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Two excited-state datasets for 
quantum chemical UV-vis spectra  
of organic molecules
Massimiliano Lupo Pasini1,3 ✉, Kshitij Mehta2,3, Pilsun Yoo1 & Stephan Irle   1 ✉

We present two open-source datasets that provide time-dependent density-functional tight-binding 
(TD-DFTB) electronic excitation spectra of organic molecules. These datasets represent predictions 
of UV-vis absorption spectra performed on optimized geometries of the molecules in their electronic 
ground state. The GDB-9-Ex dataset contains a subset of 96,766 organic molecules from the original 
open-source GDB-9 dataset. The ORNL_AISD-Ex dataset consists of 10,502,904 organic molecules 
that contain between 5 and 71 non-hydrogen atoms. The data reveals the close correlation between 
the magnitude of the gaps between the highest occupied molecular orbital (HOMO) and the lowest 
unoccupied molecular orbital (LUMO), and the excitation energy of the lowest singlet excited state 
energies quantitatively. The chemical variability of the large number of molecules was examined with 
a topological fingerprint estimation based on extended-connectivity fingerprints (ECFPs) followed by 
uniform manifold approximation and projection (UMAP) for dimension reduction. Both datasets were 
generated using the DFTB+ software on the “Andes” cluster of the Oak Ridge Leadership Computing 
Facility (OLCF).

Background & Summary
The ultraviolet-visible (UV-vis) absorption spectrum of an organic molecule interacting with light is a particu-
larly important excited-state property that reveals many of its electronic and optical properties, photochemical 
reactivity, and chemical reactivity. Applications of photoactive molecules span a wide range of diverse appli-
cations, from photovoltaics for solar energy1 to electrochromic dyes2 for energy-efficient window application, 
and optical imaging in biological research such as deep-tissue imaging3. The discovery of molecules with tai-
lored optoelectronic and photoreactivity properties represents a major challenge for technological advances 
in these areas. Trial and error-based molecular design is still commonplace but arduous and costly, and it is 
therefore advantageous to develop computational inverse design capabilities to infer the unknown chemical 
composition of a molecule matching desirable electronic excitation spectra4. Solving this inverse problem within 
a reasonable time requires an effective exploration of a high-dimensional molecular space characterized by 
molecules of different sizes and chemical compositions. Quantum chemical electronic structure methods such 
as multi-reference configuration interaction (MR-CI), complete active space second-order perturbation theory 
(CASPT2), or time-dependent density-functional theory (TD-DFT), allow to supplant experimental measure-
ments of UV-vis spectra in the gas phase with in silico calculations, but the computational time needed to per-
form these calculations still hampers a rapid exploration of the molecular space5,6.

Recent works have shown that deep learning (DL) models can be used as effective surrogates for fast and 
still accurate estimations of the UV-vis spectra5–7. However, a large amount of training data is needed to ensure 
accuracy, generalizability, and transferability of the trained DL model. In order to collect large volumes of data 
that can be used to train accurate DL models, high-performance computing (HPC) and permanent data storage 
facilities need to be leveraged to run quantum chemistry calculations and store large volumes of data8.

In response to the need for leveraging large-scale HPC resources for generating large amounts of quantum 
chemical electronic excitation spectral data, we present two new open-source quantum chemistry datasets called 
GDB-9-Ex9 and ORNL_AISD-Ex10 that provide simulated UV-vis absorption spectra for organic molecules. The 
two datasets differ in the number of molecules considered, as well as in the size of molecules and their chemical 
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composition. These are the largest datasets containing excited states properties of molecules to date. We created 
them with the goal of providing significant coverage of the chemical and molecular structure space in terms 
of structural variability, number of atoms contained in the dataset (from 5 to 71 non-hydrogen atoms), and to 
report statistical analysis for excited state properties in relation to molecular orbital (MO) descriptions. Through 
the use of the “Atomic Simulation Environment” (ASE)11 package, our developed workflow software is agnostic 
of the quantum chemistry code and thus provides a general capability for generating optical spectra of molecules 
using higher level electronic structure theories.

