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ABSTRACT

Introduction: To evaluate the ability of artifi-
cial intelligence (AI) software to quantify prop-
tosis for identifying patients who need surgical
drainage.
Methods: We pursued a retrospective study
including 56 subjects with a clinical diagnosis of
subperiosteal orbital abscess (SPOA) secondary
to sinusitis at a tertiary pediatric hospital from
2002 to 2016. AI computer software was devel-
oped to perform 3D visualization and quanti-
tative assessment of proptosis from computed

tomography (CT) images acquired at the time of
hospital admission. The AI software automati-
cally computed linear and volume metrics of
proptosis to provide more practice-consistent
and informative measures. Two experienced
physicians independently measured proptosis
using the interzygomatic line method on axial
CT images. The AI software and physician
proptosis assessments were evaluated for asso-
ciation with eventual treatment procedures as
standalone markers and in combination with
the standard predictors.
Results: To treat the SPOA, 31 of 56 (55%)
children underwent surgical intervention,
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including 18 early surgeries (performed within
24 h of admission), and 25 (45%) were managed
medically. The physician measurements of
proptosis were strongly correlated (Spearman
r = 0.89, 95% CI 0.82–0.93) with 95% limits of
agreement of ± 1.8 mm. The AI linear mea-
surement was on average 1.2 mm larger
(p = 0.007) and only moderately correlated with
the average physicians’ measurements (r = 0.53,
95% CI 0.31–0.69). Increased proptosis of both
AI volumetric and linear measurements were
moderately predictive of surgery (AUCs of 0.79,
95% CI 0.68–0.91, and 0.78, 95% CI 0.65–0.90,
respectively) with the average physician mea-
surement being poorly to fairly predictive (AUC
of 0.70, 95% CI 0.56–0.84). The AI proptosis
measures were also significantly greater in the
early as compared to the late surgery groups
(p = 0.02, and p = 0.04, respectively). The sur-
gical and medical groups showed a substantial
difference in the abscess volume (p\0.001).
Conclusion: AI proptosis measures significantly
differed from physician assessments and
showed a good overall ability to predict the
eventual treatment. The volumetric AI proptosis
measurement significantly improved the ability
to predict the likelihood of surgery compared to
abscess volume alone. Further studies are nee-
ded to better characterize and incorporate the
AI proptosis measurements for assisting in
clinical decision-making.

Keywords: Orbital cellulitis; Subperiosteal
orbital abscess; Proptosis; Computed
tomography (CT); Automation

Key Summary Points

Surgical indications for pediatric orbital
abscess drainage are vague or equivocal in
literature.

Clinical measurement of proptosis in an
acutely ill child is challenging, leading to
incomplete ophthalmic exams.

This study seeks to automate CT proptosis
measurements and evaluate any
association with the need for eventual
surgery.

Automated proptosis measurements are
associated with the need for surgery, and
its predictive ability is improved when
combined with orbital abscess
measurements.

Automation provides for the precise and
accurate measurement of proptosis,
calling for the need of an integrative tool
that can provide these metrics in the
clinical setting to inform decision-
making.

INTRODUCTION

Orbital cellulitis is the most common sequela of
sinusitis [1] and can lead to serious complica-
tions. Occurring predominately in the pediatric
population, orbital cellulitis may lead to blind-
ness, cavernous sinus thrombosis, meningitis,
subdural empyema, and brain abscess [1–7].
Ocular examinations in the pediatric popula-
tion are limited by their cooperation, mental
status, and acute illness, leading to computed
tomography (CT) as the most accurate modality
for the diagnosis and extent of infection [8, 9].
Proptosis, gaze restriction, and pain with eye
movement are common indicators of orbital
extension, with their presence often prompting
the need for CT scanning. While the presence of
proptosis is a consistent sign of orbital cellulitis,
distinguishing it from preseptal cellulitis, its
ability to predict the presence of a subperiosteal
orbital abscess (SPOA), or the subsequent need
for abscess drainage have been equivocal in the
literature (Table 1) [10–14].

