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Abstract

Introduction: Activating mutation of the calcium-sensing receptor gene (CASR) reduces 

parathyroid hormone secretion and renal tubular reabsorption of calcium, defined as autosomal 

dominant hypocalcemia type 1 (ADH1). Patients with ADH1 may present with hypocalcemia-

induced seizures. Calcitriol and calcium supplementation in symptomatic patients may exacerbate 

hypercalciuria, leading to nephrocalcinosis, nephrolithiasis, and compromised renal function.

Methods: We report on a family with seven members over three generations with ADH1 due to a 

novel heterozygous mutation in exon 4 of CASR: c.416T>C.

Results: This mutation leads to substitution of isoleucine with threonine in the ligand-binding 

domain of CASR. HEK293T cells transfected with wild type or mutant cDNAs demonstrated that 

p.Ile139Thr substitution led to increased sensitivity of the CASR to activation by extracellular 

calcium relative to the wild-type CASR (EC50 of 0.88 ± 0.02 mM vs. 1.1 ± 0.23 mM, 

respectively, p < 0.005). Clinical characteristics included seizures (2 patients), nephrocalcinosis 

and nephrolithiasis (3 patients), and early lens opacity (2 patients). In 3 of the patients, 
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serum calcium and urinary calcium-to-creatinine ratio levels obtained simultaneously over 49 

patient-years were highly correlated. Using the age-specific maximal-normal levels of calcium-to-

creatinine ratio in the correlation equation, we obtained age-adjusted serum calcium levels that are 

high enough to reduce hypocalcemia-induced seizures and low enough to reduce hypercalciuria.

Conclusion: We report on a novel CASR mutation in a three-generation kindred. Comprehensive 

clinical data enabled us to suggest age-specific upper limit of serum calcium levels, considering 

the association between serum calcium and renal calcium excretion.
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Introduction

The calcium-sensing receptor (CASR) serves as the main calcium sensor in maintaining 

extracellular calcium homeostasis. The human CASR is a G-protein-coupled receptor 

with a 612-amino acid extracellular domain, a transmembrane region composed of 7 

transmembrane helices, and a 216-amino acid C-terminal intracellular region. The receptor 

is encoded by the human CASR gene located on chromosome 3q21.1 [1]. It is ubiquitously 

expressed in mammalian tissues, but its expression in the parathyroid gland and ascending 

limb of the loop of Henle in the renal tubules is most important to its role in calcium 

homeostasis. Elevation in serum calcium induces a cascade that starts with Gq/11-protein-

dependent stimulation of phospholipase C activity, causing accumulation of inositol 1,4,5-

trisphosphate and a rapid increase of cytosolic Ca2+ concentration, which eventually leads 

to a decrease in parathyroid hormone (PTH) secretion and a reduction in renal tubular 

reabsorption of calcium [2]. This cascade enables both the parathyroid gland and the renal 

tubules to respond to fluctuations in extracellular calcium concentration in order to restore 

its steady state.

Activating mutations in CASR increase the receptor’s sensitivity to extracellular ionized 

calcium, leading to decreased synthesis and secretion of PTH from the parathyroid gland 

and increased renal excretion of calcium, independently of the action of PTH. Activating 

mutations in CASR cause autosomal dominant hypocalcemia type 1 (ADH1), alternatively 

termed familial hypercalciuric hypocalcemia [3, 4]. Patients with ADH1 present with 

hypocalcemia, hypomagnesemia, hyperphosphatemia, hypercalciuria, and inappropriately 

low or normal levels of PTH. Clinically, many ADH1 patients are asymptomatic. However, 

symptomatic patients present with neuromuscular symptoms such as paresthesia, muscle 

cramping, carpopedal spasm, and seizures. Treatment with activated vitamin D analogs and 

calcium supplementation should be reserved for symptomatic patients, with a goal calcium 

level that is near the lower limit of an age-dependent reference range to avoid excessive 

urinary calcium excretion, and yet high enough to alleviate symptoms [5]. This approach 

aims to reduce hypercalciuria-induced nephrocalcinosis and nephrolithiasis, with subsequent 

compromised renal function [3, 4]. A total of 334 different variants of CASR (activating and 

inactivating mutations, combined) have been reported, 10 and 245 of them considered likely 

pathogenic and pathogenic, respectively (http://databases.lovd.nl/shared/genes/CASR).
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In the present study, we describe a three-generation kindred with ADH1 caused by a novel 

activating mutation of CASR. Long-term clinical data gathered from the medical records of 

some of the patients enabled us to suggest upper limit of serum calcium levels associated 

with normal-range renal calcium excretion in ADH1.