Methods
The simulations for these large datasets of UV-vis absorption spectra were based on the computationally inex-
pensive density-functional tight-binding (DFTB) method12–14 for geometry optimizations of molecules in their 
electronic ground states, and its excited states extension, the time-dependent DFTB (TD-DFTB) method15 for 
electronic excitation energies and associated oscillator strengths. These semiempirical methods were selected 
due to the enormous computational cost associated with TD-DFT calculations of such large numbers of com-
pounds. The particular strength of our datasets is the large number of molecular systems they contain, as similar 
datasets generated with higher level theories contain significantly smaller numbers of molecules16,17.

The DFTB method13,18–20 is an approximation to density functional theory (DFT), utilizing a minimal basis 
set in conjunction with a two-center approximation to the electronic Hamiltonian and overlap matrix elements. 
In short, the DFTB total energy is the sum of an electronic and a repulsive energy contributions, and their cal-
culation requires optimized electronic parameters and diatomic repulsive potential energy functions. When 
charge transfer or polarization between atoms are explicitly considered, the total DFTB electronic energy E is 
expressed as a Taylor expansion of the terms of density fluctuations δρ around atomic reference densities ρ0 
as21 In the DFTB formulation, truncation of this series at various orders is termed as different DFTB “flavors” 
(DFTB1, DFTB2, etc.) which correspond to various accuracies in the interatomic Coulombic interaction12–14. 
We note that DFTB ground state geometries are typically in excellent agreement with higher level methods such 
as DFT13,22, while absolute transition energies from TD-DFTB calculations are often negatively affected by the 
minimum basis set methodology15. A more accurate variant of TD-DFTB has recently emerged, namely the 
long-range corrected version of TD-DFTB23, but unfortunately the available parameters only span the C, H, N, 
and O chemical elements24, which makes calculations for molecules with S, P, and F chemical elements impossi-
ble and would have severely limited the scope of our work. Since the goal of our study is to provide large datasets 
and the associated workflow software for detailed, statistically meaningful studies of the relationship between 
molecular structure and optical spectra, we resorted to using the long-established, more traditional TD-DFTB 
method, as our workflow software is agnostic to the type of electronic structure method employed in the gener-
ation of the data. A detailed discussion of the performance of TD-DFTB for excited states energies and spectra 
was recently reported by Ruger et al.25.

The simulations of UV-vis spectra in this work were performed as follows. First, the Simplified 
Molecular-Input Line-Entry system (SMILES) strings of the molecules from the GDB-9 database26,27 were con-
verted to a 3D atomic structure and stored in a PDB file after preliminary geometry optimization using the 
Merck Molecular Force Field (MMFF94) in RDKit21,28. The primary information stored in the PDB file archive 
consists of Cartesian coordinates for each atom in their 3D location in space, along with summary informa-
tion about the structure, sequence, and experiment. We then performed molecular geometry optimization on 
the electronic ground state potential energy surface, using the third-order DFTB3 method20 in conjunction 
with the matching 3ob set of electronic parameters and repulsive potentials29,30. The empirical γ-damping for 
hydrogen bond correction, and the D3 empirical dispersion correction with Becke-Johnson damping (D3(BJ))31 
was included to improve the description of noncovalent intramolecular interactions. The DFTB3-D3(BJ)/3ob 
geometry optimizations where then followed by single-point excited states TD-DFTB calculations based on the 
DFTB2 method19 and the matching mio19,29,32 and halorg33 parameter sets. For simplicity we only considered 
singlet excitations. In order to ensure a wide enough coverage of excitation energies even for large molecules, 
we opted to request the simultaneous calculation of 50 excited singlet states, based on linear response theory 
using the Casida equation and the ARPACK diagonalizer34. The computed singlet excitation energies and asso-
ciated oscillator strengths can be converted to predict UV-vis absorption spectra35, where excitation energies 
correspond to absorption peak positions, and oscillator strengths provide a good measure of the probability 
of absorption of visible or UV light in transitions between electronic ground and excited states. All DFTB cal-
culations were performed using the DFTB+ code36 (version 21.2) and the wrapper for DFTB+ in the Atomic 
Simulation Environment (ASE)11, which performed an internal conversion of Cartesian coordinates from PDB 
to the .gen file format.