While abscess volume continues to be the
most established risk factor for surgery, prop-
tosis has been both negatively [15–17] and
positively associated with surgical intervention
[12, 18–20]. This discrepancy in the literature is
likely secondary to small sample size, inconsis-
tent measurement of proptosis, and inability to
record a complete pediatric ophthalmic exam,
which may happen in 38–43% of patients
[15, 21].
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Proptosis, anterior displacement of the
globe, has been difficult to accurately and con-
sistently measure in diseased states. While it is
an important indicator of orbital pathology,
common errors in measurement occur with
vertical globe displacement, soft tissue or orbital
rim changes, lack of uniform technique, and

parallax [22]. Hertel exophthalmometry (Her-
tel) is the most widely used measurement of
proptosis [23, 24], but it was reported to have
only moderate inter-reader agreement in a
study of normal Chinese adults [25]. To clini-
cally assess proptosis, the apex of the cornea is
measured after seating the foot plates of the

Table 1 Studies of pediatric SPOA with proptosis analyzed as a variable for surgery

Study
(year)

N = SPOAs, (patients
with proptosis
measured)

Method of measurement Threshold for surgery
(statistics)

Predictive of
surgery? Statistics

Rahbar

et al. [18]

19, (N/A) Not reported [ 2 mm (descriptive

only, reported as 92%

chance of surgery

within their cohort)

Yes. Multivariate

analysis

(p = 0.003)

Brown et al.

[15]

42, (not reported,

authors noted 43% of

patients had

incomplete

ophthalmic exams)

Hertel in an unreported number of

patients

N/A No. Univariate

analysis

(p = 0.3997)

Oxford and

McClay

[19]

43, (17) 17 patients with Hertel

measurement, 26 patients only

noted as presence or absence of

proptosis

[ 5 mm (phi

coefficient = 0.468)

Yes. Univariate

analysis

(p = 0.008)

Tabarino

et al. [20]

32, (32) Physician CT measurements using

interzygomatic line (to center of

eye), two readers

[ 4 mm (not reported) Yes. Univariate

analysis

(p = 0.02)

Nation

et al. [16]

48, (N/A) Patients only noted as presence or

absence of proptosis

N/A No. Multivariate

analysis

Quintanilla-

Dieck

[17]

40, (40) Physician CT measurements using

interzygomatic line (to posterior

globe)

N/A No. Multivariate

analysis (p value

not reported)

Murphy

et al. [12]

27, (N/A) Patients only noted as presence or

absence of proptosis

Not reported Yes. Multivariate

analysis

(p\ 0.001)

Fu et al.

[31]

56, (56) Physician CT measurements using

interzygomatic line (to posterior

globe), two readers. Automated

linear and volumetric proptosis

measurements

Not recommended Yes. Multivariate

analysis

(p\ 0.01, for

all measures of

proptosis)

N/A not applicable
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Hertel instrument at the lateral canthus. Such
requirements are complicated in the pediatric
patient with orbital cellulitis, who routinely
presents with eyelid edema, pain, and globe
deviation or displacement. CT scans have been
used as a substitute for the measurement of
globe position. Physician measurement of
proptosis on CT scans has been found to have
good agreement with Hertel in normal popula-
tions and in patients with orbital pathology
(e.g., orbital fractures, thyroid eye disease)
[23, 26–29].

We developed and tested artificial intelli-
gence (AI) software to perform 3D visualization
and quantitative assessment of proptosis
depicted on CT images. Our goal is to signifi-
cantly improve the accuracy and consistency of
quantifying globe protrusion. The influence of
proptosis in relation to abscess volume and its
role as a risk factor for surgical intervention was
investigated in this retrospective study.

