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Abstract

Capsaicin displays robust growth-inhibitory activity in multiple human cancers. However, the 

feasibility of capsaicin as a clinically relevant anticancer drug is hampered by its adverse side 

effects. This concern has led to extensive research focused on the isolation and synthesis of 

second-generation nonpungent capsaicin analogues with potent antineoplastic activity. A major 

class of nonpungent capsaicin-like compounds belongs to the N-acyl-vanillylamide (N-AVAM) 

derivatives of capsaicin (hereafter referred as N-AVAM capsaicin analogues). This perspective 

discusses the isolation of N-AVAM capsaicin analogues from natural sources as well as their 

synthesis by chemical and enzymatic methods. The perspective describes the pharmacokinetic 

properties and anticancer activity of N-AVAM capsaicin analogues. The signaling pathways 

underlying the growth-inhibitory effects of N-AVAM capsaicin analogues have also been 

highlighted. It is hoped that the insights obtained in this perspective will facilitate the synthesis 

of a second generation of N-AVAM capsaicin analogues with improved stability and growth-

suppressive activity in human cancer.

Graphical Abstract

1. INTRODUCTION

The nutritional compound capsaicin (trans-8-methyl-N-vanillyl-6-noneamide, Figure 1) is 

a strong pain-relieving agent, used in many over-the-counter creams (and lotions) to treat 

pain and inflammation associated with a variety of diseases.1,2 The pain-relieving activity 

of capsaicin is mediated by the transient receptor potential vanilloid (TRPV) receptor 

superfamily of ion-channel receptors on target cells. The TRPV family of receptors is 

comprised of six receptor subtypes (TRPV1–6).1 Capsaicin is a potent agonist of the TRPV1 

receptor.3 The binding of capsaicin to TRPV1 results in a cascade of cellular signaling 
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events which leads to eventual downregulation of Substance P, a neuropeptide involved in 

the nociceptive signals from nerve endings to the brain and the release of inflammatory 

cytokines.4,5 These molecular events lead to “defunctionalization” of nociceptor fibers and 

ablation of pain-sensation.6 The cloning and molecular characterization of TRPV1 has 

clarified our concept of the interactions between capsaicin and TRPV1. It has also spurred 

structure activity-relationship studies (SAR) and the discovery of capsaicin-like compounds 

possessing greater analgesic activity than capsaicin.

Several lines of evidence show that capsaicin displays strong antineoplastic activity in 

several human cancers, both in vitro and in vivo.7–10 A surprising finding has been the 

fact that the anticancer activity of capsaicin (in the majority of human cancers) does not 

involve the TRPV1 receptor.11 The growth-suppressive properties of capsaicin and its 

related compounds are mediated by its ability to block cytoplasmic, mitochondrial, and 

metabolic survival pathways.7–10 Capsaicin recruits multiple growth-inhibitory signaling 

pathways including regulation of intracellular calcium, activation of the calpain family of 

apoptotic proteases, generation of reactive oxygen species (ROS), suppression of coenzyme 

Q (antioxidant and redox component in the respiratory chain), induction of apoptosis and 

autophagy, disruption of mitochondrial respiration, and inhibition of transcription factors 

like p53, STAT3, and NF-κB.7,8 An important antitumor mechanism of capsaicin is its 

ability to downregulate tumor angiogenesis.12,13 Capsaicin inhibits vital cancer-progression 

pathways like epithelial-mesenchymal transition (EMT), invasion, and metastasis.14 Finally, 

published data reveal that capsaicin sensitizes human cancer cells to the growth-suppressive 

effects of established cancer chemotherapy drugs and radiotherapy.15–18

The clinical applications of capsaicin as a viable anticancer drug are hampered by 

low aqueous solubility, poor bioavailability, and its unfavorable side effect profile. The 

administration of capsaicin causes skin redness, hyperalgesia, nausea, intense tearing in the 

eyes, conjunctivitis, blepharospasm (sustained, forced, involuntary closing of the eyelids), 

vomiting, abdominal pain, stomach cramps, bronchospasm, and burning diarrhea.6,19,20 

Clinical trials investigating the analgesic activity of capsaicin have shown that such 

disagreeable side effects have led to patients discontinuing use of capsaicin.6,19,20 Another 

caveat of capsaicin (as an anticancer drug) is that it has been found to promote the 

growth of certain cancers like skin cancer, stomach cancer, colon cancer, and gastric 

cancers.21–23 Such findings have led to intense research focused on the identification 

of nonpungent capsaicin-analogues which possess improved growth-suppressive activity. 

Studies from several research laboratories have described a plethora of natural and synthetic 

capsaicin-mimetics which display enhanced pharmacological activity, improved selectivity, 

and a longer biological half-life than capsaicin.15,24,25 Out of all the nonpungent capsaicin-

analogues, compounds belonging to the N-acyl vanillylamide (N-AVAM) family of capsaicin 

mimetics are some of one of the most extensively studied in terms of their functional 

activity, specificity (and selectivity), pharmacokinetics, and bioavailability.15 Published 

data show that N-AVAM capsaicin analogues display greater pain-relieving activity than 

capsaicin.24,26,27 However, only a handful of studies have reported the antineoplastic 

activity of this class of compounds. Most importantly, N-AVAM capsaicin analogues do 

not promote the growth of the cancer cell in vitro and in athymic mouse models. The 

objective of the present perspective is to describe the synthesis strategies, anticancer activity, 
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pharmacokinetics, and biological half-life of N-AVAM capsaicin analogues. In addition, 

we will also discuss the signaling mechanisms underlying the anticancer activity of these 

compounds. Molecular modeling studies and high-throughput virtual screening experiments 

will pave the way to a second generation of N-AVAM capsaicin analogues with better 

bioactivity, stability, and therapeutic index.

2. PHARMACOPHORE OF CAPSAICIN

Structure activity relationship (SAR) studies have shown that the chemical structure of 

capsaicin is comprised of three distinct motifs (Figure 1). Region A encompasses the 

aromatic moiety, region B includes the amide group, and region C consists of the alkyl 

hydrophobic side chain.8,9,24

The N-AVAM capsaicin analogues contain long alkyl side chains in region C of capsaicin. 

Initial studies showed that side chains containing short acyl groups, short acyl groups 

with polar structures, and short branched acyl groups were inactive or showed weak 

pain-relieving activity.15,23 The presence of a saturated long chain alkyl group in region 

C gave rise to compounds with moderate analgesic activity. However, the incorporation 

of unsaturated long chain fatty acyl side groups yielded nonpungent, nontoxic, orally 

active capsaicin analogues with extremely high biological activity.15,24 The pharmacological 

activity of these capsaicin-analogues was measured by the uptake of radiolabeled calcium 

(45Ca) into dorsal root ganglia neurons in culture. The antinociceptive and antiinflammatory 

activity of these compounds was measured using mouse hot tail flick and croton-oil 

inflamed mouse ear models.15,24

Recent studies have examined the anticancer activity of N-AVAM capsaicin analogues. 