Workflow for data generation.  The workflow for generating the two datasets is written as a Python pro-
gram that processes molecules in parallel on a High Performance Computing (HPC) cluster. The gap between the 
highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), also termed 
the “HOMO-LUMO” gap, and the excitation spectrum for a molecule is generated from the SMILES string. First, 
a PDB file is created for the molecule from its SMILES string. The sequence of RDKit operations performed to 
convert a SMILES representation of the molecule into a PDB file is represented in the following pseudocode.

	 1.	 mol = AllChem.MolFromSmiles(smiles)
	 2.	 mol = AllChem.AddHs(mol)
	 3.	 AllChem.EmbedMolecule(mol)
	 4.	 AllChem.MMFFOptimizeMolecule(mol)
	 5.	 pdb_block = AllChem.MolToPDBBlock(mol)
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DFTB calculations for ground state geometry optimizations followed by calculations of the excited state 
properties are then run using the PDB data as input. The HOMO-LUMO gap is generated from the output of the 
DFTB calculations, followed by the calculation of the excitation spectrum.

The workflow is run on Andes, a commodity Linux cluster at the Oak Ridge Leadership Computing Facility 
(OLCF). Molecules are processed in parallel using the Message Passing Interface (MPI), a commonly-used 
framework for parallelizing scientific applications. As shown in Fig. 1, the workflow uses a master-worker frame-
work in which a co-ordinator process dynamically assigns groups of molecules to worker processes. As the time 
to process different molecules varies, dynamic task distribution ensures that we obtain efficient load balancing 
between all worker processes. Each molecule is processed on one CPU core, and the full workflow was run on 
up to 1,000 cores. When a worker process finishes processing a set of molecules, it requests the co-ordinator for 
the next set of molecules for processing.

We use an in-memory file system in conjunction with a high-speed parallel file system to efficiently manage 
over ninety million files generated during the workflow. All output files that include intermediate files created 
by the workflow for a molecule are first written to the in-memory file system on the compute node. The final set 
of five files for each molecule is then copied to the parallel file system for persistent storage. Every molecule is 
assigned a separate directory in which its output files are stored.

Calculating the UV spectrum of a molecule requires performing three main operations:

	 1.	 Converting the SMILES string representation of a molecule into a geometric structure where each atom is 
assigned XYZ coordinates. The geometric structure is written to the file smiles.pdb.

	 2.	 Using the file smiles.pdb to compute the relaxed geometry of the molecule, which corresponds with 
the position of the atoms in equilibrium at the ground state. This generates the files band.out, detailed 
information about the DFTB run in detailed.out, and the optimized geometry information in the file 
geo_end.gen.

	 3.	 Using the file geo_end.gen to calculate the UV spectrum of the molecule which is written into the file 
EXC.DAT. Every molecule in the dataset has its own directory.

Note that the default configuration in the read function in ASE for reading PDB and optimized geometry data is 
to have the master MPI process read and broadcast its data to all other processes. To ensure all processes read their 
own molecule information, this parallel I/O feature was disabled by setting the function argument ‘parallel’ to ‘False’.

After all molecules have been processed, validation codes perform several sanity checks over the entire data-
set. Due to the large number of molecules, the validation codes are also developed as parallel programs that run 
on the analysis cluster at OLCF. For each molecule, they first check for the presence of the five files – (1) the 

Fig. 1  The computational workflow that processes molecules in parallel on a large Linux cluster using a master-
worker pattern. The dynamic task distributor helps obtain dynamic load balancing, whereas the file system 
overhead is mitigated using the hierarchical storage consisting of an in-memory file system and a high-speed 
parallel file system.
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SMILES data in pdb format, (2) the geometry information in the file geo_end.gen, (3) detailed information 
about the DFTB run in the file detailed.out, (4) band gap information in the file band.out, and (5) the 
excitation spectrum in the file EXC.DAT. They then perform a correctness check to verify the overall structure 
of EXC.DAT that contains the UV spectrum. Finally, another parallel workflow generates compressed tar files 
from the raw data for public release. The list of SMILES strings describing the molecules are obtained from the 
AISD HOMO-LUMO dataset37.