METHODS

Study Population

The study was approved by the Institutional
Review Board (IRB) of University of Pittsburgh
and adhered to the tenets of the Declaration of
Helsinki. Informed consent was deferred with
IRB approval. A single-institution, retrospective
chart review was performed to identify patients
with CT-confirmed SPOA from 2002 to 2016 at
UPMC Children’s Hospital of Pittsburgh.
Patients with orbital cellulitis were identified

using ICD9 and ICD10 codes for preseptal cel-
lulitis (373.13) and orbital cellulitis (376.01).
Demographic characteristics including age, sex,
use of nasal steroids, and treatment modalities
including use of IV antibiotics and surgical
drainage were collected for all subjects in the
study cohort (Table 2).

The results of the chart review were nar-
rowed to identify cases that met the inclusion
criteria: (1) the presence of SPOA on CT scan, (2)
access to the CT images for analysis, and (3)
axial CT images were not severely degraded by
motion artifact or patient positioning to pre-
clude clinician planar measurement of propto-
sis. Cases not meeting these criteria were
excluded. Ultimately, 56 cases met our inclu-
sion criteria, with 31 (55%) undergoing surgery
and 25 (45%) managed with medical therapies
alone. Abscess volumes for each subject were
computed by manually outlining each abscess
with lesion-mapping software in a previous
study, which was published in the literature
[30].

Subjects were also grouped into ‘‘early’’ and
‘‘late’’ surgical intervention. The criteria to be
assigned to the early surgery group was surgery
performed within 24 h of admission.

Proptosis Assessment

Maxillofacial CT scans were performed to eval-
uate the presence of orbital abnormalities. The
CT scans were performed on a 16-detector
(n = 12) or 64-detector (n = 51) CT scanner (GE
Healthcare, Waukesha, WI, USA). The scans

Table 2 Non-proptosis characteristics of patients at the time of admission by the eventual treatment group

Patients’ characteristics at the time of
admission

Medical
(n = 25)

Late surgery
(n = 13)

Early surgery
(n = 18)

p value

Age, mean (std) 4.84 (3.9) 6.77 (3.7) 6.44 (4.4) 0.165

Days on previous IV or pills, mean (std) 0.96 (1.0) 0.69 (0.9) 1.17 (1.2) 0.501

Abscess volume, mean (std) 334 (351) 822 (854) 1124 (544) \ 0.001

Sex (female), n (% in treatment group) 5 (20%) 3 (23%) 3 (17%) 0.901

Nasal steroids (yes), n (% in treatment group) 8 (32%) 7 (54%) 10 (56%) 0.258
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were acquired using a helical technique with
radiopaque contrast. Images were reconstructed
to encompass the entire orbit using the GE
‘‘bone’’ at an image thickness of 0.625–1.25 mm
within an interval from 0.325 to 1.25 mm. In-
house software was used to assess proptosis
depicted on the CT images.

Physician Planar Measurement of Proptosis
Proptosis was measured by two independent
expert reviewers: a neuroradiologist (AB) and an
oculoplastics surgeon (RF). The readers were
blind to subject history, demographics, hospital
course, and radiology reports. Proptosis was
measured on a single axial CT image (planar
measurement) by measuring posterior globe
perpendicular to the interzygomatic line. This
was performed for both eyes, and the absolute
difference between the two eyes represented
relative proptosis (Fig. 1) [17].

Automation of Globe Displacement
In-house convolutional neural network (CNN)
software was used to automatically identify the
globe and postseptal region depicted on CT
images (Fig. 2a–e), which was trained and vali-
dated on the same dataset [31]. The software

was initially developed to visualize and quantify
SPOA depicted on CT images. Once the globe
and the postseptal regions are segmented, the
AI software computed two different 3D metrics
of proptosis that quantified the displacement of
the globe from the orbit: (1) linear displacement
and (2) volume displacement. The displacement
distance ‘‘d’’ was computed by first identifying
the intersection plane between the globe and
the postseptal region (Fig. 3b). Then, the point
on the globe surface that was outside the
extraconal region and had the farthest anterior
distance (i.e., the distance d) to the intersection
plane was identified. This represents the maxi-
mum anterior projection of the globe relative to
the postseptal region. The linear proptosis
measurement was defined at the difference
between the distance ‘‘d’’ between each eye. The
volume displacement was computed as the dif-
ference between the globe volume anterior to
the postseptal region of each eye (Fig. 3a–c).