Materials and Methods

Subjects

The proband was born in the 39th week of gestation by caesarean section to a mother 

with hypocalcemia. The mother was treated with calcium and magnesium supplementation 

throughout the pregnancy. His birth weight was 3,240 g and 1- and 5-min Apgar scores 

were 9 and 10, respectively. Shortly after birth, the mother’s serum calcium level was 6.4 

mg/dL (normal range 8.8–10.8 mg/dL). At the same time, the proband had a calcium level 

of 7.7 mg/dL (normal range 8.8–10.8 mg/dL), phosphate level of 6.9 mg/dL (normal range 

3.3–5.4 mg/dL), and PTH level below the assay’s limit of detection. Oral supplementation 

of calcium glubionate and alfacalcidol was then initiated based on a postulated diagnosis of 

hypoparathyroidism. On the fourth day of life, he presented with a generalized tonic-clonic 

seizure that lasted for 3 min, followed by two additional short-term seizures. At that 

time, his serum calcium level was 6.0 mg/dL (ionized calcium 0.83), phosphate was 8.6 

mg/dL, and magnesium was 1.92 mg/dL (normal range 1.7–2.1 mg/dL). The proband was 

transferred to the neonatal intensive care unit where he was initially treated with intravenous 

calcium gluconate, followed by oral supplementation of calcium glubionate and alfacalcidol 

until a serum calcium level of 8.2 mg/dL was reached.

Following this case, 10 other family members over three generations were evaluated, 6 of 

them with hypocalcemia. Clinical and biochemical data were obtained retrospectively from 

the medical charts of the 7 patients with hypocalcemia. All 11 subjects underwent genetic 

evaluation following written informed consent. Written informed consent was also obtained 

from the participants (or their legal guardian in the case of minors) to publish their case.

Analysis of CASR

We performed Sanger sequencing of the CASR gene (NM_001178065.1) in the proband, 

including the exons and their boundaries, without the promotor. In other members of 

the family, only exon 4 of CASR was sequenced, based on the results in the proband. 

We also used PCR-based site-directed mutagenesis to insert the p.Ile139Thr substitution 

into a wild-type human CASR cDNA. We transfected HEK293T cells grown on collagen-

coated coverslips with wild type or mutant cDNAs to that included a GFP sequence 

in the N-terminus. We then examined the expression of recombinant CASR proteins by 

confocal microscopy [6]. We also transfected HEK293T cells with wild type or mutant 

cDNAs and determined sensitivity to extracellular calcium after loading cells with Fluo-4 

tetra(acetoxymethyl)-ester and Fura-red AM red as previously described [7]. HEK293T cells 

were transfected with either wild type or mutant CaSR cDNAs in six-well plates and after 

48 h the cells were detached, resuspended in Hanks’ balanced salt solution (HBSS) and 

simultaneously loaded with Fluo-4 tetra(acetoxymethyl)-ester (AM; 2 μM) and Fura-red AM 

(2 μM) for 45 min at room temperature. Cells were washed in HBSS containing calcium 
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chloride (0.1 mM). Aliquots (50 μL) of suspended cells were mixed with an equal volume 

of HBSS containing calcium chloride to yield final calcium concentrations of 0.1, 0.3, 0.6, 

1, 1.8, 3.2, 5.6, or 10 mM. Immediately after mixing, each cell sample was analyzed on 

an Accuri C6 flow cytometer (BD Biosciences). The ratio between fluorescence intensities 

recorded in the FL-1 channel (530/30 nm; Fluo-4 AM) and the FL-3 channel (670 nm 

long pass; Fura-red AM) was calculated for each cell as a derived parameter using FlowJo 

7.6.5 (Tree Star Inc). Curves were fitted to data using the four-parameter Hill equation in 

GraphPad Prism. EC50 values were determined for each cell type tested, and the mean EC50 

values were calculated from data obtained from four sets of measurements as described [7].