Software specification on OLCF andes.  The software packages used in this work are installed in a conda envi-
ronment using the popular Conda package management system used in the Python programming ecosystem. In 
particular, the ASE11, DFTB+36, and RDKit28 packages are installed from the conda-forge channel. Table 1 shows 
the main software components and their versions used for this work.

Description of the datasets.  Both GDB-9-Ex and ORNL_AISD-Ex datasets contain multiple directories, 
one for each molecule. The files contained in each molecule directory are as follows: 1. smiles.pdb, 2. geo_
end.gen, 3. detailed.out, 4. band.out, 5. EXC.DAT.

To facilitate the consultation of the datasets, we have collected the information of SMILES string, 50 lowest 
excitation energies and corresponding oscillator strengths in CSV file format. This version of the GDB-9-Ex 
dataset with compressed information has been released open-source as a stand-alone dataset38. We have gen-
erated the same compressed version of the data for ORNL_AISD-Ex, which resulted in the generation of 1,000 
CSV files. Also this version of the dataset has been released open-source as a stand-alone dataset39.

Correlation between the HOMO-LUMO gap and the minimum absorption energy.  The HOMO-LUMO gap is a 
quantity that arised from the quasi-particle approximation of the Kohn-Sham formalism40. In the exact density 
functional framework, the energy gap represents the energy required to excite an electron from the ground to its 
lowest excited state41. In many cases, the nature of the first excited state corresponds to a transition of an electron 
from the HOMO to the LUMO. A previous study on 15 molecules demonstrated a strong correlation between 
the HOMO-LUMO gap and the minimum excitation energy42, and this correlation can be successfully employed 
in the design of molecular dye molecules43. In general, a smaller HOMO-LUMO gap corresponds to a lower 
minimum absorption energy, indicating that the molecule is more likely to absorb light at longer wavelengths 
(lower energies). Conversely, a larger HOMO-LUMO gap corresponds to a higher minimum absorption energy, 
indicating that the molecule is more likely to absorb light at shorter wavelengths (higher energies). However, it 
is important to note that the correlation between the HOMO-LUMO gap and the minimum absorption energy 
is not always perfect, as we do not know the exact density functional, and other factors such as different orbital 
relaxations for HOMO and LUMO orbitals in the excited state can introduce quantitative deviations between 
the magnitude of the HOMO-LUMO gap and the minimum excitation required to transfer the molecule from 
ground to first excited state. Factors influencing the overall UV-vis absorption spectrum of a molecule include 
the π-bond conjugation length and aromaticity, steric and ring strain, and clearly the presence of functional 
groups4. It should further be noted that in exact DFT, the HOMO energy is an approximation to the ionization 
potential (IP) whereas the LUMO energy is an approximation to the electron affinity (EA), as derived from 
Janak’s theorem44. Therefore, the HOMO-LUMO energy gap should be viewed as a proxy for the electrical gap 
(IP-EA) rather than the optical gap, which differs from the former by the exciton binding energy45.

GDB-9-Ex.  The SMILES strings of the molecules were obtained from the GDB-9 database26. The conversion 
of SMILES strings to 3D Cartesian coordinates of fully DFTB-optimized molecules was successful for 96,766 
molecules, for which both geometry optimizations and excited states calculations were successful.