A majority of these publications have investigated the growth-suppressive activity of a 

specific N-AVAM capsaicin analogue such as 5, 8, or 10. There is currently a lack of 

high-throughput screening studies to test the growth-inhibitory activity of large numbers 

of N-AVAM capsaicin analogues. The anticancer activity of capsaicin is correlated to its 

ability to activate the functional activity of pro-apoptotic calpain proteases in human breast 

epithelial cells and small cell lung cancer (SCLC) cells. Data from our laboratory reveal that 

the growth-suppressive activity of N-AVAM capsaicin analogues in human SCLCs correlate 

with activation of calpain1 and calpain2.28 Based on these findings and observations 

(described later), it is tempting to speculate that N-AVAM capsaicin analogue-induced 

activation of calpain proteases may be a useful indicator of their growth-inhibitory activity.28 

Thus, measuring the functional activity of calpain-1 and calpain-2 activity by N-AVAM 

capsaicin analogues may form the basis of a novel high-throughput drug screening strategy 

to discover improved N-AVAM capsaicin analogues with robust growth-suppressive activity 

in human cancers.

3. PREPARATION OF N-AVAM CAPSAICIN ANALOGUES

N-AVAM capsaicin analogues have been obtained from both natural sources as well as 

synthetic routes. Figure 2 shows the structure of N-AVAM capsaicin analogues whose 

anticancer activity has been investigated in cell culture and mouse models. The present 
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section describes the techniques used for isolation of N-AVAM capsaicin analogues from 

natural sources and the synthetic routes by which they have been generated.

3.1. Isolation of N-AVAM Capsaicin Analogues from Natural Sources.

The N-AVAM capsaicin analogues 1–6 have been isolated from chili peppers (habanero and 

Takansosume peppers) as well as from Capsicum oleoresin.29 The term Capsicum oleoresin 
refers to an oily organic resin derived from the plants belonging to the Capsicum genus, 

namely, as chili peppers. The oleoresin is generated by ethanolic extraction of finely ground 

chili peppers. After extraction, the oleoresin is dried. This oleoresin is commonly used as 

a culinary seasoning agent in food. Kobata et al. isolated a panel of N-AVAM capsaicin 

analogues from Capsicum oleoresin (1–6, Scheme 1) and habanero and takansosume 

peppers (2–6, Scheme 2).29 The authors used three kinds of Capsicum oleoresin obtained 

from a Chinese market. The resins were extracted with methanol and were fractioned by 

silica gel column chromatography. The elution of the methanolic extracts by with stepwise 

elution of a mixture of 50% n-hexane and 50% ethyl acetate yielded 15 distinct fractions. 

The N-AVAM capsaicin analogues were present in fractions 12 and 13. Fraction 12 was 

purified by medium pressure liquid chromatography (MPLC) using a reversed phase silica 

gel column. Elution with 80–90% methanol yielded N-AVAM capsaicin compounds 1–6 
represented in Scheme 1. The N-AVAM capsaicin analogues 1–6 were characterized by 

GC-MS analysis, APCI-MS, and NMR techniques.29 The compounds 3–6 were present in 

robust amounts in Capsicum oleoresin, whereas only minute amounts of compounds 1, 2, 
and 7 were detected in the methanolic oleoresin extract.

The isolation of N-AVAM capsaicin analogues 2–6 from habernero and takanosume 

peppers was accomplished by a slightly different method (Scheme 2). The peppers were 

freeze-dried, ground, and soaked with ethyl acetate (for 1 month) to obtain the fraction 

containing N-AVAM capsaicin analogues.29 The ethyl acetate fraction was purified by 

reverse-phase HPLC to obtain the purified N-AVAM capsaicin analogues. The compounds 

were characterized by APCI-mass spectrometry (Scheme 2). The compounds 1 and 7 were 

not detected in the habernero or takanosume peppers. 2 was present in miniscule amounts 

only in the habernero peppers.29 The peppers contained abundant amounts of 3, 5, and 6. A 

low concentration of 4 was found in the pepper fruits.

3.2. Generation of N-AVAM Capsaicin Analogues from Plant Oils.

N-AVAM capsaicin analogues have been generated by the nucleophilic amidation reaction 

using vanillylamine (12) and plant oils.30 The yield of the N-AVAM capsaicin analogues 

depended upon the fatty acid composition of the plant oil used in the reaction. The 

compound 12 was mixed with olive oil and the resultant mixture was heated to 180 °C for 

1 h to generate a mixture of N-AVAM capsaicin analogues (3–7, Scheme 3).30 This reaction 

mixture was purified on a reverse phase silica gel column. The reaction product contained 

approximately 10% 3, 5% 4, 70% 5, 10% 6, and less than 1% 7. When vanillylamine was 

mixed with soybean oil, reaction products were comprised of 2% 2, 10% 3, 5% 4, 30% 

5, 48% 6, and 5% 7 (Scheme 4). It is probable that natural N-AVAM capsaicin analogues 

in Capsaicum oleoresin were evolutionarily generated from the reaction of 12 and the oils 

found in the oleoresin.29,30
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3.3. Chemical Synthesis of N-AVAM Capsaicin Analogues.

Januscz et al. (1993) described six possible synthesis strategies to obtain N-AVAM capsaicin 

analogues (Figure 3).31 The key reactant chemical in Schemes 4–6 was 13 (3-methoxy 

4-alkoxy vanillylamine derivatives, Figure 3).Scheme 4 involved the reaction of 13 (in 

dimethylformamide) with the corresponding fatty acyl chlorides (solubilized in ether), as 

represented by Figure 3. Scheme 5 was identical to Scheme 4 except that the reaction was 

performed using a two-phase system of water and ether (Figure 3). Scheme 6 involved the 

reaction of 13 with the relevant fatty acid using N,N-dicyclohexylcarbodiimide (DCC) as the 

coupling agent and 4-(dimethylamino)pyridine (DMAP) as the catalyst (Figure 3).

The products obtained in Schemes 4–6 (Figure 3) were hydrolyzed to yield the desired 

N-AVAM capsaicin analogues (14).31 Schemes 7 and 8 involved the reaction of 15 (4-

acetylhomovanillic acid chloride) with the desired amine to yield N-AVAM capsaicin 

analogues (16, Figure 4). In Scheme 8, 1 equiv of 15 was treated with 2 equiv of the 

appropriate amine in the presence of 1 equiv of trimethylamine (Figure 4). Scheme 8 

involved the reaction of 1 equiv of 15 with 1 equiv of the desired amine and 1 equiv of 

trimethylamine (Figure 4, middle reaction).31 Takao et al. (2015) made a subtle variation in 

Scheme 7 that was used to synthesize 5 (Figure 4).32 The authors reacted 15 (oleoyl acid 

chloride) with vanillylamine hydrochloride in the presence of ethanolamine and dicholoro-

methane to obtain 5.32

Scheme 9 used ethyl homovanillate (17) as the starting material for the reaction (Figure 

4). 17 was reacted with the desired amine at an elevated temperature (170 °C). Method 

F did not require any tertiary amines or carbodiimides to catalyze the reaction. The 

N-AVAM capsaicin compounds were purified by RP-HPLC and characterized by gas 

chromatography, mass spectrometry, and NMR techniques.31 Most interestingly, the reaction 

products obtained from Schemes 7–9 are reverse amides of the reaction products from 

Schemes 4–6.

