. JAK family somatic mutations 

are also observed in a subset of patients with a variety of T-cell malignancies--T-ALL, 

T-PLL and Sezary syndrome--as well as in childhood B-cell precursory ALL, and acute 

megakaryoblastic leukemia (with and without Down syndrome,) and in Castleman’s disease. 

Finally, an activating TEL-JAK2 fusion protein has been reported in ALL and in atypical 

chronic myelogenous leukemia (42).

JAK2 copy number loss, resulting in abrogation of JAK2 function, is also important. In 

particular, JAK2 gene loss is a pivotal driver of immune resistance and escape in cancer, and 

is associated with resistance to immunotherapy.

Because JAK family gain-of-function aberrant proteins are implicated in a spectrum of 

illnesses, JAK inhibitors have been deployed to treat these conditions. JAK inhibitors 

or jakinibs are now approved for a variety of medical problems including, but not 

limited to myeloproliferative disorders (ruxolitinib and fedratinib), graft-versus-host disease 

(ruxolitinib), rheumatoid arthritis (tofacitinib, baricitinib, and upadacitinib), psoriatic 

arthritis (tofactitinib and upadacitinib) atopic dermatitis (abrocitinib, upadacitinib and 

topical ruxolitinib), ulcerative colitis (tofacitinib), ankylosing spondylitis (tofacitinib, 

upadacitinib), and COVID-19 in hospitalized patients (baricitinib) (Table 3) (58–67), as 

well as most recently, baricitinib for alopecia (74). Future research will elucidate the 

potential of jakinibs in numerous other autoimmune illnesses including, but not limited 

to alopecia areata, ankylosing spondylitis, inflammatory bowel disease, dermatomyositis, 

lupus, vasculitides, vitiligo and myasthenia gravis. Interestingly, recent observations suggest 

improvement in neurologic function and in skin abnormalities in children with Aicardi-

Goutieres syndrome (a genetic interferonopathy resulting in severe disability and death). 

Interactions of JAK molecules with other signaling pathways such as TGF-β and notch may 

also need to be considered. Taken together, JAK inhibitors are transforming outcomes for 

many disorders, from cancer to autoimmunity and beyond.
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Figure 1: Functional Roles of JAK1, JAK2, JAK3, TYK2/STAT Pathways:
There are several members of the JAK family and the TYK protein that are involved in 

the JAK/STAT pathway. Some examples are shown. Important roles of these pathways 

include enhanced regulatory response and immune system regulation, myeloid and lymphoid 

differentiation/proliferation, and proinflammatory response (25–27)

Abbreviations: IFN- interferon; IL- interleukin; JAK- Janus kinase; STAT- signal transducer 

and activator of transcription; TYK- tyrosine kinase
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