Figure 2 describes the correlation between the HOMO-LUMO gap and the minimum absorption energy for 
the organic molecules of GDB-9-Ex, confirming the strong correlation between the two quantities. While it is 
common knowledge that this correlation exists42, it has never before been demonstrated to hold on such a large 
selection of organic molecules. We note that most excitation energies are slightly larger than the HOMO-LUMO 
gap, indicating that the orbital relaxations in the excited state affect the magnitude of the excitation energies quite 
systematically. We surmise that this observation could potentially be exploited for data-informed, physics-based 
predictions of minimum excitation energies from HOMO-LUMO gaps. Interestingly, the illustration shows a 
single molecule clearly separated from the rest of the molecular dataset, with an HOMO-LUMO gap and min-
imum absorption energy estimated by DFTB over 20 eV. This molecules is tetrafluoromethane, CF4, and the 
correct estimate of its HOMO-LUMO gap is 15.5 eV according to46. Since DFTB and TD-DFTB are minimum 

Software Description Version

ASE11 Atomic Simulation Environment 3.22.1

Arpack34 Numerical software library 3.7.0

DFTB+36 Quantum mechanical simulation 21.2

RDKit28 Open-Source Cheminformatics Software 2021.09.5

Python Programming language 3.9.12

OpenMPI57 MPI implementation 4.0.4

Table 1.  Software Specification for the Workflow Components.
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basis set methods, they clearly fail to describe accurately the only possible excited state this molecule can attain, 
the so-called Rydberg excited state47, which can be thought of as the transition of an electron from its valence 
HOMO to the large, diffuse LUMO which is composed of empty unoccupied atomic orbitals, in this case the 3 s 
and 3p orbitals of C and F, respectively.

Chemical variability of the large number of molecules was examined with a topological fingerprint estimation 
based on extended-connectivity fingerprints (ECFPs)48 followed by uniform manifold approximation and pro-
jection (UMAP)49 for dimension reduction. Figure 3a shows the distribution of molecules based on the ECFPs 
and UMAP in three ranges of the HOMO-LUMO gap: the gap of 958 molecules is low, between 0–2.4 eV, the gap 
of 15,665 molecules is medium with 2.4–4.0 eV, and the gap of 79,112 molecules is high with 4.0–20.0 eV, respec-
tively. These three ranges correspond roughly to the classifications of conductor, semiconductor, and insulator in 
materials sciences. UMAP dimension reduction was conducted at once for all molecules to consistently compare 
their relevant position in the chemical space. We note similar features in the UMAPs of low and medium-gap 
molecules, with very different variability for the high-gap molecules. In addition to the UMAP analysis, we exam-
ine the molecular properties such as the number of atoms per molecule, the molecular weight (MW) distribution, 
the aromaticity (ratio of aromatic atoms to the total number of atoms for each molecule) and the amount of 
individual element (H,C,N,O,F) of each molecule in Fig. 4 to provide chemical properties of the datasets. Further 
analysis will be carried out in the future on the molecular structure factors influencing the HOMO-LUMO gap.

Examples of absorption spectra for organic molecules with HOMO-LUMO gap within the range 0–2.4, 2.4–
4.0 eV, and 4.0–20.0 eV are shown in Fig. 5. These plots were generated with the Python script dftb-uv_2d.
py as explained below.

ORNL_AISD-Ex.  The molecular structures that we used for ORNL_AISD-Ex were already published in a 
previous open-source dataset called AISD HOMO-LIMO37. These molecules are a subset of a larger dataset 
generated for previous work50, which augmented the Enamine REAL database https://enamine.net/. We refer 
the reviewer to these publications to obtain more details about how these molecular structures were generated. 
After preliminary geometry optimization, the SMILES strings of the molecules from the AISD HOMO-LUMO 
database were converted to a 3D atomistic structure and stored in a PDB file. We note that, since RDKit employs 
a random choice for the generation of molecular conformers, the molecular geometries obtained in this dataset 
could be different from the ones obtained when the AISD HOMO-LUMO dataset was generated. The conversion 
of SMILES strings to 3D Cartesian coordinates of fully DFTB-optimized molecules was successful for 10,502,904 
out of 10,502,917 molecules. For these molecules, both geometry optimizations and excited states calculations 
were successful. The molecules are diverse for chemical compositions (which span five non-hydrogen chemical 
elements: oxygen, carbon, nitrogen, fluorine, and sulfur) and molecular size (the smallest molecule contains five 
non-hydrogen atoms, and the largest molecule contains 71 non-hydrogen atoms). The DFTB calculations did 
not complete for thirteen molecules of the original AISD HOMO-LUMO dataset. We still provide information 
about the geometry of these molecules. The molecular structures of the thirteen exceptions are stored in a sepa-
rate tar file named “ornl_aisd_ex_unprocessed.tar.gz” to allow the users to extract information about only these 
molecules, without necessarily manipulating the whole dataset.