The synthesis strategy outlined in Schemes 4–6 suffered from a few drawbacks. Schemes 

4–6 use fatty acid acyl chlorides, which may emulsify, especially with long chain fatty acids. 

The formation of fatty acid acyl chlorides from simple unfunctionalized acids is a standard 

procedure; however, carefully controlled conditions are required to obtain acyl chlorides 

from polyunsaturated acids. The use of carbodiimide condensing agents (DCC) required 

protection of the phenolic hydroxyl group of vanillylamine of 13.31 All these considerations 

underscored the need for a single step synthesis procedure coupled with an easy isolation 

protocol to obtain N-AVAM capsaicin analogues.

Appendino et al. (2006) designed a single step synthetic route to generate N-AVAM 

capsaicin analogues using vanillylamine hydrochloride as the starting material (Scheme 

10).33 The starting compound for the synthesis of 10 was arachidonic acid (18).33 18 was 

reacted with the hydrochloride salt of 12 (in the presence of DEPC and trimethylamine) 

under an inert nitrogen environment for 90 min.33 Volatile reaction products were removed 

under reduced pressure, and the nonvolatile residues were purified by silica gel open 

chromatography to obtain 95% pure arvanil (10, Scheme 10). The synthesis of 8, 9, and 
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11 was accomplished using similar conditions with ricinoleic acid, phenylacetylricinoleic 

acid, and 4,7,10,13,16,19-docosahexanoic acid being used as the starting materials (Table 1).

Dasse et al. (2000) used an innovative synthesis strategy to generate N-AVAM derivatives 

of 10 (Scheme 11).31 They synthesized the intermediate compound methyl-14-hydroxy-

(all-cis)-5,8,11-tetradecatrienoate (19) from the commercially available hex-5-ynoic acid.34 

19 was converted into the corresponding phosphonium iodide, 20. Subsequently, 20 was 

reacted with the desired aldehyde in a Witting reaction to generate the ester (22, Scheme 

11). Hydrolysis of the ester followed by treatment with oxalyl chloride and vanillylamine 

generated 10 and its related N-AVAM analogues.34

Carpino (1993) described using HATU (hexafluorophosphate azabenzotriazole tetramethyl 

uronium) as a coupling agent which facilitated the rapid, high-yield acyl amidation reaction 

of carboxylic acids with nucleophilic amines (Scheme 12).35 Moriello et al. (2018) used 

the HATU reagent to obtain N-AVAM capsaicin analogues.36 The starting material for 

the synthesis was the relevant fatty acyl methyl esters. The fatty acyl methyl esters were 

hydrolyzed to yield the corresponding fatty acid, which was then reacted with 12 (in the 

presence of DIPEA in anhydrous DMF) using the azabezotriazole based coupling agent 

HATU to obtain robust yields of N-AVAM capsaicin analogues.36 Scheme 12 shows the 

schema of this coupling reaction using oleic acid (23) as an example reactant for the 

reaction. The reaction of 23 with 4-hydroxy-3-vanillylamine (in the presence of HATU) 

yields 5.

3.4. Enzyme-Based Synthesis of N-AVAM Capsaicin Analogues.

Kobata et al. (2010) were the first to use biocatalysts from acetone powder of a liver extract 

to obtain capsaicin analogues.29 Subsequently, they extended these studies to synthesize 

N-AVAM capsaicin analogues from vanillylamine hydrochloride (24) and fatty acid esters 

in a two-phase system using the enzyme lipase AK or lipase PS (dissolved in organic 

solvents). The addition of N,N-diisopropylethylamine (DIPEA) was to release 12 from its 

hydrochloride salt. Such lipase catalyzed amidation was used to obtain moderate yields 

(40–59%) of 1, 5, and 7 (Scheme 13). In a later published report, Kobata et al. (2010) 

reacted 12 with natural oils, namely, safflower oil, perilla oil, and olive oil (using lipase 

enzymes as catalysts), to obtain a mixture of N-AVAM capsaicin analogues (Scheme 13).29 

The reaction of 12 with olive oil (catalyzed by lipase B, lipase D, lipase R, or Novozym435) 

yielded 5.30 When safflower oil was used in the above reaction, the product obtained was 

a mixture of 5 and 6. Similarly, lipase-catalyzed reaction of 12 with perilla oil generated 

7.30 The rate limiting step of this lipase-catalyed synthesis of 5 was the release of 12 
from its hydrochloride salt (Scheme 13). Reyes-Duarte et al. increased the efficacy of the 

lipase-catalyzed reaction by adding DIPEA along with vanillylamine hydrochloride salt 

(24).37 The addition of DIPEA enabled efficient release of the vanillylamine (from its 

hydrochloride salt) which was treated with oleic acid (23) in the presence of lipase B to 

yield 5. Furthermore, they preincubated the 24 with a 12-fold molar excess of DIPEA (for 

30 min) to achieve an almost complete conversion of 24 to 12.37 The 12 (generated in situ) 

was reacted with 23 (in the presence of lipase B) to obtain 5 (Scheme 13).
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The use of enzymes (in their free form) for industrial scale synthesis is often hindered by 

low product yields, low stability of the enzyme, and poor recovery of the enzyme after 

one round of synthesis. Such drawbacks may be circumvented by the use of immobilized 

enzymes for synthesis reactions.38,39 The immobilized enzyme is more stable than the free 

enzyme due to an increase in protein rigidity, which prevents conformational changes that 

can potentially lead to inactivation. The immobilized enzymes can be easily recovered 

after the reaction, which yields a purer product.38,39 The reuse of immobilized enzymes 

also decreases the economic cost of the synthesis process. Reyes-Duarte et al. immobilized 

recombinant Candida antarctica lipase B (CALB) on acrylic resin (called Novozym435) to 

obtain extremely high yields of 5 (~80%).37 More recently, Diaz-Vidal et al. immobilized 

recombinant Candida antarctica lipase B (CALB) by cross-linked enzyme aggregate (CLEA) 

techniques to obtain enzyme aggregates.40 These CALB-CLEA enzyme aggregates were 

used to synthesize 5. The authors preincubated 24 with DIPEA to obtain the free base. 