Results

Sequencing of CASR

Sanger sequencing of the entire gene in the proband revealed a novel heterozygous mutation 

in exon 4 of CASR: c.416T>C (Fig. 1a). We analyzed the significance of the mutation 

using the VarSome website [8], according to the American College of Medical Genetics 

and Genomics (ACMG) guidelines [9]. We used the ClinVar database [10] to gather more 

information on the CASR gene. For comparison with the normal population, we verified the 

Genome Aggregation Database (gnomAD) [11].

The mutation was reported in the CASR database as a variant of unknown significance 

(http://www.casrdb.mcgill.ca). In the ClinVar database [10], it was reported as a change of 

uncertain significance, and on the VarSome website [8], it was analyzed by the ACMG 

criteria as likely pathogenic [9]. It is a rare variant that was not reported in gnomAD [11]. 

This mutation leads to substitution of isoleucine with threonine (p.Ile139Thr; g.121976158; 

g.121976158) at the cysteine-rich domain of the extra-cellular domain of CASR.

We modeled the wild-type Ile139 and mutant Thr139 residues using an inactive state CASR 

structure obtained from high-resolution cryo-EM (PDB: 7M3G) [12] and Pymol [13]. As 

shown on Figure 2, the side chain changing from large aliphatic residue to a small neutral 

one was predicted to form an additional hydrogen bond between residue Thr139 and Ile33 

(analyzed by the webserver Arpeggio; https://biosig.lab.uq.edu.au/arpeggioweb). Confocal 

images showed that wild type and p.Ile139Thr CASRs were similarly expressed at the 

periphery of the HEK293T cells, consistent with cell surface localization of the p.Ile139Thr 

CASR (Fig. 3). After transfection of cells with wildtype or mutant CASR plasmids, single-

cell fluorescence measurements of intracellular calcium (Ca2+) were obtained from multiple 

cells. These studies demonstrated that the p.Ile139Thr substitution led to a significant 

increase (p < 0.005 by two-tailed Student’s t test, four independent experiments) in 

sensitivity of the CASR to activation by extracellular calcium (EC50 of 0.88 ± 0.02 mM, 

mean ± SD) relative to the wild-type CASR (EC50 of 1.1 ± 0.23 mM) (Fig. 4).

The c.416T>C mutation cosegregated with hypocalcemia in all seven individuals, whereas 

four unaffected normocalcemic members of the family did not exhibit the mutation (Fig. 1b). 

Patient III-5 was diagnosed in intrauterine screening.
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Clinical and Biochemical Studies

The clinical and biochemical data of the seven affected members of the family are described 

in Table 1. Two members presented with seizures during the neonatal period: patient III-3 

(the proband) had three episodes of generalized tonic-clonic seizures and patient III-4 had 

two seizure episodes at 12 days and 7 months of age (both episodes occurred during febrile 

disease). The corresponding serum calcium levels at the time of the first convulsion in these 

patients were 6.0 mg/dL (ionized calcium 0.83 mg/dL) and 7.1 mg/dL, respectively.

Three patients had nephrocalcinosis, and two of these also had nephrolithiasis (Table 1). 

Two of the patients (I-1 and II-1 in Table 1) presented with impaired renal function 

(serum creatinine >1.2 mg/dL) and estimated glomerular filtration rate (eGFR) <60 mL/min/

1.73 m2 at their last assessment at 50 and 29.3 years of age, respectively. eGFR was 

calculated using CKD-EPI formula [14]. In addition, two of the family members developed 

lens involvement: patient I-1 developed early cataract at 27 years of age and patient II-2 

developed focal opacity in the posterior capsule of the lens at 2.3 years of age. All patients 

with nephrocalcinosis, nephrolithiasis and early appearance of lens opacity were treated with 

calcitriol and calcium supplementation at various doses.