Figure 2b describes the correlation between the HOMO-LUMO gap and the minimum absorption energy 
for the organic molecules of ORNL_AISD-Ex, confirming the strong correlation between the two quantities. 
Figure 3b demonstrates the chemical space distribution of molecules in ORNL_AISD-Ex with the ECFPs and 
UMAP in three range of the HOMO-LUMO gap. The molecules in Fig. 3b were randomly selected by 1% of 
entire data due to high computation cost. The numbers are corresponding to 11,774 (from 1,177,422) molecules 
in 0–2.4 eV, 83,488 (from 8,348,848) molecules in 2.4–4.0 eV and 9,752 (from 975,254) molecules in 4.0–14.0 eV, 

Fig. 2  Top: Semi-logarithmic histogram of the HOMO-LUMO gap value across the dataset. Bottom: Parity plot 
of HOMO-LUMO gap versus minimum absorption energy.
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respectively. Both GDB-9 and ORNL_AISD-Ex data sets show similar HOMO-LUMO gap/minimium excita-
tion energies correlations and bear resemblance also in their UMAP dimension reductions, indicating their 
common molecular origin, albeit with much larger molecular structures present in the latter dataset.

Also for this dataset, we provide examples of absorption spectra for organic molecules with HOMO-LUMO 
gap within the range 0–2.4, 2.4–4.0 eV, and 4.0–20.0 eV that are shown in Fig. 6. These plots were generated with 
the Python script dftb-uv_2d.py as explained below.

Artefact description.  The GDB-9-Ex dataset contains 96,766 directories - one for each molecule in the dataset. 
However, owing to the large number of molecules in the ORNL_AISD-Ex dataset, its molecule directories are 
grouped into compressed tar files as explained below.

The ORNL_AISD-Ex dataset consists of 1001 compressed tar files containing a total of 10,502,917 molecules. 
The tar.gz files are named “ornl_aisd_ex_n.tar.gz” where n is a numeric value ranging from 1 to 1000. An addi-
tional file “ornl_aisd_ex_unprocessed.tar.gz” contains the molecules for which the DFTB calculations could not 
be completed.

Each tar file contains 10,500 molecules, except for the tar files numbered 34, 121, 128, 352, 360, 429, 495, 
509, 518, 627, 676, 668, and 862 that contain 10,499 molecules each. The 13 molecules missing from these tar 
files could not be processed successfully and are instead recorded in “ornl_aisd_ex_unprocessed.tar.gz”. The last 
tar file numbered 1,000 contains the remaining 13,417 molecules. The total size of the compressed tar dataset is 
approximately 75 Gigabytes whereas that of the uncompressed dataset is over 283 Gigabytes.

The molecules in the tar files are ordered according to their position in the CSV file containing the SMILES 
strings37. That is, molecules numbered 0 thru 10,502,917 in the dataset correspond to rows 1 through 10,502,918 

Fig. 3  Two dimensional chemical space plot using ECFPs and UMAP dimension reduction for the set of 
molecules in three ranges (0–2.4 eV (left panel), 2.4–4.0 eV (middle panel) and 4.0–20 eV (right panel)) of the 
HOMO-LUMO gap. (a) the molecule distribution in structural space with all molecules in GDB-9 and (b) with 1% 
of molecules in ORNL-AISD. The color indicates the number of molecules populated in each region of the space.
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in the CSV file. We note that due to array index notation, the molecules in the dataset are numbered starting 
from 0 instead of 1. The tar file numbering also follows a similar ordering: the first tar file contains the first 
10,500 molecules; the second tar file includes the following 10,500 molecules, and so on. This ordering can be 
helpful for retrieving information about a desired molecule directly. For example, molecule number 1346075 
can be found in tar file numbered ┌1346075/10500┐ = 129. The molecule directories for the GDB-9-Ex dataset 
following a similar numbering notation.