Statistical Analysis

The statistical analysis was based on non-para-
metric methods implemented using SAS statis-
tical software (SAS, v.9.4, SAS Institute, Cary
NC). The proptosis measurements (relative
protrusion in millimeters) were correlated
between physicians and compared with the AI
(using rank-based Spearman correlation and
exact Wilcoxon test at a two-sided significance
level of 0.05); the level of inter-reader agree-
ment was quantified using the 95% limits of
agreement [32]. To assess possible imbalances,
demographic and diagnosis-related parameters
were compared across the three treatment
groups (using the overall Kruskal–Wallis test).
Individual predictiveness of the proptosis mea-
surements was evaluated on the basis of the
empirical receiver operating characteristics
(ROC) curves for medical versus surgical groups
combined as well as for early versus late surgical
subgroups (the 95% confidence intervals for the
area under the ROC curve, AUC, were con-
structed using the method of DeLong et al.
[33]). The added significance of the proptosis
measurements for predicting the likelihood of
surgery was evaluated within the logistic

Fig. 1 Axial CT image of a representative subject with
left-sided proptosis, periorbital edema, ethmoid sinusitis,
and trace medial subperiosteal abscess. Physician measure-
ment of relative proptosis by measuring the posterior globe
perpendicular from the interzygomatic line
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regression model built on the basis of the
demographic and diagnosis-related parameters.
The predicted probability of future surgery was
used to estimate the overall level of predictive
ability for surgery and to illustrate possible
decision rules for predicting respectively a
medical treatment, late surgery, and early sur-
gery group, with the accuracy of the resulting

classifications quantified with the Somers’ D
statistic.

RESULTS

Of 56 children with CT-confirmed SPOAs that
met our study inclusion criteria 31 of 56 (55%)
underwent surgical intervention, including 18

Fig. 2 Automated identification of orbital abscess (a), globe (b), and postseptal region (c) and their visualization (d, e)
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early surgeries (performed within 24 h of
admission), and 25 (45%) were managed medi-
cally. The median age of the cohort at presen-
tation was 4 years old, with 45 male and 11
female patients (Table 2). There was no differ-
ence in gender, age, or prior treatment between
the surgical and medical groups, but the abscess
volume was significantly larger for patients who
underwent surgery, especially early surgery
(p\ 0.0001).

The physician’s measurements of proptosis
were strongly correlated (Spearman r = 0.89,
95% CI 0.82–0.93) with 95% limits of agree-
ment of ± 1.8 mm (Fig. 4). Six physician mea-
surements demonstrated a negative protrusion
of the abscess-affected side (with globe protru-
sion measuring greater on the unaffected side).

The physicians’ AI linear measure of prop-
tosis was on average 1.2 mm larger (p = 0.007)
than the average of two physicians’ average,
with the difference prevailing across the treat-
ment groups (Table 3). The AI linear proptosis
measurement was positive in all six cases when
the average physicians’ measure was negative.
There was only one instance when the AI linear
measurement was negative (- 1.1 mm, with
physicians’ measurements of 5.2 mm, and
5.9 mm). The larger values for AI linear mea-
surements prevailed for the subset of cases with

only positive physicians’ measurements (overall
and within treatment groups).

A potentially more informative AI volumet-
ric proptosis modality had positive proptosis
values in all cases. Both linear and volumetric AI
measurements were only moderately correlated
with the average physicians’ measurement of
proptosis (Spearman correlations of 0.53,
95% CI 0.31–0.69, and 0.57, 95% CI 0.35–0.72,
respectively).