Calculation of Optimal Age-Dependent Serum Calcium Levels

For 3 patients (II-2, II-3, III-2) with long-term follow-ups, we obtained serum calcium 

levels and urinary calcium-to-creatinine (Ca/Cr) ratios (from spot urine samples) that were 

measured simultaneously over several years from infancy to early adulthood (n = 42 paired 

measurements). 7 of the measurements were obtained during the first 3 years of life, 30 

measurements during childhood (3.1–12 years), 3 measurements during adolescence (12.1–

18 years), and 2 measurements during adulthood (>18 years). These measurements were 

positively correlated: serum calcium = 6.40 + 2.96(Ca/Cr ratio); R = 0.623, p < 0.001 (Fig. 

5). The relationship of serum calcium with urinary Ca/Cr ratio was not affected by patients’ 

age or renal function expressed by serum creatinine and eGFR (calculated by stepwise 

linear regression). Furthermore, neither serum calcium levels nor urinary Ca/Cr ratios were 

correlated with eGFR. To calculate the highest serum calcium level associated with calcium 

excretion in the upper normal range, we plugged age-adjusted upper levels of urinary Ca/Cr 

ratios [15, 16] into the correlation equation. The two reports that described the upper urinary 

Ca/Cr levels (95th percentile) included healthy subjects from the USA (15) and Switzerland 

(16) that were mainly Caucasians, similar to the population in Israel. The European study 

(16) was much larger and contained more age-groups by comparison to the American study; 

therefore, we based our serum calcium calculations on age-ranges reported in this study 

(from birth to 7 years of age). Notably, only the American study contained data on adult 

subjects. From 7 years of age onward, we combined the data on the upper levels of urinary 

Ca/Cr ratios of both studies, since these levels were in a narrow range of 0.22 to 0.25, which 

yielded a similar calculated maximal serum calcium value of 7.1 mg/dL. The upper limit 

levels of serum calcium are given in Table 2.
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Discussion

We report a novel heterozygous mutation (c.416T>C) in CASR that caused ADH1 in 

all seven family members with hypocalcemia. This mutation leads to a substitution of 

isoleucine with threonine, with the formation of an additional hydrogen bond that occurs 

between the backbone of Ile33 and the residue side chain of Thr139. The replacement of 

the nonpolar amino acid isoleucine with the polar amino acid threonine, with the additional 

hydrogen bond, may affect the hydrophobic packing of the protein core.

In patients with ADH1, two mechanisms contribute to hypercalciuria: first, low 

concentrations of PTH, which normally induces renal reabsorption of calcium from the 

primary filtrate; second, increased activation of the mutated CASR through extracellular 

calcium in the thick ascending limb of the Loop of Henle, which leads to even 

more profound hypercalciuria for any given blood calcium level [5]. In addition, 

calcium and calcitriol administration, which is aimed at alleviating hypocalcemia in 

symptomatic patients, may further exacerbate hypercalciuria, which may subsequently 

induce nephrocalcinosis, nephrolithiasis, and impaired renal function in patients with ADH1 

[17]. It has been estimated that 10% of ADH1 patients develop nephrocalcinosis and 

nephrolithiasis in association with hypercalciuria [18]. In a study by Pearce and colleagues 

[3], 8 out of 9 patients with hypercalciuria developed renal calcification, and seven of 

them developed renal impairment. Renal calcification and subsequent renal impairment 

were also developed in 7 other patients during vitamin D therapy [3]. These observations 

were confirmed in another study where all 8 patients with hypercalciuria developed 

nephrocalcinosis [19]. Therefore, it has been suggested that treatment should be reserved 

only for symptomatic patients, with the lowest possible goal calcium levels to alleviate 

symptoms [3, 5, 18–21]. In practice, this guideline is difficult to implement, and specific 

serum calcium levels are rarely recommended for patients with ADH1 [18, 19]. Lienhardt 

et al. [19] suggested that serum calcium levels be kept above 7.8 mg/dL irrespective of 

age because none of the patients with severe clinical signs of hypocalcemia had serum 

calcium values above this threshold. Sorheim et al. [22] stated that ADH1 patients should 

maintain serum calcium in the range of 7.6–8.4 mg/dL. In addition, urinary calcium 

excretion should be carefully monitored to minimize nephrocalcinosis and nephrolithiasis 