The compound 12 so obtained was mixed with 23 and CALB-CLEA in anhydrous 2-

methyl butanol for 72 h to obtain 5 (Scheme 14). 5 was purified by high-pressure thin 

layer chromatography (HPTLC) and characterized by electron spray ionization (ESI) mass 

spectrometry.40 Other N-AVAM capsaicin analogues obtained using immobilized lipase B 

(Novozym435) include 2, 6, and 11.41

The selectivity of lipases for substrates can be improved by an innovative technique called 

“Bioimprinting”.42,43 This method involves generating the transition state intermediate of 

the bound enzyme and the substrate in organic solvents. This technique can be used for 

substrate analogues, additives, and inhibitors, which are referred to as the “bioimprint 

molecule”. The transition-state intermediate is cross-linked, precipitated, and lyophilized 

to lock the active conformation of the enzyme with the bioimprint molecule. Such 

bioimprinting has been shown to improve enzyme specificity, selectivity, catalytic activity, 

and the yields of the product (Figure 5).42,43 For example, the yield of 5 obtained from 

CALB-CLEA is about 16% over 72 h.

When CALB was bioimprinted with 5, the reaction yield was increased by 1.3-fold leading 

to a 25% yield of 5 over 72 h.40 An interesting observation was that CALB-CLEA 

bioimprinted with 12 or 23 gave poor yields of 5. When the enzyme was bioimprinted with 

5, higher yields of the reaction product were obtained. These observations may be explained 

by the fact that the binding of 12 with lipase B induces a conformational change in the 

active site of the enzyme, which hinders the accessibility of the oleic aid to the active site of 

lipase B. Bioimprinting is a cutting edge technology which can increase the catalytic activity 

of lipases up to 18-fold.40 Therefore, it may be envisaged that bioimprinted lipases will 

pave the way to single-step synthesis of large quantities of highly pure N-AVAM capsaicin 

analogues.

4. STABILITY AND METABOLISM OF N-AVAM CAPSAICIN ANALOGUES

The nutritional compound capsaicin is an agonist of the TRPV1 receptor.3 The addition 

of an unsaturated long chain alkyl group to region C of capsaicin endows the 

derivative with low to moderate affinity for endocannabinoid receptors.27 Traditionally, 

the endocannabinoid system is comprised of two “classical” endocannabinoids, namely, 
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N-arachidonoylethanol-amine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), and 

the endocannabinoid receptors CB1 and CB2. All N-AVAM capsaicin analogues are agonists 

of CB1 and CB2 endocannabinoid receptors. The N-AVAM capsaicin analogues display 

several characteristics of endocannabinoids including binding to endocannabinoid receptors, 

regulating the activity of the putative anandamide transporter (AMT), and inhibiting the 

uptake of anandamide (AEA) through lipophilic cell membranes.44,45 The degradation of 

endocannabinoids is mediated by the enzymes fatty acid amide hydroxylase (FAAH) and 

monoacylglycerol lipase (MAGL).46,47 The N-AVAM capsaicin analogue 10 is resistant 

to FAAH-mediated hydrolysis, which increases its biological half-life in the cellular 

microenvironment relative to other N-AVAM capsaicin analogues.

Studies by Janusz et al. (1993) show that the lipophilicity of N-AVAM capsaicin analogues 

was directly correlated with their biological activity.28 The lipophilicity of these N-AVAM 

capsaicin analogues was determined by the octanol number (log 1 – octanol/water partition 

index).48,49 They observed that the pain-relieving activity of these N-AVAM capsaicin 

analogues correlated directly to the lipophilicity of the compound.31 The authors concluded 

that short-chain N-AVAM capsaicin analogues would be rapidly metabolized by the liver 

leading to lower bioavailability of the active drug moiety.

The majority of pharmacokinetic studies with the N-AVAM capsaicin analogues have been 

performed with olvanil (5). Early studies from Sietsema et al. revealed that 5 displayed 

pain-relieving activity only with subcutaneous injection and not via oral administration 

in a mouse model using the hot plate antinociception assay.50 The authors performed a 

pharmacokinetic experiment with radiolabeled 5 in male CF-1 mice to test if the difference 

of bioactivity was related to variations in the plasma concentration of 5 following the 

two routes of administration. The plasma area under the curve (AUC) for all radioactive 

compounds was not different between subcutaneous and oral dosing, suggesting good oral 

absorption. Further evaluation specific for the levels of 5 (in the plasma) as a function 

of time indicated that the subcutaneous administration of 5 led to a rapid elevation of its 

concentration in the plasma within 4 h of dosing followed by a slow decline over 24 h. 

In contrast, when radioactive 5 was orally administered to the mice, there was a negligible 

amount of 5 detected in the blood within the first 2 h, which completely disappeared 

by 4 h.50 The AUC for 5 in mouse plasma was much higher following subcutaneous 

administration (8 ± 2.2 μg-h/g) compared to oral administration (0.1 ± 0.01 μg-h/g). These 

findings indicate that the lack of 5’s ability to produce analgesic effects after oral dosing is 

not due to lack of absorption of the drug but because of its rapid first pass metabolism, 

relative to subcutaneous 550 Such a first pass metabolism may initially occur in the 

gastrointestinal (GI) tract during the absorption process. After reaching the hepatic portal 

vein, the drug may be further metabolized in multiple tissues including the liver, lungs, and 

heart. No studies have identified the exact site of 5’s first pass metabolism in mice.

Several published reports have characterized the compounds generated from the first pass 

metabolism of capsaicin. Based on these findings Wehmeyer (1990) et al. hypothesized 

that the potential routes of metabolism of 5 are the hydrolysis of the amide bond and 

(ὡ-β)-oxidation of the side chain and conjugation of the phenolic group (Figure 6).47,51 

The authors tested their hypothesis by labeling 5 with 14C at the benzylic carbon atom 
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(represented by the black circle in Figure 6) or with 3H on the oleoyl side chain (represented 

by the black square in Figure 6).51 The metabolism of 14C-olvanil and 3H-olvanil was 

studied in vitro using isolated proteolytic enzymes, cell free intestinal and liver supernatants, 

isolated hepatocytes, enterocytes, and isolated intestinal perfusion systems (isolated from 

Sprague–Dawley rats). The treatment of 14C-olvanil with type VIII porcine liver protease 

and porcine intestinal protease yielded a metabolite which coeluted with 12.51 Similarly, the 

incubation of 14C-olvanil with cell-free liver supernatant resulted in the generation of 12. 

An interesting observation was that 5 was not metabolized by several common proteolytic 

enzymes like chymotrypsin, elastase, papain, cathepsin C, pepsin, leucine aminopeptidase, 

and porcine liver esterase.51

Isolated enterocytes metabolized 14C-olvanil rapidly to generate 5 and vanillin. 14C-olvanil 

was primarily metabolized by enterocytes between 30 min to an hour incubation of the 

reactant. The amount of intact 14C-olvanil left after 1 h incubation with enterocytes was 

approximately 1%.51 It is unclear whether the enterocytes directly hydrolyzed 5 to 12 or 

whether the 12 was generated indirectly from metabolic reactions like beta-oxidation of 

5. The incubation of 3H-olvanil with isolated enterocytes predominantly yielded oleic acid 

(74% of total metabolites generated).