Fig. 3 Proptosis assessment by artificial intelligence (AI)
software. a Original CT image, b ‘‘d’’ is the farthest 3D
distance from the globe’s anterior surface to the intersec-
tion plane between the globe and the postseptal region.
c ‘‘D’’ is the diameter of the globe. The AI software linear
proptosis measurement is defined as the difference between

‘‘d’’ of each eye. The AI volume measurement of proptosis
is defined as the volume of the globe beyond the postseptal
region, with the relative volume of proptosis calculated as
the volume difference between each eye

Fig. 4 Bland–Altman plot of the difference between by
the average of the proptosis measurements of two
physicians (the 95% limits of agreement are ± 1.8 mm,
based on the standard deviation of the difference of
0.9 mm)
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Individually, all proptosis measurements
varied significantly across the three treatment
groups (p\0.028) being significantly lower for
the medical than surgery group and somewhat
lower for late than early surgery subgroups
(Table 3). The AI volumetric proptosis mea-
surement was the most predictive, achieving
the AUC of 0.79 (95% CI 0.68–0.91) for dis-
criminating between the medical and surgery
groups and the AUC of 0.76 (95% CI 0.55–0.97)
for discriminating between the early and late
surgical subgroups (Table 3).

Adjusting for the abscess volume (a known
indicator for surgery and the only non-proptosis
factor significantly varying across the treatment
groups), only the AI volumetric proptosis
method was statistically significant (p = 0.03),
indicating the potential to improve the predic-
tion of the likelihood of surgery on the basis of
the abscess volume alone. The small sample size
of the current dataset does not allow statistically
supporting the specific aspects of improvements
in predictive ability beyond the implications of
the overall improvement in risk prediction
indicated by the multivariable logistic regres-
sion. However, the data indicate the potential
of the AI volumetric proptosis to improve the
overall discrimination between the surgical and
medical groups (combined marker’s empirical
AUC of 0.89) and improve the ability to confi-
dently predict a substantial fraction of surgeries

while maintaining the ability to confidently
identify a substantial fraction of the medical
group (Fig. 5).

Table 3 Distribution of possible predictors in treatment groups and their AUCs for differentiating between medical and
surgery group as well as between early and late surgery

Potential predictors Surgery (n = 31) versus medical (n = 25) Early (n = 18) versus late (n = 13) surgery

Medical
Mean
(std)

Surgery
Mean
(std)

AUC
(Wilcoxon
p value)

Late
Mean
(std)

Early
Mean
(std)

AUC
(Wilcoxon
p value)

Clinical proptosis (reader

1)

2.1 (2.1) 3.5 (2.2) 0.69 (0.02) 3.1 (2.2) 3.8 (2.3) 0.63 (0.22)

Clinical proptosis (reader

2)

2 (2.1) 3.5 (2) 0.71 (0.01) 3.1 (1.9) 3.7 (2.2) 0.62 (0.27)

Clinical proptosis (average) 2.1 (2.0) 3.5 (2.1) 0.70 (0.01) 3.1 (2) 3.7 (2.2) 0.64 (0.21)

AI proptosis 2D 3.1 (1.6) 4.8 (2.0) 0.78 (\ 0.001) 4.2 (1.9) 5.2 (2.0) 0.72 (0.04)

AI proptosis 3D 1.2 (0.8) 2.2 (0.9) 0.79 (\ 0.001) 1.8 (1) 2.5 (0.7) 0.76 (0.02)

Fig. 5 ROC curve for discriminating between the medical
and surgical groups on the basis of the abscess volume, AI
volumetric proptosis, and their linear combination (model)
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DISCUSSION

Outside of emergent indications, such as vision
loss or CNS involvement, the decision to inter-
vene surgically remains complex for orbital
abscesses. Historically, criteria for initial close
observation with medical management were
described by Garcia [9]. Since then, many pub-
lications have both disputed and supported
these criteria. Abscess volume appears to be the
most significant predictive risk factor for sur-
gery [34]. The ‘‘large’’ abscess as described by
Garcia has been more recently described with
precise volume thresholds
[16, 17, 20, 30, 35–37] culminating in the
development of lesion mapping software and
automation to measure abscess volumes
[30, 31]. However, while accurate, the clinical
significance of these automated abscess vol-
umes has yet to be applied in larger or
prospective studies.