[23]. Unlike these studies that suggested fixed ranges of serum calcium, we aimed to 

define in our study the highest serum calcium levels that will not jeopardize renal function, 

while keeping it in the lowest possible level to avoid neurological symptoms. We first 

performed a correlation analysis between serum calcium levels and urinary Ca/Cr ratio, a 

recognized index of renal calcium excretion. We then used the highest normal levels of 

urinary Ca/Cr ratio (95th percentile) [15, 16] in the resulting correlation equation and came 

up with the highest serum calcium levels that correlate with renal calcium excretion in 

the upper normal range. Since urinary calcium decreases with age [15, 16, 24], the upper 

limit levels of calcium ranged from 8.8 mg/dL in the first year of life to 7.1 mg/dL in late 

childhood and adulthood. In previous reports, serum calcium levels that were associated 

with seizures were below our recommended age-related levels of calcium [4, 19, 20, 25, 

26]. In a literature review of 16 papers that included 48 children with ADH1, 24 of the 25 

children with seizures had serum calcium levels below our recommended age-related levels, 
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with a mean calcium level of 6.3 mg/dL [21]. Therefore, our age-adjusted levels of serum 

calcium are low enough to prevent hypercalciuria and high enough to prevent seizures. Our 

correlation equation was quite similar to the one that we calculated from raw data of 26 

measurements (in 20 patients) in Pearce et al. [3]: serum calcium = 6.65 + 3.12(Ca/Cr) (R 
= 0.651; p < 0.001). Notably, while measurements in the latter study were mainly obtained 

during adulthood, the measurements in the present study covered a wide range of ages. 

Our approach, however, might not guarantee prevention of renal impairment in all cases. 

Although most patients with hypercalciuria in Pearce et al. [3] developed some degree of 

renal impairment, 3 out of 7 patients that received vitamin D treatment developed renal 

calcification and renal impairment despite urinary Ca/Cr being in the high-normal range. 

Our approach contradicts the conclusion drawn by Lienhardt et al. [19] that serum calcium 

level is not a good predictor of hypercalciuria or nephrocalcinosis because both conditions 

can develop when serum calcium remains below the normal range. Unlike that study, we 

suggest age-adjusted levels of serum calcium, where different levels of hypocalcemia should 

be maintained at different ages to prevent hypercalciuria (Table 2). The importance of 

minimizing hypercalciuria is demonstrated in our study where 3 out of 7 patients with 

ADH1 had nephrocalcinosis, alone or with nephrolithiasis.

We found lens involvement at a relatively early age in two of the family members. Early 

presentation of cataracts has been previously reported as congenital cataracts [27] or as 

cataracts presenting in the fifth decade of life [28]. Cataracts have also been reported as part 

of various ectopic calcifications in a mouse model of activating CASR mutation [29].

There are several limitations to this study. First, the equation we suggested for the 

correlation between serum calcium and urinary Ca/Cr ratio was based on 3 patients only 

and 42 serum and urine paired values. Furthermore, urinary Ca/Cr values were taken from 

two studies that included mainly Caucasian population. Therefore, the equation should be 

evaluated in larger groups of ADH1 patients with ethnic diversity in order to assure its 

validity in various populations.

Second, there is a phenotypic variation in ADH1, even among family members with the 

same genotype [22]. Therefore, we cannot assure that the equation we suggest is applied for 

all other ADH1 patients with various mutations in the CASR gene, which might maintain 

different correlation between serum calcium and urinary Ca/Cr ratio. Nonetheless, when we 

calculated the correlation of these parameters in previously reported 20 ADH1 patients with 

five different mutations in the CASR gene [3], we came up with an equation that is almost 

identical to the equation in our cohort.