The metabolism of 5 in isolated hepatocytes (isolated from male Sprague–Dawley rats) 

occurred much more rapidly relative to enterocytes. Within 30 min, the amount of intact 
14C-olvanil remaining in isolated hepatocytes was only 4%. 12 was not detected after the 

metabolism of 14C-olvanil with rat hepatocytes. The metabolic products of 14C-olvanil 

in hepatocytes included two polar compounds which were not identified.51 Hepatocytes 

metabolized 3H-olvanil to yield oleic acid (24% of total metabolites generated). Such results 

demonstrate that hydrolysis is the dominant route of the metabolism of 5 in enterocytes and 

hepatocytes.

The above data suggest that the liver and intestine are the primary sites of metabolism of 5. 

This hypothesis was tested by incubating radiolabeled 5 with isolated perfused intestine. The 

radiolabeled 5 (14C-olvanil) was injected via the intraduodenal route, and the perfusate was 

collected using a portal cannula after 1 h. 14C-olvanil was almost completely metabolized 

(90% metabolized) by intestinal tissue to yield 12 and an unknown polar compound.51

The metabolism of 5 in vivo was explored in adult male Sprague–Dawley rats. The rats were 

administered 14C-olvanil (200 mg/kg) by oral gavage. After 3 h, the plasma was tested for 

metabolites of 5 using reversed-phase HPLC with sequential UV and online radiochemical 

detection (LC-RAD). Olvanil-O-glucuronide and an unknown polar compound were major 

metabolites detected in the plasma. The metabolism experiments in rat models show that 

glucuronidation of the phenolic group (to yield olvanil-O-glucuronide) may be a key route of 

the metabolism of 5 in vivo The treatment of the plasma with β-D-glucuronidase resulted in 

the appearance of 12. Intact 5 was also detected in the β-D-glucuronidase-treated plasma.51 

The incubation of 5 in whole isolated blood (from Sprague–Dawley rats) does not induce 

first pass metabolism of 5. No published reports have investigated the metabolism of 5 in 

the lung. Taken together, the in vitro and in vivo metabolism experiments showed that the 
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major route of metabolism of 5 is hydrolysis of the amide bond to yield 12, vanillin, and 

olvanil-O-glucuronide (Figure 6).

Capsaicin has been extensively used as a pain-relieving agent in topical formulations like 

creams and lotions. Kasting et al. (1997) compared the skin penetration ability of 5 in rat 

and human skin sections mounted on Franz diffusion cells.52 The steady state flux rates of 

5 was measured between 7 and 48 h postincubation with radiolabeled 5. The permeability 

rate of 5 across rat skin (from SkH:Fz rat and CD:VAF rat) was higher than human skin. 

These observations were confirmed in dermal absorption studies performed in CD:VAF rats. 

The steady state flux of 5 across CD:VAF rat skin increased over time from 24- to 72 h 

post-treatment.52 The dermal metabolism of 5 was studied in SkH:Fz perfused rat skin 72 

h after topical application. 5 is a highly lipophilic compound, so it was predicted to be 

efficiently absorbed into the skin. Surprisingly, only 3.6% of 5 was absorbed across the skin 

after 72 h, and a majority of 5 was excreted via the urine after dermal absorption.52 The 

major pathway for dermal metabolism of 5 was via hydrolysis of the amide moiety to yield 

12 (Figure 6).

Although, all the pharmacokinetic studies of N-AVAM capsaicin analogues were performed 

using 5, a few important patterns were observed.50,52 The primary sites of N-AVAM 

capsaicin analogue metabolism were the liver, intestine, and the skin. 5 was primarily 

metabolized by direct/indirect hydrolysis to yield 12 and vanillin. The metabolite olvanil-O-

glucuronide was detected in rat plasma after oral administration of 5 (Figure 7). Several 

unknown polar and nonpolar metabolites were detected by HPLC techniques.50,52 The 

identification and characterization of these compounds will be pave the way to precise 

metabolic profiling of N-AVAM capsaicin analogues in vivo. The elucidation of the “N-

AVAM capsaicin analogue-metabolome” will facilitate the rational design of N-AVAM 

capsaicin analogues with improved pharmacokinetic properties and therapeutic indices.

5. ANTI-NEOPLASTIC ACTIVITY OF N-AVAM CAPSAICIN ANALOGUES

A large number of published reports have investigated the pain-relieving activity of 

N-AVAM capsaicin analogues.24,27,30 Structure activity-relationship studies showed that 

the introduction of long chain unsaturated fatty acids in region C generated nonpungent 

capsaicin analogues with extremely high pain-relieving activity. A similar trend has been 

observed in the growth-suppressive activity of N-AVAM capsaicin analogues (Table 2). The 

N-AVAM capsaicin analogues which contain a long chain unsaturated fatty acyl group (in 

region C) displayed greater growth-inhibitory activity than N-AVAM capsaicin analogues 

containing saturated fatty acyl side chains. The extent of unsaturation of the fatty acyl 

side chain correlated to the growth-suppressive activity of these compounds. The N-AVAM 

capsaicin analogues with few double bonds (in the carbon chain backbone in Region C) 

displayed lower growth-suppressive activity than the compounds with large number of 

double bonds in their fatty acyl side chain. Studies in our laboratory were the first to 

conduct systematic SAR experiments to delineate the contributions of “length of the fatty 

acyl side chain” and “number of double bonds in fatty acyl side chain” toward the growth-

inhibitory activity of N-AVAM-capsaicin analogues (Figure 8) in human small cell lung 

cancer (SCLC).28 The impetus for these experiments were derived from published reports 
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comparing the growth-suppressive activity of 3, 5, and 10. 3 is an N-AVAM capsaicin 

analogue which contains a 16-carbon atom acyl side chain in region C of capsaicin. 3 has 

no double bonds (C16:0). 5 has an acyl side chain of 18 carbon atoms and one double 

bond (C18:1). 10 has a side chain of 20 carbon atoms with four double bonds (C18:4). The 

growth-suppressive activity of 5 and 10 were tested in MCF-7, EFM-19, and T47D breast 

cancer cells.27 A survey of the IC50 values showed that the growth suppressive activity 

was 3 [IC50 (MCF-7) = 2.2 μM; IC50 (T47D) = 1.6 μM; IC50 (EFM-19) = 1 μM] was 

lower than 5 [IC50 (MCF-7) = 1.6 μM; IC50 (T47D) = 0.75 μM; IC50 (EFM-19) = 0.7 

μM] which was lower than 10 [IC50 (MCF-7) = 0.4 μM; IC50 (T47D) = 0.35 μM; IC50 

(EFM-19) = 0.55 μM] in the three breast cancer cell lines. Similarly, 10 induced about 

a 3-fold higher magnitude of apoptosis (60% apoptotic cells) in human peripheral blood 

mononuclear cells (PBMCs) than 5 (20.5% apoptotic cells).53 Although, these trends were 

observational, they motivated us to investigate whether increasing the acyl side chain or the 

number of double bonds could enhance the growth-inhibitory activity of N-AVAM capsaicin 

analogues. We examined the effect of a panel of N-AVAM capsaicin analogues (Figure 8) on 

the viability of DMS114 human SCLC after 24 h.28 MTT [[3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide] assays showed that 3 and 4 had no growth inhibitory activity 

in DMS114 cells (Figure 8A). The growth-suppressive effects of the compounds were in the 

order, 5 (C18:1, IC50 > 50 μM) < 6 (C18:2, IC50 = 43 μM) < 7 (C18:3, IC50 = 15 μM) < 10 
(C20:4, IC50 = 15 μM) (Figure 8A). Taken together this suggests that the growth-inhibition 

of these N-AVAM capsaicin analogues are directly proportional to the chain length of the 

fatty acyl group (in region C) and the number of double bonds present within this fatty acyl 

side chain.