Proptosis was not included in the indications
for surgery by Garcia [9]. Several recent rela-
tively large studies reported no association
between proptosis and the need for surgical
intervention (Table 1) [16, 17]. The predictive
value of proptosis for surgery has been equivo-
cal, likely related to small sample sizes and the
difficulties in obtaining exophthalmometry
measurements in the pediatric population. In
the acutely ill child, factors such as age, coop-
eration, changes in globe position, and presence
of eyelid edema and pain can lead to the lack of
or inaccurate proptosis measurements [26]. CT
scans can serve as a substitute in these condi-
tions. Measurement of proptosis on a CT image
can be much more straightforward, with clear,
highly contrasted areas available for both
physician estimation and computer
automation.

The physicians in our study measured prop-
tosis using the interzygomatic line method,
which is defined as the distance from lateral
rims to apex of the globe. It was chosen because
of its high correlation with Hertel readings and
ease of use [17]. While physician measurements
had moderate agreement with the AI software
linear measurements, six of the physician mea-
surements indicated no proptosis on the

affected side. While relative proptosis may be
negative in cases of preexisting orbital pathol-
ogy, none was seen radiographically within our
cohort. Given that the AI linear had only one
negative measurement and AI volumetric had
none, the authors extrapolate that the AI mea-
surements were more reflective of the pathology
seen on CT imaging. This trend is likely due to
the limitations of the physician measurements
using only 2D anatomy with a singular axial
plane. The relationship of the lateral orbital
rims to globe is influenced by patient position-
ing such as head tilt, and orbital pathology
causing additional, non-axial globe displace-
ment relative to the unaffected globe. These
changes limit the accuracy of the 2D physician
measurements but are more accounted for
when using 3D landmarks to measure AI linear
and volumetric proptosis.

The AI software used 3D reconstruction of
the globe and postseptal regions and compared
their maximal anterior distance to measure of
proptosis, reporting a linear assessment mea-
suring from the septal plane to the anterior apex
of the globe and a volumetric assessment,
measuring the entire volume of globe protru-
sion past the septal plane. Compared to physi-
cians’ linear method, both automated linear
and volumetric methods achieved substantially
higher levels of the overall predictive ability,
although the current dataset is too small to
provide the corresponding statistical support
(AUCs of 0.777 and 0.795 versus AUC of 0.699,
with p of 0.07 and 0.04, respectively). In the
current study, the AI measures were signifi-
cantly greater for the early compared to late
surgical subgroups with physician measure-
ments unable to meaningfully differentiate
between these subgroups.

AI volumetric measurements had the stron-
gest predictive ability for surgery overall and
early versus late surgery among the other
proptosis modalities and was the only proptosis
measurement to improve the predictive ability
of abscess volume (p = 0.03). The consideration
of AI volumetric measurement in addition to
the abscess volume fractionally improved the
empirical ROC curve overall and especially in
the region of high specificity (indicating the
potential for more confident prediction of
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surgery). Yet, the small sample size of the cur-
rent dataset does not allow statistically sup-
porting the specific aspects of improvements in
predictive ability beyond the implications of
the overall improvement in prediction of the
likelihood of surgery indicated by the multi-
variable logistic regression (for surgery versus
medical groups as well as for the three treat-
ment groups simultaneously). Volumetric anal-
ysis measures the entire globe displacement
relative to each respective orbital rim, which
decreases the errors related to the assumption of
normal surrounding orbital and periorbital tis-
sue with orthogonal planes and uniform
symmetry.

To our knowledge, this is the first use of
computer software to quantify proptosis in a
volumetric fashion to help improve the predic-
tion of the likelihood of surgery. Willaert et al.
[38] described using CT imaging technology to
measure proptosis in control and thyroid eye
disease patients before and after surgical
decompression, but the clinicians were still
required to choose maximum diameters of the
globes for the creation of a sphere. Chaganti
and colleagues [39] used computer software to
measure orbital landmarks in patients with
thyroid eye disease, including globe position;
however, it was unclear if relative proptosis was
defined in terms of length or volume and no
surgical threshold was defined.