Finally, we used spot urinary calcium to creatinine ratio for the correlation analysis rather 

than the 24 h urinary calcium excretion. 24 h urine collection is considered the gold standard 

for evaluating calcium excretion and can vary from urine spot sample. Since many of 

the measurements obtained during infancy and early childhood, 24 h urine collection was 

impractical in these cases. For older patients, we recommend to rely on 24 h urine collection 

in order to evaluate urinary excretion of calcium.
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In conclusion, we describe a novel mutation in CASR in a family with ADH1. Data on 

serum calcium levels and urinary calcium secretion obtained in 3 of the patients over 49 

patient-years enabled us to recommend age-dependent serum calcium levels. In line with the 

current recommendations, we suggest to keep serum calcium levels high enough to alleviate 

symptoms, while considering our age-adjusted levels as upper limits in asymptomatic 

patients. Practically, serum calcium levels should optimally be kept below the suggested 

upper limits, as long as the patient is free from hypocalcemic symptoms. Adjustments to 

these levels may be required if hypocalcemic symptoms persist. This recommendation by no 

means replaces other measurements in the follow-up of ADH1 patients such as 24 h calcium 

excretion or serum creatinine, but it provides another tool to guide the physician. Further 

studies in larger groups of patients with various CASR mutations are needed to examine 

the effect of implementing our paradigm for the prevention of both hypocalcemia-related 

neurological symptoms and hypercalciuria with subsequent renal impairment in patients 

with ADH1.
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Fig. 1. 
a The heterozygous T>C transition at nucleotide c.416 in exon 4 of CASR gene was 

identified in the affected members of the family, which changed ATT codon to ACT and is 

predicted to result in a substitution of isoleucine with threonine in the ligand-binding domain 

of CASR. b Pedigree of the family with ADH1. Squares represent male and circles represent 

female family members. Affected and unaffected individuals are represented by filled and 

open symbols, respectively. The index case is marked by an arrow.
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Fig. 2. 
Ribbon diagram of the CASR structure (left) and localization of the mutation within the 

ligand-binding domain of the receptor in the extracellular domain (position 139 in red). 

Modeling of the wild-type Ile139 (Upper right) and mutant Thr139 residue (Lower right) 

using an inactive state CASR structure obtained from high-resolution cryo-EM and Pymol 

showed the side chain changing from large aliphatic residue to a small neutral one. The 

introduction of a mutant Thr139 residue (pale blue) is predicted to form an additional 

hydrogen bond between residue Thr139 and Ile33 (dashed yellow lines).
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Fig. 3. 
Cellular expression of wild-type and mutant CaSRs in transfected HEK293T cells. Confocal 

fluorescence microscopy was performed on cells that had been transiently transfected with 

chimeric CaSR-EGFP cDNAs that encode wild-type (left panel) or mutant (right panel, 

p.Ile139Thr) CaSR-green fluorescent protein fusion proteins. Both CaSR isoforms were 

similarly expressed at the periphery of the HEK293T cells, consistent with cell surface 

localization of the p.Ile139Thr CASR. Scale bar is 10 microns.
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Fig. 4. 
Intracellular Ca2+ responses to changes in extracellular Ca2+ concentration in HEK293T 

cells expressing the wild-type or mutant CaSRs. The dose-response curve of the I139T 

mutant showed a leftward shift relative to that of the wild-type receptor. The curves shown 

are representative of four independent experiments.
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Fig. 5. 
Correlation between serum calcium and urinary calcium-to-creatinine ratio in three members 

with ADH1: II-2 (open circles), II-3 (filled circles), and III-2 (diamonds) (Table 1; Fig. 1b). 

Data are presented as regression line with 95th confidence interval.
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Table 2.

Age-adjusted highest levels of serum calcium associated with calcium excretion in the upper normal range for 

patients with ADH1

Age range, years Urinary Ca/Cr ratio, mg/mg; 95th percentile* Serum calcium, mg/dL

1st year 0.81 8.8

2nd year 0.56 8.1

3rd year 0.50 7.9

3–5 0.41 7.6

5–7 0.30 7.3

7 to adult 0.22–0.25 7.1

*
Based on Matos et al. [16] for the age range of birth to 7 years and both Matos et al. [16] and Sargent et al. [15] for the age range of 7 years to 

adulthood.
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