The N-AVAM capsaicin compounds did not affect the viability of normal pulmonary 

alveolar epithelial cells (HPAEpiCs; Figure 8B).28 Therefore, our data suggested that 

N-AVAM capsaicin analogues selectively suppressed the growth of lung cancer cells 

and spared normal cells. The growth-suppressive activity of these N-AVAM capsaicin 

compounds correlated with their ability to increase the activity of the pro-apoptotic enzymes 

calpains 1 and 2 (Figure 8C).28 It may be possible that the basal calpain enzyme activity in 

normal human lung epithelial cells is lower than human SCLC cells. This may at least, in 

part, explain the observation that these N-AVAM capsaicin analogues only kill human SCLC 

cells and not normal lung epithelial cells. The N-AVAM capsaicin analogues with longer 

fatty acyl side chains and a larger number of double bonds (within the fatty acyl side chain) 

showed higher calpain activity than the N-AVAM capsaicin analogues with short acyl chains 

or a saturated long acyl chain. Such findings may form the basis of a new method to screen 

the growth suppressive activity of N-AVAM capsaicin analogues based on their ability to 

induce calpain activity.28

Jacobsson et al. (2001) compared the antiproliferative activity of 5 and capsaicin in C6 

rat glioma cells.54 They incubated C6 glioma cells with varying concentrations of 5 and 

capsaicin for 4 days. They observed that 10 μM of capsaicin decreased the proliferation 

of C6 glioma cells by ~20%, whereas 10 μM of 5 suppressed the proliferation of C6 

glioma cells by 95%. Similarly, Marzo et al. showed that 5 displayed greater antiproliferative 

activity in human breast cancer cell lines MCF-7 and T47D relative to capsaicin.55 The 
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IC50 for capsaicin in MCF-7 and T47D cells (IC50 ~ 100 μM) were approximately 100-fold 

higher than 5 (IC50 ~ 1 μM). These observations show that the growth-suppressive activity 

of N-AVAM capsaicin analogues is higher than capsaicin in breast cancer and glioma cells.

An innovative study by Marquez et al. (2006) compared the effects of olvanil (5), iodo-

olvanil (25), arvanil (10), and iodoarvanil (26) on the proliferation of human PBMCs.53 

Tritiated thymidine assays revealed that 10 potently suppressed staphyloccal enterotoxin 

(SEB) induced proliferation of human PBMCs. 5 had a modest cytostatic effect on 

SEB-induced proliferation of human PBMCs.53 The iodination of 5 caused 3-fold higher 

apoptosis in SEB-treated human PBMCs compared to the parent compound (Figure 9). In 

contrast, 26 induced modestly improved pro-apoptotic activity (~1.3-fold) relative to 10 in 

human PBMCs. This data aligns well with the findings of Malfitano et al. (2006) who 

observed that 10 robustly inhibited the proliferation of activated human PBMCs.56

Several convergent studies show that N-AVAM capsaicin analogues suppressed the growth 

of C6 mouse glioma cells, Jurkat human T-cell leukemia cells, rat thyroid carcinoma (KiMol 

cells), human breast cancer cells (MCF-7, T47D and EFM-19 cell lines), prostate cancer 

cells (PPC-1, and TSU cell lines), and epidermoid carcinoma cells (JWF2, A431 cell 

lines).27,44,53,54,57–60 The growth inhibitory activity of N-AVAM capsaicin analogues has 

been examined in several human cancer cell lines. Stock et al. (2012) explored the growth-

inhibitory activity of 10 using an ex vivo organotypic culture model.61 They observed that 

10 suppressed the growth of HG-astrocytoma cells organotypically grown in mouse brain 

slices. 10 suppressed the growth of HG-astrocytoma at a relatively low concentration of 50 

nM. Stock et al. (2012) also examined the effect of murine astrocytoma tumors implanted 

orthotopically in mouse models.61 They found that 10 at a dose of 1 mg/kg body weight 

strongly decreased the growth rate of astrocytoma tumors in mice models.61 Another study 

which investigated the anticancer activity of 10 in vivo was by Bifulcoet al. (2002), who 

observed that the administration of 10 at a dose of 1 mg/kg body weight potently suppressed 

the growth of thyroid carcinoma tumors xenotransplanted in immunodeficient mice.44

SCLC is a neuroendocrine tumor characterized by rapid doubling time, an aggressive 

clinical course, and a dismal 5-year survival rate62,63 The invasion of neoplastic cells 

into the adjacent blood/lymphatic vessels is a vital step for their metastasis to distant 

organs.64,65 5 and 10 suppressed the invasion of human small cell lung cancer cells at 

20-fold lower concentrations relative to capsaicin.66 Such findings suggest that N-AVAM 

capsaicin analogues may display antimetastatic activity in human lung cancers.

Luviano et al. (2014) studied the growth-inhibitory activity of rinvanil (8) and 

phenylacetylrinvanil (PhAR, 9, Figure 2) in J774, P388, and WEHI-3 mouse leukemic 

cell lines.67 The compound 8 showed improved growth inhibitory activity ([IC50(P388) = 

9 μg/mL; IC50(J774) = 8 μg/mL; IC50(WEHI) = 3 μg/mL] relative to 9 ([IC50(P388) = 

49 μg/mL; IC50(J774) = 10 μg/mL; IC50(WEHI) = 31 μg/mL] in all the cell lines studied 

(Table 2). 9 displayed some selectivity for leukemic cell lines relative to normal mouse 

bone marrow bone marrow cells.67 The antiproliferative and pro-apoptotic activity of 8 
and 9 were also explored in a panel of human cervical cancer cell lines (HeLa, CaSki, 

and ViBo).68 9 was more potent in suppressing the proliferation of ViBo human cervical 
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carcinoma cells [IC50 (ViBo) = 74 μg/mL] than rinvanil ([IC50 (ViBo) = 149 μg/mL]. The 

researchers observed that 8 showed selective growth-inhibitory effects on the cervical cancer 

cells relative to normal lymphocytes, whereas 9 showed no selectivity between normal and 

tumor cells.68 Such variance in results may be attributed to the nature of the cancer, species 

specific differences (human cell lines versus mouse cell lines), and the disparity in the 

methodology used in the two studies. Whereas the studies performed by Luviano et al. 