We have developed automated measures of
proptosis which are significantly different from
the physician assessments and, at the same
time, provide a strong marker of future surgery.
The volumetric automated measures also show
the potential to provide substantial improve-
ments to the predictions based on the abscess
volume. Larger studies are needed to better
define these radiographic markers to assess
patients with SPOA and to better characterize
and incorporate the AI proptosis measurements
for assisting in clinical decision-making.

LIMITATIONS

This is a retrospective, single-institution study
of SPOAs with limited sample size. Small data
size prevents meaningful assessment of the

specific characteristics of improvement in pre-
dicting the eventual treatment from adding AI
volumetric measure of proptosis (i.e., AUC,
sensitivity at high specificity or specificity at
high sensitivity). External validation or a larger
study is needed to obtain reliable estimates for
the decision rule and the related characteristics.
In this same vein, a surgical threshold for
proptosis is not recommended by the authors
given the small sample size, despite our study
being the largest for the analysis of proptosis as
an indication for surgery (Table 1).

In a retrospective study, it is always difficult
to determine if the clinical chosen treatment
approach is indeed the correct choice. This can
confound analyses for determining appropriate
cutoff values for when or when not to select the
appropriate treatment. It can be argued that
increased proptosis may be associated more so
with decision to pursue surgery, wherein
increased proptosis decreases the surgeon’s
threshold for surgery, rather than being a true
indicator of severe disease recalcitrant to medi-
cal management. The influence of proptosis on
surgeons compared to abscess volume is likely
decreased given the inherent difficulties in
accurately quantifying proptosis. The lack of a
clinical gold standard for comparison is notable,
but as discussed, the accuracy of Hertel exoph-
thalmometry in this acute setting would be
subject to common errors leading to inaccurate
measurements. There may be local clinical fac-
tors that influence degree of proptosis, such as
microbiologic profile; a robust comparison of
clinical markers associated with proptosis is
beyond the scope of this study. As a single-in-
stitution study, the results may or may not
generalize to other institutions.

CONCLUSION

Physicians using orbital landmarks to measure
proptosis in a 2D plane agreed moderately with
3D AI software to compute similar linear mea-
surements. All three approaches to compute
proptosis (i.e., physicians’ manual, AI linear,
and AI volume) were found to be markers
associated with the need for surgical drainage of
SPOAs. The AI volumetric of proptosis was the
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most robust performing metric in terms of
identifying which patients ultimately under-
went surgery, predicting early vs late surgery,
and was the only measure of proptosis to
improve the ability of abscess volume to dis-
criminate surgical vs medical patients. The AI-
estimated volumetric measure of proptosis can
improve the prediction of the eventual treat-
ment approach. Larger studies are needed to
better estimate the specific improvement char-
acteristics and optimal surgical vs medical
management thresholds. An integrative, auto-
mated tool is necessary to improve early treat-
ment decision-making and be available in an
accessible clinical application.

ACKNOWLEDGEMENTS

Funding. This work is supported in part by
the National Institutes of Health (NIH) (Grant
No. R01CA237277) and the UPMC Hillman
Developmental Pilot Program. No funding or
sponsorship was received for the publication of
this article.

Author Contributions. Roxana Fu MD:
concept, design, manuscript preparation and
review. Andriy Bandos PhD: statistical analysis.
Joseph K. Leader PhD: statistical analysis.
Samyuktha Melachuri MD: manuscript prepa-
ration and submission. Tejus Pradeep MD:
manuscript preparation, statistical analysis.
Aashim Bhatia MD: manuscript preparation and
review. Srikala Narayanan MD: radiology review
and guidance. Ashley A. Campbell MD: review
and evaluation of radiology. Matthew Zhang
MD: manuscript preparation and review. José-
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