Fig. 4  Molecular property analysis for (a) GDB-9-Ex and (b) ORNL_AISD-Ex. Molecules in both dataset 
were analyzed with the following properties: distribution of molecular weight (MW), the number of atoms 
for molecules, the aromaticity ratio and the number of individual elements (H,C,N,O,F) versus the number of 
atoms per molecule.
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Data Records
The open-source datasets GDB-9-Ex9 and ORNL_AISD-Ex10 are stored by the OLCF Data Constellation Facility. 
The datasets can be downloaded using the Globus data transfer service, as indicated by the instructions provided 
at the following website https://docs.olcf.ornl.gov/data/index.html#data-transferring-data.

Technical Validation
The accuracy of the semi-empirical TD-DFTB method for the prediction of UV-Vis absoroption spectra of 
organic molecules has been evaluated previously on a number of occassions, e.g. against theoretical and experi-
mental best estimates of typical, small molecules51, or more recently in a comparison against TD-DFT methods 
for larger molecules such as rhodopsins and light-havesting complexes52. It is clear that the minimum basis 
set approach in TD-DFTB does not allow the accurate description of energetically high-lying Rydberg states, 
since unoccupied atomic orbitals such as the 2 s orbital for hydrogen are absent24. The minimum basis set also 

Fig. 5  GDB-9-Ex: examples of absorption spectra for organic molecules with HOMO-LUMO gap within the 
range 0–2.4 eV (top), 2.4–4.0 eV (center), 4.0–20.0 eV (bottom). The title of each figure provides the SMILES 
representation of the molecule.

https://doi.org/10.1038/s41597-023-02408-4
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affects negatively the prediction of the oscillator strength and absorption intensities52. Nevertheless, agreement 
of TD-DFTB excitation energies and qualitative features of calculated UV-vis spectra was found satisfactory 
for organic molecules in many cases51,52. At the same time, since TD-DFTB is an approximation to TD-DFT 
methods, the strengths and weaknesses of the latter matter are inherently present as well, with underestimation 
of charge-transfer (CT) excited states being one of the most prominent deficiencies53. Hybrid functionals such 
as the PBE0 exchange correlation potential54 are able to address this problem in an empirical manner54. The 
most accurate singlet excitation energies for closed-shell organic molecules can be obtained by using ab initio 
correlated electronic structure methods, such as equation-of-motion coupled cluster with single and double 
excitations (EOM-CCSD), which are completely free from underestimation of CT excitations, but are an order 
of magnitude more costly than even the TD-DFT methods. For a more extensive discussion on the computa-
tional validation of the accuracy attained by TD-DFTB methods in comparison with more accurate (but also 
more expensive) TD-DFT and EOM-CCSD methods to predict UV-vis spectra, we refer the reader to refs. 51,52.

Fig. 6  ORNL_AISD-Ex: examples of absorption spectra for organic molecules with HOMO-LUMO gap within 
the range 0–2.4 eV (top), 2.4–4.0 eV (center), 4.0–20.0 eV (bottom). The title of each figure provide the molecule 
ID corresponding to the numbering of the molecule in the dataset.
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Due to the aforementioned, method-specific shortcomings in the prediction of UV-vis spectra of organic 
molecules, we resorted in this study to employ two representative methods for validation of TD-DFTB spectra, 
namely TD-DFT and EOM-CCSD. These calculations have been performed using the ORCA quantum chemis-
try program package55 on a subset of several thousand molecules. We here visually compared 10 molecules that 
represent a reasonable selection of molecular structure in terms of molecular size, composition, bond structure, 
“exoticity” (in terms of molecular structure), and different agreements between the three approximation theo-
ries. All the molecules selected have intensities between 350 and 750 nm, and the plots of the UV-vis spectrum 