(2014) studied the growth-inhibitory effects of PhAR and rinvanil by the Sulforhodamine B 

assay,67 Sanchez-Sanchez et al. (2015) used the lactate dehydrogenase assay to evaluate the 

effect of 8 and 9 on normal lymphocytes.67,68

The N-AVAM capsaicin analogue 11 (Figure 2) induced a greater magnitude of apoptosis 

in MCF-7 human breast cancer cells than capsaicin in vitro.69 11 also showed increased 

growth-suppressive activity in melanoma, leukemia, and human cervical carcinoma cells 

and Taxol-resistant human cervical carcinoma cells compared to capsaicin.41,70 11 displayed 

substantial selectivity for human cancer cells versus normal cells. The growth-inhibitory 

activity of 11 in normal human fibroblast cells was observed at 3-fold higher concentrations 

(~100 μM) than in melanoma, leukemia, and human cervical carcinoma cells (~30 μM).41

An exciting development in the field of N-AVAM capsaicin analogues is that they have been 

found to sensitize human cancer cells to the growth-suppressive activity of chemotherapeutic 

drugs. Stock et al. observed that the combination of 10 and temozolomide showed an 

increase in survival times in mice bearing orthotopic astrocytoma tumors when compared 

to either agent administered alone or a mice administered vehicle only.61 Similarly, the 

combination of 11 and Taxol displayed higher growth-inhibitory activity in Taxol-resistant 

HeLa human carcinoma cells relative to either drug alone.70 These results demonstrate that 

N-AVAM capsaicin analogues may be useful for the treatment of both classical cancers and 

drug-resistant cancers.

6. SIGNALING PATHWAYS UNDERLYING THE GROWTH SUPPRESSIVE 

EFFECTS OF N-AVAM CAPSAICIN ANALOGUES

There are only a few studies which have investigated the signaling pathways underlying 

the anticancer activity of N-AVAM capsaicin analogues. Capsaicin functions as a strong 

agonist of the TRPV1 receptor.3 In contrast, N-AVAM-capsaicin analogues are agonists at 

both the TRPV1 and the endocannabinoid receptors CB1 and CB2.33,71,72 Studies show 

that the role of TRPV receptors or CB1/CB2 receptors in mediating the growth-suppressive 

activity of N-AVAM-capsaicin analogues may depend on the nature of the cancer and 

the structural features of the N-AVAM capsaicin analogues. Stock et al. showed that 10 
triggered robust apoptosis in high-grade astrocytoma cells via the TRPV1 receptor.58 The 

knockdown of TRPV1 in astrocytoma cells ameliorated the pro-apoptotic activity of 10 in 

both cell culture and mouse models. On the other hand, the cytostatic activity of 5 and 

10 in human breast cancer cells was jointly mediated by both the TRPV receptors and the 

CB1 receptors.27 The antiproliferative activity of 10 in prostate cancer cells and thyroid 

carcinoma cells required only the function of CB1 receptors,44 not vanilliod receptors, 
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whereas the pro-apoptotic effects of 10 in human T-cell leukemia cells was independent of 

both TRPV and endocannabinoid receptors.57

The growth-suppressive effects of N-AVAM capsaicin analogues are mediated via divergent 

mechanisms in normal and cancer cells (Table 2). N-AVAM capsaicin compounds like 5, 8, 

9, and 11 induced apoptosis in breast cancer, cervical carcinoma, glioma, and leukemia cells 

via the caspase family of proteases.54,67–69 10 triggered a 4–5-fold increase in apoptosis in 

Jurkat cells (human T-cell leukemia) in a cell cycle independent manner by the inhibition 

of protein kinase C, which was promoted by the recruitment of the Fas-associated death 

domain (FADD) death signaling complex followed by activation of caspase-8.57 10 was 

also found to induce reactive oxygen species (ROS) in human leukemic cells, but the ROS 

pathway plays a peripheral role in 10 induced apoptosis of Jurkat cells.57

The ability of 10 to block the growth and activation of normal peripheral blood mononuclear 

cells PBMCs and T-cells plays a vital role in its ability to inhibit inflammation.53 10 does 

not inhibit the proliferation of CD4+ T cells.56 Its growth-suppressive effects on human 

PBMCs and normal T-cells is mediated by the combination of cell cycle arrest (at the 

G1/S phase) and apoptosis. The cytostatic effects of 10 required the activation of the p21/

Waf-1/Cip-1 and inhibition of the Akt pathway.56 The pro-apoptotic activity of 10 in human 

PBMCs occurs via inhibition of the NF-kappa-B signaling pathway.53

Data from our laboratory show that 5 and 10 inhibit the invasion of human SCLC cells.67 

The anti-invasive activity of 5 and 10 was independent of both TRPV and cannabinoid 

receptor pathways. 5 and 10 activated the 5′ AMP-activated protein kinase (AMPK) 

pathway to inhibit the invasion of human SCLC.67

All the signal transduction studies involving N-AVAM capsaicin analogues have been 

performed in cell culture models. These observations underscore the importance of 

confirming the data from cell culture systems in animal models. Several studies show 

that some of the N-AVAM capsaicin analogues are selective for cancer cells and do 

not kill normal cells. The basis of such selectivity of N-AVAM capsaicin analogues is 

yet to be elucidated. Most of the published reports have focused on the downstream 

mechanism of N-AVAM capsaicin analogue-induced apoptosis in cells. There are very few 

studies which have explored the mechanisms by which these compounds communicate to 

the cell cycle machinery or apoptotic signaling networks inside the nucleus/mitochondria 

of the cells. Recent studies have shown that N-AVAM capsaicin analogues function as 

chemosensitizers and improve the pro-apoptotic activity of conventional chemotherapeutic 

drugs like temozolomide and Taxol.61,70 The mechanism of such chemosensitization activity 

of N-AVAM capsaicin analogues is not known. All these observations define the arena 

where in-depth studies are urgently required to clarify the molecular mechanisms underlying 

the growth-suppressive activity of N-AVAM capsaicin analogues in normal and neoplastic 

cells.
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7. CONCLUSIONS AND FUTURE DIRECTIONS