Fig. 7  Examples of molecules from the GDB-9-Ex dataset whose UV-vis spectrum has been computed with 
TD-DFTB (left), TD-DFT with PBE0 as exchange correlation potential (center), and EOM-CCSD (right).
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for these molecules are provided in Figs. 7, 8. We find qualitative agreement between TD-DFTB and both 
TD-DFT as well as EOM-CCSD methods, while in other cases TD-DFT and EOM-CCSD methods deviate from 
each other to a similar extent as TD-DFTB from TD-DFT. A systematic comparison of the method capabilities 
for the prediction of UV-vis spectra for organic molecules is out of the scope of this study, which is focused on 
the computational workflow to generate UV-vis spectra with arbitrary electronic structure methods and compu-
tational codes. We refer the reader to a recent review article related to these topics which covers a broader range 
of topics related to the selection of the best electronic structure method for the prediction of UV-vis spectra for 
a specific application5.

Fig. 8  Examples of molecules from the GDB-9-Ex dataset whose UV-vis spectrum has been computed with 
TD-DFTB (left), TD-DFT with PBE0 as exchange correlation potential (center), and EOM-CCSD (right).
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Usage Notes
The code for calculating the electronic excitation energies and statistical analysis of the dataset is 
open-source and available at the ORNL-GitHub repository https://github.com/ORNL/Analysis- 
of-Large-Scale-Molecular-Datasets-with-Python.

The code contains the following Python scripts:

•	 xyz2mol.py. Provides a Python implementation of the universal structure conversion method for organic 
molecules, which creates the three-dimensional geometry from the atomic connectivity as described in56.

•	 mol_remaining.py. Iterates over the dataset, identifies molecules for which the DFTB calculations did 
not succeed, and writes the ID of these molecules on a text file named mol_remaining.txt.

•	 smiles_dftb_excited_state.py. The entry point for the main workflow. It implements the mas-
ter-worker pattern which runs a static DFTB+ calculation to compute the optimized geometry and the 
HOMO-LUMO gap followed by a time-dependent DFTB+ calculation to compute the UV-vis spectrum for 
each SMILES string representation of a molecule contained in the.CSV file of the AISD HOMO-LUMO dataset.

•	 select_molecules.py. Selects molecules based on given criterion and copies them in a new directory.
•	 dftb-uv_2d.py. Script to collect and plot UV-Vis spectra on both nm and eV scales. Iterates over all the 

directories associated with each molecule and computes the smoothed spectrum for each molecule, on both nm 
and eV scales, saving it into the file named EXC-smooth.DAT. The full-width at half-maximum (FWHM) can 
be arbitrarily tuned by the user with defaults set to 10 nm and 0.5 eV. Total spectral envelopes as well smooth-
ened individual peak contributions and line spectra indicating the calculated excitation energies with associ-
ated oscillator strengths as measure for intensity are plotted as well. The Python script supports MPI directives 
to allow multiple processes to concurrently compute the smoothed spectrum on different molecules. This script 
is an adaptation of the python script provided at the GitHub repository https://github.com/radi0sus/orca_uv/.

•	 plot_homo-lumo_vs_minimum_absorption_energy.py. Generates two plots. The first plot 
shows the correlation between the HOMO-LUMO gap and the minimum absorption energy, which is saved 
in an image file named HOMO-LUMO_versus_minimum_absorption_energy.jpg. The second plot shows the 
peaks of the UV-vis spectrum computed with TD-DFTB+ along with the smoothed spectrum, which is saved 
in an image file named absorption_spectrum.jpg.

•	 utils.py. Provides basic utilities used by the other Python scripts.

Code availability
The code for calculating the electronic excitation energies and statistical analysis of the dataset is open-source 
and available at the ORNL-GitHub repository https://github.com/ORNL/Analysis-of-Large-Scale-Molecular-
Datasets-with-Python.
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