Capsaicin displays robust antineoplastic effects in multiple human cancers. However, the 

application of capsaicin as a clinically useful anticancer drug has been limited by its 

unpleasant side effects. A method to circumvent this drawback is to identify nonpungent 

capsaicin-mimetics with potent anticancer activity. A promising class of nonpungent 

capsaicin-mimetics are long-chain unsaturated N-AVAM capsaicin analogues. Several lines 

of evidence show that N-AVAM capsaicin analogues display improved growth-suppressive 

activity in human cancers, relative to capsaicin. An advantage of N-AVAM capsaicin 

analogues is that they suppress the growth of human cancer cells and do not harm 

normal cells. The growth-inhibitory activity of some N-AVAM capsaicin analogues has 

been predominantly demonstrated in cell culture systems and not in animal models. Such 

data underline the importance of examining the antineoplastic effects of different types 

of N-AVAM capsaicin analogues in athymic mouse and patient-derived xenograft (PDX) 

models. It must be remembered that the efficacy of an anticancer drug is dependent 

on its concentration at the target tissues. There is a paucity of studies exploring the 

pharmacokinetics of N-AVAM-capsaicin analogues in animal models. The elucidation of 

pathways governing the metabolism of N-AVAM capsaicin analogues will pave the way to 

designing of novel N-AVAM capsaicin analogues with greater stability and bioavailability 

in vivo. A promising strategy to improve the bioavailability of capsaicin has been to 

design sustained release formulations of capsaicin. Capsaicin nanoparticles display greater 

anticancer activity and stability than the parent compound.73–75 The development of N-

AVAM capsaicin analogue-nanoparticle formulations may revolutionize their applications as 

an analgesic and as an anticancer drug in patients.

An exciting finding is that the N-AVAM capsaicin analogues enhance the growth-

suppressive activity of conventional chemotherapy in both classical and drug resistant 

cancers. Certain cancers like small cell lung cancer (SCLC) are known to relapse within 

a few months, and these relapsed tumors are usually resistant to chemotherapy and 

radiation.76,77 The combination of N-AVAM capsaicin analogues with chemotherapeutic 

drugs may provide new strategies to combat relapse and drug-resistance of cancers.

The antiangiogenic and antimetastatic activity of capsaicin have been observed in several 

cancers.14 However, no studies have examined the effect of N-AVAM capsaicin analogues 

on tumor angiogenesis and metastasis. The anticancer activity of N-AVAM capsaicin 

analogues are mediated via multiple signaling networks. The majority of studies have 

analyzed downstream effectors which play a vital role in the apoptotic activity of the 

N-AVAM capsaicin analogues. An important question in the field of N-AVAM capsaicin 

analogue biology is whether the growth-suppressive activity of these compounds requires 

the TRPV receptors or the cannabinoid receptors or both of these receptors or none of these 

receptors to exert their anticancer activity. It is hoped that future studies will shed light 

on the mechanisms by which these drugs link to the intracellular apoptosis or cell-cycle 

arrest pathways inside cells. The development of second generation nonpungent N-AVAM 

capsaicin analogues with improved pharmacokinetic properties and anticancer activity will 

foster the hopes of novel N-AVAM capsaicin analogue-based combination therapies for 

multiple human cancers.
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ABBREVIATIONS USED

TRPV transient receptor potential vanilloid

SAR structure activity relationship studies

N-AVAM N-acyl vanillyl acylamide

ROS reactive oxygen species

EMT epithelial-mesenchymal transition

MPLC medium pressure liquid chromatography

HPLC high-pressure liquid chromatography

RP-HPLC reverse phase-high-pressure liquid chromatography

APCI-MS atmospheric-pressure chemical ionization mass spectrometry

NMR nuclear magnetic resonance

DCC N,N-dicyclohexylcarbodiimide

DMAP 4-(dimethylamino)-pyridine

DEPC diethyl pyrocarbonate

NaHMDS sodium bis(trimethylsilyl)amide
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PhAR phenylacetylrinvanil

DMF dimethylformamide

DIPEA N,N-diisopropylethylamine

HATU hexafluorophosphate azabenzotriazole tetramethyl uranium

CALB Candida antarctica lipase b

CLEA cross-linked enzyme aggregate

FAAH fatty acid amide hydroxylase

MAGL monoacylglycerol lipase

AUC area under the curve

MTT [[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]

HPAEpiCs human pulmonary alveolar epithelial cells

PBMC peripheral blood mononuclear cells

SEB Staphyloccal enterotoxin

FADD Fas-associated death domain

SCLC small cell lung cancer

AMPK 5′ AMP-activated protein kinase
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Figure 1. 
Structure and pharmacophore of capsaicin.
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Figure 2. 
N-AVAM capsaicin analogues which have been investigated for their growth-suppressive 

activity in cell culture or mice models.

Richbart et al. Page 26

J Med Chem. Author manuscript; available in PMC 2023 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Synthesis of N-AVAM capsaicin analogues by Schemes 4–6.
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Figure 4. 
Synthesis of N-AVAM capsaicin analogues by Schemes 7–9.
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Figure 5. 
Schematic diagram showing the synthesis of olvanil by bioimprinting technology.
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Figure 6. 
Putative sites if metabolism of olvanil.
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Figure 7. 
Schematic diagram showing the compounds generated by the intestinal metabolism and 

dermal metabolism of olvanil.

Richbart et al. Page 31

J Med Chem. Author manuscript; available in PMC 2023 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
(A) MTT assays show that the growth-suppressive activity of N-AVAM capsaicin analogues 

increases with increased unsaturation in the compounds. (B) N-AVAM capsaicin analogues 

do not impact the viability of HPAEpiCs. (C) N-AVAM capsaicin analogues stimulated 

the activity of the calpain-1, calpain-2 class of apoptotic proteolytic enzymes. Values 

represented by the symbol * are statistically significant relative to the control (P ≤ 0.05).
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Figure 9. 
Structures of iodoolvanil and iodoarvanil.
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Scheme 1. 
Extraction of N-AVAM Capsaicin Analogues from Capsicum oleoresin
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Scheme 2. 
Extraction of Capsaicin from Habernero and Takanosume Chili Peppers
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Scheme 3. 
Synthesis of N-AVAM Capsaicin Analogues from Olive Oil
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Scheme 4. 
Synthesis of N-AVAM Capsaicin Analogues from Soybean Oil
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Scheme 10. 
Single Step High-Yielding Synthesis of Arvanil (10)

Richbart et al. Page 38

J Med Chem. Author manuscript; available in PMC 2023 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 11. 
High Yield Synthesis of Arvanil (10) from Methyl-14-hydroxy-(all-cis)-5,8,11-

tetradecatrienoate
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Scheme 12. 
Synthesis of Olvanil (5) Using HATU Coupling Agent Methodology
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Scheme 13. 
Enzymatic Synthesis of Olvanil Using Lipase B
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Scheme 14. 
Enzymatic Synthesis of Olvanil Using Recombinant Candida antarctica Lipase B (CALB) 

Immobilized by Cross-Linked Enzyme Aggregate (CLEA) Techniques
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Table 1.

Fatty Acids Used to Synthesize N-AVAM Capsaicin Analogues

fatty acid N-AVAM capsaicin analogue

ricinoleic acid   8

phenylacetylricinoleic acid   9

4,7,10,13,16,19 docohexanoic acid 11
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